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Abstract

Following Katz-Sarnak [KS1], [KS2], Iwaniec-Luo-Sarnak [ILS], and Rubinstein [Ru], we
use the 1- and 2-level densities to study the distribution of low lying zeros for one-
parameter rational families of elliptic curves over Q(t). Modulo standard conjectures,
for small support the densities agree with Katz and Sarnak’s predictions. Further, the
densities confirm that the curves’ L-functions behave in a manner consistent with having
r zeros at the critical point, as predicted by the Birch and Swinnerton-Dyer conjecture.
By studying the 2-level densities of some constant sign families, we find the first examples
of families of elliptic curves where we can distinguish SO(even) from SO(odd) symmetry.

1. Introduction

1.1 n-Level Correlations and Densities

Assuming GRH, the zeros of any L-function lie on the critical line, and therefore it is possible to
investigate statistics of the normalized zeros. The general philosophy, born out in many examples (see
[CFKRS]), is that the behavior of random matrices / ensembles of random matrices behave similar
to that of L-functions / families of L-functions. By a family F we mean a collection of geometric
objects and their associated L-functions, where the geometric objects have similar properties.

We expect there is a symmetry group G(F) (one of the classical compact groups U(N), SU(N),
USp(2N), SO(even) and SO(odd)) which can be associated to a family of L-functions, and that
the behavior of eigenvalues of matrices in G(F) should (after appropriate normalizations) equal the
behavior of zeros of L-functions.

Iwaniec, Luo and Sarnak [ILS] consider (among other examples) all cuspidal newforms of a
given level and weight. Rubinstein [Ru] considers twists by fundamental discriminants D of a fixed
modular form.

We study the family of all elliptic curves and various one-parameter families of elliptic curves.
Thus, in our case the notion of family is the standard one from geometry: we have a collection of
curves over a base, and the geometry is much clearer in our examples than in [ILS] and [Ru].

Let {αj} be an increasing sequence of numbers tending to infinity, such as eigenvalues or zeros
normalized to have mean spacing 1. For a compact box B ⊂ Rn−1, define the n-level correlation by

lim
N→∞

#
{

(αj1 − αj2 , . . . , αjn−1 − αjn) ∈ B, ji ∈ {1, . . . , N}, ji 6= jk

}
N

(1.1)

2000 Mathematics Subject Classification 11M26 (primary), 11G05, 11G40, 11M26 (secondary).
Keywords: n-Level Density, Low Lying Zeros, Elliptic Curve L-functions, Birch and Swinnerton-Dyer Conjecture



Steven J. Miller

Note that the n-level correlations are unaffected by removing finitely many zeros. Instead of
using a box, one can study a smoothed version with a test function on Rn (see [RS]).

For test functions whose Fourier Transform has small support, Montgomery [Mon] proved the 2-
and Hejhal [Hej] proved the 3-level correlations for the zeros of ζ(s) are the same as that of the GUE,
and Rudnick-Sarnak [RS] proved the n-level correlations for all automorphic cuspidal L-functions
are the same as the GUE. The universality is due to the fact that the correlations are controlled by
the second moment of the ap’s, and while there are many possible limiting distributions, all have
the same second moment.

Katz and Sarnak [KS1] prove the classical compact groups have the same n-level correlations.
In particular, we cannot use the n-level correlations to distinguish GUE behavior, U(N), from the
other classical compact groups. We are led to investigate another statistic which will depend on the
underlying group.

For L-functions of elliptic curves, the order of vanishing of L(s,E) at s = 1
2 is conjecturally

equal to the geometric rank of the Mordell-Weil group (Birch and Swinnerton-Dyer conjecture).
If we force the Mordell-Weil group to be large, we expect many zeros exactly at s = 1

2 , and this
might influence the behavior of the neighboring zeros. Hence we are led to study the distribution of
the first few, or low lying, zeros, and the fascinating possibility that there could be a difference in
statistics for zeros near 1

2 than for zeros higher up.

Let f(x) be an even Schwartz function whose Fourier Transform is supported in a neighborhood
of the origin. We assume f is of the form

∏n
i=1 fi(xi). The n-level density for the family F with test

function f is

Dn,F (f) =
1
|F|

∑
E∈F

∑
j1,...,jn
ji 6=±jk

f1

( log NE

2π
γ

(j1)
E

)
· · · fn

( log NE

2π
γ

(jn)
E

)
, (1.2)

where γ
(ji)
E runs through the non-trivial zeros of the curve E, and NE is its conductor. We rescale

the zeros by log NE as this is the order of the number of zeros with imaginary part less than a large
absolute constant (see [ILS]). As fi is Schwartz, most of the contribution is due to the zeros near
the critical point. We use the Explicit Formula (Equation 2.3) to relate sums of test functions over
zeros to sums over primes of aE(p) and a2

E(p).

Katz and Sarnak [KS1] determine the N →∞ limits for the n-level densities of eigenvalues near
1 for the classical compact groups (see Section 3); their calculations can be modified to determine the
densities of classical compact groups with a forced number of eigenvalues at 1. Forcing eigenvalues
at 1 corresponds to L-functions with zeros forced at the critical point.

1.2 Results

To any geometric family in the function field case, the results of Katz and Sarnak ([KS1], [KS2])
state the n-level density of zeros near 1

2 depends only on a symmetry group attached to the family.
In particular, for generic families of elliptic curves the relevant symmetry is orthogonal. One can
further analyze the distributions depending on the signs of the functional equations. As the families
of elliptic curves are self-dual, we expect the densities to be controlled by the distribution of signs
(all even: SO(even); all odd: SO(odd); equidistributed: O).

For an elliptic curve Et, let D(t) be the product of the irreducible polynomial factors of the
discriminant ∆(t), and let C(t) be the conductor. Let B be the largest square dividing D(t) for all
t. Pass to a subsequence ct + t0, and call t ∈ [N, 2N ] good if D(ct + t0) is square-free, except for
primes p|B where the power of such p|D(t) is independent of t.
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The main result is Theorem 5.8:

Rational Surfaces Density Theorem: Consider a one-parameter family of elliptic curves of
rank r over Q(t) which constitutes a rational surface. Assume GRH, j(Et) non-constant, and if
∆(t) has an irreducible polynomial factor of degree at least 4, assume the ABC Conjecture.

After passing to a subsequence, for t good, C(t) is a polynomial. Let fi be an even Schwartz
function of small but non-zero support σi (σ1 < min(1

2 , 2
3m) for the 1-level density, σ1 + σ2 < 1

3m
for the 2-level density).

The 1-level density agrees with the orthogonal densities plus a term which equals the contribu-
tions from r zeros at the critical point. The 2-level density agrees with SO(even), O, and SO(odd)
depending on whether the signs are all even, equidistributed in the limit, or all odd, plus a term which
equals the contribution from r zeros at the critical point. Thus, for small support, the densities of
the zeros agree with Katz and Sarnak’s predictions. Further, the densities confirm that the curves’
L-functions behave in a manner consistent with having r zeros at the critical point, as predicted by
the Birch and Swinnerton-Dyer conjecture.

The ABC Conjecture is used to handle large prime divisors of polynomials of degree 4 or more
(see [Gr]). In place of ABC, one could assume the Square-Free Sieve Conjecture.

For the 1-level densities, the three orthogonal densities agree for test functions with support
less than 1, split (ie, are distinguishable) for support greater than 1, but are all distinguishable
from U and Sp for any support. Hence, unlike the n-level correlations, the 1-level density is already
sufficient to observe non-GUE and non-symplectic behavior.

The polynomial growth of the conductor in families of elliptic curves makes it difficult to evaluate
the sums over primes for test functions with moderate support. Converting to our language, for
small support the 1-level densities for many families have been shown equal to the Katz-Sarnak
predictions: all elliptic curves (Brumer and Heath-Brown [Br], [BHB5], support less than 2

3); twists
of a given curve (support less than 1); one-parameter families (Silverman [Si3], small support).

None of these are sufficient to distinguish the three orthogonal candidates. Further, previous
investigations have rescaled each curve’s zeros by the average of the logarithms of the conductors.
This greatly simplifies the calculations; however, the normalization is no longer natural for each
curve, as each curve can sit in infinitely many families, each with a different average spacing. By
using local normalizations for each curve’s zeros, the n-level density for a family becomes the average
of the n-level densities for each curve.

The utility of the 2-level density is that, even for test functions with arbitrarily small support,
the three candidate orthogonal symmetries are distinguishable, and in a very satisfying way. The
three candidates differ by a factor which encodes the distribution of sign in the family, and all differ
from the GUE’s 2-level density.

We will study several families of constant sign, and we will see that the densities are as expected.
Thus, for these constant sign families, the 2-level density reflects the predicted symmetry, which is
invisible through the 1-level density because of support considerations.

Similar to the universality Rudnick and Sarnak [RS] found in studying n-level correlations, our
universality follows from the sums of a2

t (p) in our families (the second moments). For non-constant
j(Et), this follows from a Sato-Tate law proved by Michel [Mi] (Theorem 2.3).

1.3 Structure of the Paper
First, we calculate sums of the Fourier coefficients of elliptic curves. We quote the predicted densities,
and then calculate useful expansions for the 1- and 2-level densities for families of elliptic curves
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over Q(t). We derive the density results, conditional on the evaluation of many elliptic curve sums.
We calculate these sums for one-parameter rational families of elliptic curves. We conclude with
several examples (four constant sign families, a rank 1 and a rank 6 rational family).

We need excellent control over the conductors to evaluate the above sums; the estimation is so
delicate that if the log of conductors are of size m log N , fluctuations of size O(1) yield error terms
greater than the expected main terms.

The key observation is that the error terms can be controlled if the conductors are monotone. By
straightforward sieving and applications of Tate’s algorithm (to calculate the conductors), given a
one-parameter rational family of elliptic curves, we may pass to a positive percent sub-family where
the conductors are monotone. Proofs of these results are given in the appendices.

In this paper, we concentrate on rational elliptic surfaces, because here Tate’s conjecture is
known. Rosen and Silverman [RSi] show Tate’s conjecture implies certain sums over primes are
related to the rank of the family over Q(t). This will allow us to interpret some of our density terms
as the contributions from r critical point zeros.

The modifications needed to handle the family of all elliptic curves, parametrized by

y2 = x3 + ax + b, a ∈ [−N2, N2], b ∈ [−N3, N3], (1.3)

are straightforward, and can be found in [Mil].
Finally, if instead we normalize by the average of the logarithms of the conductors, we obtain

the same results, but with significantly less work. This is done for one-parameter families and the
family of all elliptic curves in [Mil].

2. Elliptic Curve Preliminaries

2.1 Definitions
Consider a one-parameter family E of elliptic curves Et over Q(t):

E : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t), ai(t) ∈ Z[t]. (2.1)

For each curve Et, let ∆(t) be its discriminant and C(t) its conductor. Let D(t) denote the
product of the irreducible polynomial factors dividing ∆(t). We will take t ∈ [N, 2N ] such that D(t)
is square-free.

Let at(p) = aEt(p) = p + 1−Nt,p, where Nt,p is the number of solutions of Et mod p (including
∞). If y2 = x3 + A(t)x + B(t), then

at(p) = −
∑
t(p)

(
x3 + A(t)x + B(t)

p

)
. (2.2)

2.2 Assumptions
We assume the following at various points:

Generalized Riemann Hypothesis (for Elliptic Curves) Let L(s,E) be the (normalized)
L-function of an elliptic curve E. The non-trivial zeros ρ of L(s,E) have Re(ρ) = 1

2 .

Occasionally we assume the RH for the Riemann Zeta-function and Dirichlet L-functions.
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Birch and Swinnerton-Dyer Conjecture [BSD1], [BSD2] Let E be an elliptic curve of
geometric rank r over Q (the Mordell-Weil group is Zr ⊕ T ). Then the analytic rank (the order of
vanishing of the L-function at the critical point) is also r.

We assume the above only for interpretation purposes.

Tate’s Conjecture for Elliptic Surfaces [Ta] Let E/Q be an elliptic surface and L2(E , s) be
the L-series attached to H2

ét(E/Q, Ql). L2(E , s) has a meromorphic continuation to C and −ords=1L2(E , s)
= rank NS(E/Q), where NS(E/Q) is the Q-rational part of the Néron-Severi group of E. Further,
L2(E , s) does not vanish on the line Re(s) = 1.

Most of the one-parameter families that we investigate are rational surfaces, in which case Tate’s
conjecture is known (see [RSi]).

ABC Conjecture Fix ε > 0. For co-prime positive integers a, b and c with c = a + b and
N(a, b, c) =

∏
p|abc p, c �ε N(a, b, c)1+ε.

The full strength of ABC is never needed; rather, we need a consequence of ABC, the Square-
Free Sieve (see [Gr]):

Square-Free Sieve Conjecture Fix an irreducible polynomial f(t) of degree at least 4. As
N →∞, the number of t ∈ [N, 2N ] with f(t) divisible by p2 for some p > log N is o(N).

For irreducible polynomials of degree at most 3, the above is known, complete with a better
error than o(N) ([Ho], chapter 4).

We use the Square-Free Sieve to handle the variations in the conductors. If our evaluation of
the log of the conductors is off by as little as a small constant, the prime sums become untractable.
This is why many works normalize by the average log-conductor.

Restricted Sign Conjecture (for the Family F) Consider a one-parameter family F of
elliptic curves. As N →∞, the signs of the curves Et are equidistributed for t ∈ [N, 2N ].

The Restricted Sign conjecture often fails. First, there are families with constant j(Et) where
all curves have the same sign.

Helfgott [He] has recently related the Restricted Sign conjecture to the Square-Free Sieve con-
jecture and standard conjectures on sums of Moebius:

Polynomial Moebius Let f(t) be a non-constant polynomial such that no fixed square divides
f(t) for all t. Then

∑2N
t=N µ(f(t)) = o(N).

The Polynomial Moebius conjecture is known for linear f(t).
Helfgott shows the Square-Free Sieve and Polynomial Moebius imply the Restricted Sign con-

jecture for many families. More precisely, let M(t) be the product of the irreducible polynomials
dividing ∆(t) and not c4(t).
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Theorem: Equidistribution of Sign in a Family [He]: Let F be a one-parameter family
with ai(t) ∈ Z[t]. If j(Et) and M(t) are non-constant, then the signs of Et, t ∈ [N, 2N ], are
equidistributed as N → ∞. Further, if we restrict to good t, t ∈ [N, 2N ] such that D(t) is good
(usually square-free), the signs are still equidistributed in the limit.

The above is only used to calculate N(F ,−1), the percent of odd curves. Without this, we can
still calculate the 1-level densities for small support, and all but one term in the 2-level densities,
N(F ,−1)f1(0)f2(0).

2.3 Explicit Formula
The starting point for working with zeroes of the L-functions of elliptic curves is the Explicit Formula
(see [Mes]), which relates sums over zeros to sums over primes.

For an elliptic curve E with conductor NE ,

∑
γ
(j)
E

G
(
γ

(j)
E

log NE

2π

)
= Ĝ(0) + G(0)− 2

∑
p

log p

log NE

1
p
Ĝ
( log p

log NE

)
aE(p)

−2
∑

p

log p

log NE

1
p2

Ĝ
( 2 log p

log NE

)
a2

E(p)

+O
( log log NE

log NE

)
. (2.3)

2.4 Sums of at(p)
Using the Explicit Formula, we will find that we need to handle sums like

2N∑
t=N

ar1
t (p1) · · · arn

t (pn). (2.4)

We record these results for later use. Define

Ar,F (p) =
∑
t(p)

ar
t (p). (2.5)

Lemma 2.1. Let p1, . . . , pn be distinct primes and ri > 1. Then∑
t(p1···pn)

n∏
i=1

ari
t (pi) =

n∏
i=1

Ari,F (pi). (2.6)

The proof is a straightforward induction, using the fact that at+mp(p) = at(p).
Lemma 2.1 is our best analogue to the Petersson formula, which is used in [ILS] to obtain large

support for the density functions.
A1,F (p)

p is bounded independent of p ([De]). Rosen and Silverman [RSi] proved the following
conjecture of Nagao [Na]:

Theorem 2.2 Rosen-Silverman. For a one-parameter family E of elliptic curves over Q(t), if
Tate’s conjecture is true, then

lim
X→∞

1
X

∑
p6X

−
A1,F (p)

p
log p = rank E(Q(t)) (2.7)
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Tate’s conjecture is known for rational surfaces (see [RSi]). An elliptic surface y2 = x3 +A(t)x+
B(t) is rational iff one of the following is true: (1) 0 < max{3degA, 2degB} < 12; (2) 3degA =
2degB = 12 and ordt=0t

12∆(t−1) = 0.

Theorem 2.3 Michel [Mi]. Consider a one-parameter family over Q(t) with non-constant j(Et).
Then

A2,F (p) = p2 + O(p
3
2 ). (2.8)

2.5 Sieving and Conductors
To evaluate the sums of

∏
i a

ri
t (pi), it is necessary to restrict t to arithmetic progressions; in order

to bound some of the error terms, we will see that the conductors C(t) must be monotone.
Let

Tsqfree =
{

t ∈ [N, 2N ] : D(t) is sqfree
}

TN =
{

t ∈ [N, 2N ] : d2 |r D(t) for 2 6 d 6 logl N
}

. (2.9)

Clearly Tsqfree ⊂ TN . We show TN is a union of arithmetic progressions, and |TN − Tsqfree| =
o(N).

Thus, except for o(N) values of t, we can write t good (where the conductors are monotone) as
a union of arithmetic progressions. For proofs, see Theorems A.5 and B.2.

3. 1- and 2-Level Density Kernels for the Classical Compact Groups

By [KS1], the n-level densities for the classical compact groups are

Wn,O+(x) = det(K1(xi, xj))i,j6n

Wn,O−(x) = det(K−1(xi, xj))i,j6n +
n∑

k=1

δ(xk)det(K−1(xi, xj))i,j 6=k

= (Wn,O−)1(x) + (Wn,O−)2(x)

Wn,O(x) =
1
2
Wn,O+(x) +

1
2
Wn,O−(x)

Wn,U (x) = det(K0(xi, xj))i,j6n

Wn,Sp(x) = det(K−1(xi, xj))i,j6n (3.1)

where K(y) = sin πy
πy , Kε(x, y) = K(x − y) + εK(x + y) for ε = 0,±1, O+ denotes the group

SO(even) and O− the group SO(odd).

3.1 1-Level Densities
Let I(u) be the characteristic function of [−1, 1].

Theorem 3.1 1-Level Densities.

Ŵ1,O+(u) = δ(u) +
1
2
I(u)

Ŵ1,O(u) = δ(u) +
1
2

Ŵ1,O−(u) = δ(u)− 1
2
I(u) + 1
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Ŵ1,Sp(u) = δ(u)− 1
2
I(u)

Ŵ1,U (u) = δ(u). (3.2)

For functions whose Fourier Transforms are supported in [−1, 1], the three orthogonal densities are
indistinguishable, though they are distinguishable from U and Sp. To detect differences between
the orthogonal groups using the 1-level density, one needs to work with functions whose Fourier
Transforms are supported beyond [−1, 1].

3.2 2-Level Densities
Theorem 3.2 G = SO(even), O, or SO(odd). Let c(G) = 0, 1

2 , 1 for G = SO(even), O, SO(odd).
For even functions supported in |u1|+ |u2| < 1∫ ∫

f̂1(u1)f̂2(u2)Ŵ2,G(u)du1du2

=
[
f̂1(0) +

1
2
f1(0)

][
f̂2(0) +

1
2
f2(0)

]
+ 2

∫
|u|f̂1(u)f̂2(u)du

− 2f̂1f2(0) − f1(0)f2(0) + c(G)f1(0)f2(0). (3.3)

For arbitrarily small support, the three 2-level densities differ. One increases by a factor of
1
2f1(0)f2(0) moving from Ŵ2,O+ to Ŵ2,O to Ŵ2,O− .

Theorem 3.3 G = Sp.∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,Sp(u)du1du2

=
[
f̂1(0) +

1
2
f1(0)

][
f̂2(0) +

1
2
f2(0)

]
+ 2

∫
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0)− f1(0)f̂2(0)− f̂1(0)f2(0) + 2f1(0)f2(0). (3.4)

Theorem 3.4 G = U .∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,Udu1du2 = f̂1(0)f̂2(0) +

∫
|u|f̂1(u)f̂2(u)du− f̂1f2(0). (3.5)

For test functions with arbitrarily small support, the 2-level densities for the classical compact
groups are mutually distinguishable.

4. Expansions for the 1- and 2-Level Densities for Elliptic Curve Families

For i = 1 and 2, let fi be an even Schwartz function whose Fourier Transform is supported in
(−σi, σi) and f(x1, x2) = f1(x1)f2(x2), f̂(u1, u2) = f̂1(u1)f̂2(u2).

4.1 1-Level Density: D1,F (f)

D1,F (f) =
1
|F|

∑
E∈F

∑
γ
(j)
E

f1

(
γ

(j)
E

log NE

2π

)

= f̂1(0) + f1(0)− 2
∑

p

1
p

1
|F|

∑
E∈F

log p

log NE
f̂1

( log p

log NE

)
aE(p)

−2
∑

p

1
p2

1
|F|

∑
E∈F

log p

log NE
f̂1

( 2 log p

log NE

)
a2

E(p)
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+O
( log log NE

log NE

)
. (4.1)

As the 1-level density sums are sub-calculations which arise in the 2-level investigations, we
postpone their determination for now.

4.2 2-Level Density: D2,F (f) and D∗
2,F (f)

Recall the 2-level density D2,F (f) is the sum over all indices j1, j2 with j1 6= ±j2.

Definition 4.1. D∗
2,F (f) differs from the 2-level density D2,F (f) in that j1 may equal ±j2.

We first calculate D∗
2,F (f), and then subtract off the contribution from j1 = ±j2. Assuming

GRH, we may write the zeros as 1 + iγ(j), with γ(j) = −γ(−j).

D∗
2,F (f) =

1
|F|

∑
E∈F

∑
j1

∑
j2

f1(Lγ
(j1)
E )f2(Lγ

(j2)
E )

=
1
|F|

∑
E∈F

2∏
i=1

[
f̂i(0) + fi(0)− 2

∑
pi

log pi

log NE

1
pi

f̂i

( log pi

log NE

)
aE(pi)

−2
∑
pi

log pi

log NE

1
p2

i

f̂i

(
2

log pi

log NE

)
a2

E(pi) + O
( log log NE

log NE

)]

=
1
|F|

∑
E∈F

2∏
i=1

[
f̂i(0) + fi(0) + Si,1 + Si,2

]
. (4.2)

We use Theorem D.1 to drop the error terms, as they do not contribute in the limit as |F| →
∞. The astute reader will notice Theorem D.1 requires us to know the 1-level density, and we
have postponed that calculation; however, in the process of calculating the 2-level density we will
determine the needed sums for the 1-level density (without using Theorem D.1 to evaluate them).
Thus, there is no harm in removing the error terms.

There are five types of sums we need to investigate: 1
|F|
∑

E∈F Si,1, 1
|F|
∑

E∈F Si,2, 1
|F|
∑

E∈F S1,1S2,1,
1
|F|
∑

E∈F S1,2S2,2, and 1
|F|
∑

E∈F S1,1S2,2 (i 6= j). In Si,j , i refers to which prime (p1 or p2), and j

the power of aE(pα) (1 or 2). The first and the second are what we need to calculate the one-level
densities.

4.2.1 j1 = ±j2 Let ρ = 1 + iγ
(j)
E be a zero. For a curve with even functional equation, we may

label the zeros by

· · · 6 γ
(−2)
E 6 γ

(−1)
E 6 0 6 γ

(1)
E 6 γ

(2)
E 6 · · · , γ(−k)

E = −γ
(k)
E , (4.3)

while for a curve with odd functional equation we label the zeros by

· · · 6 γ
(−1)
E 6 0 6 γ

(0)
E = 0 6 γ

(1)
E 6 · · · , γ(−k)

E = −γ
(k)
E . (4.4)

We exclude the contribution from j1 = ±j2. If an elliptic curve has even functional equation, ji

ranges over all non-zero integers, and γ
(−j)
E = −γ

(j)
E , j 6= −j. Since the test functions are even, the

sum over all pairs (j1, j2) with j1 = ±j2 is twice the sum over all pairs (j, j), which is D1,E(f1f2),
ie, the 1-level density for a curve E with test function f1(x)f2(x).

9
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If an elliptic curve has odd functional equation, ji ranges over all integers. The curve vanishes
to odd order at the critical point s = 1. Except for one zero (labelled γ

(0)
E ), for every non-zero j,

γ
(−j)
E = −γ

(j)
E , and j 6= −j. Twice the sum over pairs (j, j) minus the contribution from the pair

(0, 0) equals the sum over all pairs (j1, j2) with j1 = ±j2. Thus, the curves with odd sign contribute
D1,E(f1f2)− f1(0)f2(0).

Let εE = ±1 be the sign of the functional equation for E, and define

Definition 4.2. N(F ,−1) = 1
|F|
∑

E∈F
1−εE

2 , ie, the percent of curves with odd sign.

Summing over E ∈ F yields D1,F (f1f2)−N(F ,−1)f1(0)f2(0) for j1 = ±j2.

4.2.2 2-Level Density Expansion

Lemma 4.3 2-Level Density Expansion.

D2,F (f) =
1
|F|

∑
E∈F

2∏
i=1

[
f̂i(0) + fi(0) + Si,1 + Si,2

]

− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1) + O
( log log N

log N

)
. (4.5)

To evaluate the above, we only need to know the percent of curves with odd sign, not which
curves are even or odd. For the 3 and higher level densities, we have to execute sums over the subset
of curves with odd sign.

4.3 Useful Expansion for the 1- and 2-Level Densities for One Parameter Families
Let E denote a one-parameter family of elliptic curves Et over Q(t), t ∈ [N, 2N ], and F denote a
sub-family of E . In the applications, F will be obtained by sieving to D(t) good, where D(t) is the
product of the irreducible polynomial factors of ∆(t).

4.3.1 Needed Prime Sums

Lemma 4.4 Prime Sums. Let C(N) be a power of N . By Lemmas C.2, C.3 and C.4,

i)
∑

p
log p

log C(N)
1
p f̂1

(
log p

log C(N)

)
= 1

2f1(0) + O
(

1
log N

)
ii)
∑

p
log p

log C(N)
1
p f̂1

(
2 log p

log C(N)

)
= 1

4f1(0) + O
(

1
log N

)
iii)

∑
p

log2 p
log2 C(N)

1
p f̂1f̂2

(
log p

log C(N)

)
= 1

2

∫∞
−∞ |u|f̂1(u)f̂2(u)du + O

(
1

log N

)
If instead we are summing over primes congruent to a mod m, we use Lemma C.1 and C.5, and the
right-hand sides are modified by 1

ϕ(m) .

4.3.2 Expansions of Sums We use the expansion from Lemma 4.3. Recall

Si,j = −2
∑
pi

log pi

log C(t)
1

pj
i

f̂i

(
2j−1 log pi

log C(t)

)
aj

t (pi). (4.6)

In Si,j , i refers to the prime (p1, p2) and j refers to the power of at(p) (at(p), a2
t (p)).

To determine the 1- and 2-level densities, there are eight sums over t ∈ F to evaluate: 1
|F|
∑

t∈F S1,1

and 1
|F|
∑

t∈F S2,1; 1
|F|
∑

t∈F S1,2 and 1
|F|
∑

t∈F S2,2; 1
|F|
∑

t∈F S1,1S2,2 and 1
|F|
∑

t∈F S2,1S1,2; 1
|F|
∑

t∈F S1,1S2,1;
1
|F|
∑

t∈F S1,2S2,2.

10
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We have written the sums in pairs where the two sums are handled similarly. Substituting the
definitions leads to five types of sums:

i) −2
∑

p
1
p

1
|F|
∑

t∈F
log p

log C(t) f̂1

(
log p

log C(t)

)
at(p)

ii) −2
∑

p
1
p2

1
|F|
∑

t∈F
log p

log C(t) f̂1

(
2 log p

log C(t)

)
a2

t (p)

iii) 4
∑

p1

∑
p2

1
p1p2

2

1
|F|
∑

t∈F
log p1

log C(t)
log p2

log C(t) f̂1

(
log p

log C(t)

)
f̂2

(
2 log p

log C(t)

)
at(p1)a2

t (p2)

iv) 4
∑

p1

∑
p2

1
p1p2

1
|F|
∑

t∈F
log p1

log C(t)
log p2

log C(t) f̂1

(
log p

log C(t)

)
f̂2

(
log p

log C(t)

)
at(p1)at(p2)

v) 4
∑

p1

∑
p2

1
p2
1p2

2

1
|F|
∑

t∈F
log p1

log C(t)
log p2

log C(t) f̂1

(
2 log p

log C(t)

)
f̂2

(
2 log p

log C(t)

)
a2

t (p1)a2
t (p2)

In the above sums, we use Lemma C.7 to restrict to primes greater than logl N , l < 2. Label
the five sums 1

|F|
∑

t∈F S(t; p) by Tk(p) and Tk(p1, p2). Trivially by Hasse some of the above do not
contribute.

In the third sum, if p1 = p2 = p, we get � 1
log N

∑
p

p
3
2 log p
p3 = O( 1

log N ). In the fifth sum, if

p1 = p2 = p we get � 1
log N

∑
p

p2 log p
p4 = O( 1

log N ).
Thus, we only study the third and fifth sums when p1 6= p2. The fourth sum has the potential

to contribute when p1 = p2. Hence we break it into two cases: p1 6= p2 and p1 = p2.

4.3.3 Conditions on the Family to Evaluate the Sums

Conditions on the Family F (4.7)

Let Tk(p) and Tk(p1, p2) (= 1
|F|
∑

t∈F S(t; p) ) equal

i) log p
log C(N) f̂1

(
log p

log C(N)

)[
− r + O

(
p−α + pβ

|F| + 1
logγ N

)]

ii) log p
log C(N) f̂1

(
2 log p

log C(N)

)[
p + O

(
p1−α + pβ

|F| + p
logγ N

)]

iii) log p1

log C(N)
log p2

log C(N) f̂1

(
log p1

log C(N)

)
f̂2

(
2 log p2

log C(N)

)[
− rp2 + O

(
p−α1
1 p1−α2

2 + p
β1
1 p

β2
2

|F| + p2

logγ N

)]

iv) (a) log p1

log C(N)
log p2

log C(N) f̂1

(
log p1

log C(N)

)
f̂2

(
log p2

log C(N)

)[
r2 + O

(
p1−α1
1 p1−α2

2 + p
β1
1 p

β2
2

|F| + 1
logγ N

)]
if p1 6= p2

(b) log2 p
log2 C(N)

f̂1f̂2

(
log p

log C(N)

)[
p + O

(
p1−α + pβ

|F| + p
logγ N

)]
if p1 = p2 = p

v) log p1

log C(N)
log p2

log C(N) f̂1

(
2 log p1

log C(N)

)
f̂1

(
2 log p2

log C(N)

)[
p1p2 + O

(
p1−α1
1 p1−α2

2 + p
β1
1 p

β2
2

|F| + p1p2

logγ N

)]
where α, β, γ > 0, αi, βi > 0 and whenever two αi or βi occur, at least one is positive.

By Lemma 4.4 we can evaluate the eight Si,j sums for a family satisfying Conditions 4.7:

Lemma 4.5 Si,j Sums. If the family satisfies Conditions 4.7, then (up to lower order terms which
do not contribute for small support),

i) 1
|F|
∑

t∈F Si,1 = rfi(0)

ii) 1
|F|
∑

t∈F Si,2 = −1
2fi(0)

11
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iii) 1
|F|
∑

t∈F S1,1S2,2 + S2,1S1,2 = −1
2rf1(0)f2(0) +−1

2rf1(0)f2(0)

iv) 1
|F|
∑

t∈F S1,1S2,1 = r2f1(0)f2(0) + 2
∫∞
−∞ |u|f̂1(u)f̂2(u)du

v) 1
|F|
∑

t∈F S1,2S2,2 = 1
4f1(0)f2(0)

4.3.4 1- and 2-Level Densities, Assuming Certain Conditions on the Family Substituting Lemma
4.5 into the 1- and 2-level density expansions we obtain

Lemma 4.6 1- and 2-Level Densities. Assume |F| is a positive multiple of N and F satisfies
conditions 4.7. Up to lower order correction terms (which vanish as |F| → ∞), for even Schwartz
functions with small support,

D1,F (f) = f̂1(0) +
1
2
f1(0) + rf1(0) (4.8)

and

D2,F (f) =
2∏

i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)
+(r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0). (4.9)

Let D
(r)
1,F (f1) and D

(r)
2,F (f1) be the 1- and 2-level densities from which the contributions

of r family zeros at the critical point have been subtracted. Then

D
(r)
1,F (f1) = f̂1(0) +

1
2
f1(0) (4.10)

and

D
(r)
2,F (f1) =

2∏
i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1). (4.11)

Thus, removing the contribution from r family zeros, for test functions of small support the 2-level
density of the remaining zeros agrees with SO(even) if all curves are even, O if half are even and
half odd, and SO(odd) if all are odd.

Proof: The 1-level density is immediate from substitution. Substituting for the eight Si,j sums
for D2,F (f) yields (up to lower order terms which don’t contribute for small support)

D2,F (f) = =
2∏

i=1

[
f̂i(0) + fi(0)

]

+

[
f̂1(0) + f1(0)

]
rf2(0) +

[
f̂2(0) + f2(0)

]
rf1(0)

+r2f1(0)f2(0) + 2
∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

+

[
f̂1(0) + f1(0)

](
− 1

2
f2(0)

)
+

[
f̂2(0) + f2(0)

](
− 1

2
f1(0)

)
−1

2
rf1(0)f2(0)− 1

2
rf1(0)f2(0) +

1
4
f1(0)f2(0)
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− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1) + O
( log log N

log N

)
=

2∏
i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

+2rf1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0)− rf1(0)f2(0) + r2f1(0)f2(0)
−2D1,F (f1f2) + (f1f2)(0)N(F ,−1). (4.12)

Substituting

D1,F (f1f2) = f̂1f2(0) +
1
2
f1(0)f2(0) + rf1(0)f2(0) (4.13)

yields

D2,F (f) =
2∏

i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

+rf1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0) + r2f1(0)f2(0)

−2f̂1f2(0)− f1(0)f2(0)− 2rf1(0)f2(0) + (f1f2)(0)N(F ,−1)

=
2∏

i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)
+(r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0). (4.14)

If the family has rank r over Q(t), there is a natural interpretation of these terms. By the Birch
and Swinnerton-Dyer conjecture (used only for interpretation purposes) and Silverman’s Specializa-
tion Theorem, for all t sufficiently large, each curve’s L-function has at least r zeros at the critical
point. We isolate the contributions from r family zeros.

Assume there are r family zeros at the critical point. Let Lt = log C(t)
2π . Recall the 1-level density

is D1,F (f) = f̂(0) + 1
2f(0) + rf(0). Let ji range over all zeros of a curve, and j′i range over all but

the r family zeros.

D2,F (f) =
1
|F|

∑
t∈F

∑
j1

∑
j2

f1(Ltγ
(j1)
Et

)f2(Ltγ
(j2)
Et

)

− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1)

=
1
|F|

∑
t∈F

(
rf1(0) +

∑
j′1

f1(Ltγ
(j′1)
Et

)
)(

rf2(0) +
∑
j′2

f2(Ltγ
(j′2)
Et

)
)

− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1)

=
1
|F|

∑
t∈F

∑
j′1

∑
j′2

f1(Ltγ
(j′1)
Et

)f2(Ltγ
(j′2)
Et

)

+rf1(0)D1,F (f2) + D1,F (f1)rf2(0)− r2f1(0)f2(0)
−2D1,F (f1f2) + (f1f2)(0)N(F ,−1)

=
1
|F|

∑
t∈F

∑
j′1

∑
j′2

f1(Ltγ
(j′1)
Et

)f2(Ltγ
(j′2)
Et

) + (f1f2)(0)N(F ,−1)

13
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+rf1(0)
(
f̂2(0) + (r +

1
2
)f2(0)

)
+
(
f̂1(0) + (r +

1
2
)f1(0)

)
rf2(0)

−r2f1(0)f2(0)− 2
(
f̂1f2(0) +

1
2
f1(0)f2(0) + rf1(0)f2(0)

)
=

[
1
|F|

∑
t∈F

∑
j′1

∑
j′2

f1(Ltγ
(j′1)
Et

)f2(Ltγ
(j′2)
Et

)

−2
(
f̂1f2(0) +

1
2
f1(0)f2(0)

)
+ (f1f2)(0)N(F ,−1)

]
+rf1(0)f̂2(0) + rf̂1(0)f2(0) + (r2 − r)f1(0)f2(0)

= D
(r)
2,F (f1) + rf1(0)f̂2(0) + rf̂1(0)f2(0) + (r2 − r)f1(0)f2(0). (4.15)

We isolate

Lemma 4.7. The contribution from r critical point zeros is

rf1(0)f̂2(0) + rf̂1(0)f2(0) + (r2 − r)f1(0)f2(0). (4.16)

5. Calculation of the 1- and 2-Level Densities for Elliptic Curve Families

Let E be a one-parameter family of elliptic curves Et with discriminants ∆(t) and conductors C(t).
For many families, we can evaluate the conductors exactly if we sieve to a subfamily F defined
as the t ∈ [N, 2N ] with D(t) good, where D(t) = akt

k + · · · + a0 (ak > 1) is the product of the
irreducible polynomial factors of ∆(t). Usually good will mean square-free, although occasionally
it will mean square-free except for a fixed set of primes, and for these special primes, the power of
p|D(t) is independent of t.

Let our family F be the set of good t ∈ [N, 2N ] where the conductors are given by a monotone
polynomial in t. We use this polynomial for the conductors at non-good t; this is permissible as
these curves are not in our family, and do not originally appear in our sums.

For each d, let

T (d) = {t ∈ [N, 2N ] : d2|D(t)}. (5.1)

Let S(t) be some quantity associated to the elliptic curve Et. We study

2N∑
t=N

D(t) good

S(t) =
(2akN)

k
2∑

d=1

µ(d)
∑

t∈T (d)

S(t). (5.2)

In particular, setting S(t) = 1 yields the cardinality of the family. In all the families we investi-
gate, |F| = cFN + o(N), cF > 0.

Let t1(d), . . . , tν(d)(d) be the incongruent roots of D(t) ≡ 0 mod d2. The presence of µ(d) allows
us to restrict to d square-free. For small d, we may take the ti(d) ∈ [N,N + d2). For such d,

∑
t∈T (d)

S(t) =
ν(d)∑
i=1

[N/d2]∑
t′=0

S
(
ti(d) + t′d2

)
+ O

(
ν(d)||S||∞

)
. (5.3)
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The error piece is from boundary effects for the last value of t′. T (d) restricts us to t ∈ [N, 2N ];
as each ti(d) > N , and at most one is exactly N , it is possible in summing to t′ = [N/d2] we’ve
added an extra term.

5.1 Assumptions for Sieving
We evaluate the sums under the following assumptions:

i) For square-free D(t), the conductors C(t) are given by a monotone polynomial in t.

ii) A positive percent of t ∈ [N, 2N ] have D(t) square-free; ie, |F| = cFN + o(N).

We constantly use Lemma A.2 (ν(d) � dε for square-free d) and

2N∑
t=N

D(t) good

1 =
logl N∑
d=1

µ(d)
2N∑
t=N

D(t)≡0(d2)

1 + o(N) = cFN + o(N), cF > 0. (5.4)

We show the family satisfies Conditions 4.7. We evaluate the sums over t ∈ F below and then
execute the summation over the prime(s). f̂i is supported in (−σi, σi). There are no contributions
(for σi sufficiently small) in the prime sum(s) for sufficiently small error terms.

5.2 Definition of Terms for Sieving
Recall Ar,F (p) =

∑
t(p) ar

t (p). For distinct primes, by Lemma 2.1

∑
t(p1···pn)

n∏
j=1

ari
t (pj) =

n∏
j=1

Ari,F (pi). (5.5)

By Lemma C.7, we may assume all of our primes (in the expansion from the Explicit Formula in
the n-level densities) are at least logl N , l ∈ [1, 2). We can incorporate these errors into our existing
error terms; the result will still be a lower order term which will not contribute for small support.

S(t) will equal ãP (t)GP (t), where for distinct primes p1 and p2

ãP (t) = ar1
t (p1)ar2

t (p2)

GP (t) =
2∏

j=1
rj 6=0

log pj

log C(t)
fj

(
2rj−1 log pj

log C(t)

)

(r1, r2) ∈
{

(1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (1, 2), (2, 1), (2, 2)
}

. (5.6)

Thus ãP (t)GP (t) is merely a convenient way of encoding the eight sums we need to examine for
the 1 and 2-level densities.

Actually, this is slightly off. We have to study

2∏
j=1
rj 6=0

1
p

rj

j

log pj

log C(t)
gj

(
2rj−1 log pj

log C(t)

)
a

rj

t (pj). (5.7)

If both rj ’s are non-zero and the two primes are equal, we obtain
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1
pr1+r2

( log p

log C(t)

)2
× · · · × ar1+r2

t (p). (5.8)

For example, if r1 = r2 = 1 we would get ( log p
log C(t))

2 × · · · × a2
t (p). Thus, the definition of GP

needs to be slightly modified. We want to deal with distinct primes p1 and p2. There will be no
contribution for equal primes if r1+r2 > 3; simply bound each at(p) by Hasse. There is a contribution
if r1 = r2 = 1. By modifying the definition of GP we may regard it as a case where r = (2, 0);
however, we have ( log p

log C(t))
2 instead of ( log p

log C(t)), and instead of f1(· · ·) we will have f1f2(· · ·). Note

we evaluate the test functions at log p
log C(t) and not 2 log p

log C(t) . We have

GP (t) =
2∏

j=1
rj 6=0

( log pj

log C(t)

)κ(r)
gj

(
2rj−κ(r) log pj

log C(t)

)
, (5.9)

where κ(r) is 2 if r = (2, 0) and this arises from p1 = p2 = p and κ(r) = 1 otherwise; gj = fj

unless r = (2, 0) arising from p1 = p2 = p, in which case g1 = f1f2.
We may now assume the primes are distinct. Define

P =
2∏

j=1
rj 6=0

pj , r = (r1, r2), rj ∈ {0, 1, 2}

Sc(r, P ) =
∑
t(P )

ãP (t) =
∑
t(P )

ar1
t (p1)ar2

t (p2) = Ar1,F (p1)Ar2,F (p2), (5.10)

where for convenience we set A0(p) = 1. We often have incomplete sums of ãP (t) mod P . Let
SI(r, P ) denote a generic incomplete sum. By Hasse,

SI(r, P ) 6 P · 2r1

√
pr1
1 · 2r2

√
pr2
2 = 2r1+r2p

1+
r1
2

1 · p1+
r2
2

2 = 2rP 1+ r
2 , (5.11)

where the last expression is a convenient abuse of notation:

2r = 2r1+r2 , P r = pr1
1 · pr2

2 . (5.12)

For fixed i and d, we evaluate the arguments at t = ti(d) + t′d2. Let

ãd,i,P (t′) = ãP

(
ti(d) + t′d2

)
, Gd,i,P (t′) = GP

(
ti(d) + t′d2

)
. (5.13)

5.3 Ranges and Contributions of Sums over Primes

Each prime sum is to (approximately) C(N)
σj

2
rj−κ(r) ≈ N

mσj

2
rj−κ(r) , as C(t) is a degree m polynomial.

We assume σj < 1
2 as we do not worry about p2 > N . This is harmless, as handling the error terms

forces the support to be significantly less than 1
2 .

Lemma 5.1 Contributions from Sums over Primes. For rj = 1, summing p
1
2

|F| does not con-

tribute for σj < 2
3m . For rj = 2, summing 1

|F| does not contribute for σj < 2
m for κ(r) = 1 and 1

m
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for k(r) = 2. As we often have two sums, dividing the above supports by 2 ensures all errors are
manageable: write 1

|F| as 1√
|F|

1√
|F|

.

5.3.1 Expected Result To simplify the proof, we assume

A1,F (p) = −rp + O(1)

A2,F (p) = p2 + O(p
3
2 ). (5.14)

For a general rational surface, A1,F (p) 6= −rp + O(1). A careful book-keeping of the arguments
below show that we only need to be able to handle sums such as

∑
p

log p

log X
f
( log p

log X

)A1,F (p)
p2

. (5.15)

For surfaces where Tate’s conjecture is known, we may replace A1,F (p) in the above sum with
the rank of the family over Q(t) (see Lemma C.6 and [RSi]). For notational simplicity, in the proof
below we assume A1,F (p) = −rp + O(1), and content ourselves with noting a similar proof works
in general.

Arj (pj) = cj ·p
rj

j plus lower order terms not contributing for any support. (This is not quite true.
For families where the curves have complex multiplication, often at(p) vanishes for half the primes,
and has double the expected contribution for the other primes. This case is handled similarly, using
Lemmas C.1 and C.5).

Hence Sc(r, P ) = c1c2p
r1
1 pr2

2 = c1c2P
r plus lower terms. For each pair (d, i) we expect (if we can

manage the conductors) to have approximately N/d2

P complete sums of Sc(r, P ) = c1c2P
r. We hit

this with 1
N

log pj

log C(t)
1

p
rj
j

for each non-zero rj . We have approximately log pj

log C(t)
1

P r .

A sum like
∑

pj

log pj

log C(t)
1
pj

g( log pj

log C(t)) contributes; if we had an additional 1
log N there would be no

net contribution.
Thus, we expect terms of the size P r to contribute, and P r

log N to not contribute.
We rewrite Conditions 4.7 in a more tractable form, using A1,F (p), A2,F (p) and Sc(r, P ). Assume

the family satisfies Equation 5.14 (or the related equation if at(p) vanishes for half the primes). Then

i) P = p, ãP (t) = at(p): Sc(r,P )
P = −rp+O(1)

p = −r + O(1
p)

ii) P = p, ãP (t) = a2
t (p): Sc(r,P )

P = p2+O(p
3
2 )

p = p + O(
√

p)

iii) P = p1p2, ãP (t) = at(p1)a2
t (p2):

Sc(r,P )
P = −rp1p2

2+O(p1p
3
2
2 )

p1p2
= −rp2 + O(

√
p2)

iv) P = p1p2, ãP (t) = at(p1)at(p2):

(a) Sc(r,P )
P = r2p1p2+O(p1+p2)

p1p2
= r2 + O(

√
p1 +

√
p2) if p1 6= p2

(b) Sc(r,P )
P = p2+O(p

3
2 )

p = p + O(
√

p) if p1 = p2 = p

v) P = p1p2, ãP (t) = a2
t (p1)a2

t (p2):
Sc(r,P )

P = p2
1p2

2+O(p
3
2
1 p

3
2
2 )

p1p2
= p1p2 + O(

√
p1p2)

We have proved

Lemma 5.2 Conditions to Evaluate the Five Types of Sums. Assume the family satisfies
Equation 5.14. If, up to lower order terms, the five sums (Equation 4.7) are GP (N)Sc(r,P )

P , then the
family satisfies Conditions 4.7.
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5.4 Taylor Expansion of Gd,i,P (t′)
Fix i and d. We calculate the first order Taylor Expansion of Gd,i,P (t′) = GP (ti(d) + t′d2). Gd,i,P

involves t′ only through expressions like log pj

log C(t) , where t = ti(d) + t′d2. Let C(t) = hmtm + · · ·+ h0.

The derivative of Gd,i,P in t′ will involve nice functions times factors like

d

dt′
log pj

log C(t)
= − log pj

log2 C(t)
d

dt′
log C(ti(d) + t′d2)

= − log pj

log2 C(t)
mhmtm−1d2 + · · ·

hmtm−1 · (ti(d) + t′d2) + · · ·

6
(10m

|hm|
max

06k6m−1
|m− k| · |hm−k|

) log pj

log2 C(t)
d2

ti(d) + t′d2
, (5.16)

provided N is sufficiently large.
As pj 6 C(t)σ, where σ is related to the support of G, log pj

log C(t) 6 σ. As C(t) is of size a power of
t, we have

Lemma 5.3 Taylor Expansion of Gd,i,P .

Gd,i,P (t′) = Gd,i,P (0) + O
( 1

log N

)
. (5.17)

The constant above does not depend on pj , d or i.

By the Mean Value Theorem ∃ξ ∈ [0, t′], corresponding to tξ = ti(d) + ξd2 ∈ [N, 2N + d2]
⊂ [N, 2.1N ], such that

Gd,i,P (t′) = Gd,i,P (0) +
d

dt′
Gd,i,P

∣∣∣
t′=ξ

(
t′ − 0

)
. (5.18)

First, we have derivatives of log pj

log C(t) , which can be universally bounded from the support of G.

Second, we evaluate G and its derivative at 2rj−κ(r) log pj

log C(tξ) . We see it is sufficient to universally

bound functions like d
dt′ g( log p

log C(t)).

log C(tξ) ≈ log C(N). Evaluating the derivative at ξ, by Equation 5.16 we have something
bounded by 1

log C(tξ)
d2

ti(d)+ξd2 . We then multiply by t′− 0. Thus we are bounded by 1
log C(N)

t′d2

ti(d)+ξd2 .

As ti(d) > N and t′d2 6 N , the bound is at most 1
log C(N) .

Lemma 5.4 Further Taylor Expansion of Gd,i,P .

Gd,i,P (t′) = GP (N) + O
( 1

log N

)
. (5.19)

The constant above does not depend on pj , d or i.

The proof is similar to the previous lemma. Gd,i,P (0) = GP

(
ti(d)

)
, ti(d) ∈ [N,N + d2]. Thus,

to replace Gd,i,P (0) with GP (N) involves Taylor Expanding GP (t) around t = N . 2

This allows us to replace all the conductors of curves with D(t) good with the value from t = N
with small error. This is very convenient, as GP (N) has no t′, i or d dependence. Consequently,
we will be able to move it past all summations except over primes, which will allow us to take
advantage of cancellations in t-sums of the at(p)’s.
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5.5 Removing the ν(d)||S||∞ Term for d < logl N

∑
t∈T (d)

S(t) =
ν(d)∑
i=1

[N/d2]∑
t′=0

S
(
ti(d) + t′d2

)
+ O

(
ν(d)||S||∞

)
. (5.20)

We show the O
(
ν(d)||S||∞

)
piece does not contribute for d < logl N . Using Hasse to trivially

bound ||S||∞ gives 2rP r. We hit this with 1
P r and sum over the primes, which will be at most

O(Nσ). We now sum over d < logl N , getting

� Nσ
logl N∑
d=1

ν(d) � Nσ
logl N∑
d=1

dε � Nσ logl(1+ε) N. (5.21)

We then divide by the cardinality of the family, which is assumed to be a multiple of N . There
is no contribution for σ1 + σ2 < 1.

5.6 Sieving
Let B be the largest square which divides D(t) for all t. Recall by t good we mean D(t) is square-free
except for primes dividing B, and for p|B, the power of p|D(t) is independent of t. By Theorem
A.5, possibly after passing to a subsequence, we can approximate t good by

∑
t∈[N,2N ]

t good

S(t) =
logl N∑

d=1
(d,B)=1

µ(d)
∑

t∈[N,2N ]

D(t)≡0(d2)

S(t) + O
(∑

t∈T
S(t)

)
, (5.22)

where the set of good t is cFN + o(N), cF > 0, T is the set of t ∈ [N, 2N ] such that D(t) is
divisible by the square of a prime p > logl N and |T | = o(N).

5.7 Contributions from d < logl N

We would like to use Lemma 5.4 to replace Gd,i,P (t′) with GP (N) plus a manageable error. This
works for pairs such as r = (2, 0) or r = (2, 2) but fails for pairs such as r = (1, 0). There, we need
to evaluate 1

|F|
∑

E∈F
1
pS(r, p). Replacing ãp(t) with |at(p)| 6 2

√
p gives

� 1
|F|

N

p

√
p, (5.23)

which is disastrous when we sum over p. The reason we must trivially bound ãP (t) is the
Taylor Expansion. We evaluate the derivative at ξ(t′) = ξ(pj , i, d; t′). The dependence of the other
parameters prevents us from obtaining complete sums (mod P ) and using that cancellation for
control. We need to keep the cancellation from summing ãP (t).

We use Partial Summation twice. Note we may always replace a Gd,i,P (t′) with a GP (N) at a
cost of 1

log N .

Let ÃP (u) =
∑u

t′=0 ãP (t′). As (pi, d) = 1 (this is why we are assuming d 6 logl N and
pi > logl N), every time t′ increases by P we have a complete sum of the ãP ’s. Thus,

ÃP (u) =
[ u

P

]
Sc(r, P ) + O

(
P 1+ r

2

)
=

u

P
Sc(r, P ) + O

(
PR
)
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R = 1 +
r

2
, PR =

2∏
j=1
rj 6=0

p
1+

rj
2

j . (5.24)

In the above, the first error term is from our bound for the incomplete sum of at most P
terms, each term bounded by

√
pr1
1 pr2

2 = P
r
2 . Dropping the greatest integer brackets costs at most

Sc(r, P ) = O(P r). P r = pr1
1 pr2

2 , and P 1+ r
2 = p

1+
r1
2

1 p
1+

r2
2

2 . As rj ∈ {0, 1, 2}, rj 6 1 + rj

2 . Thus, we
may incorporate the error from removing the greatest integer brackets into the O(PR) term.

S(d, i, r, P ) =
[N/d2]∑
t′=0

ãd,i,P (t′)Gd,i,P (t′)

=

(
[N/d2]

P
Sc(r, P ) + O

(
PR
))

Gd,i,P ([N/d2])

−
[N/d2]−1∑

u=0

(
u

P
Sc(r, P ) + O

(
PR
))(

Gd,i,P (u)−Gd,i,P (u + 1)

)

S(r, P ) =
logl N∑
d=1

µ(d)
ν(d)∑
i=1

S(d, i, r, P ) =
4∑

w=1

logl N∑
d=1

µ(d)
ν(d)∑
i=1

Sw(d, i, r, P ). (5.25)

5.7.1 First Sum: [N/d2]
P Sc(r, P )Gd,i,P ([N/d2]) Summing over i and d yields

S1(r, P ) =
logl N∑
d=1

µ(d)
ν(d)∑
i=1

[N/d2]
P

Sc(r, P )Gd,i,P ([N/d2])

=
Sc(r, P )

P

logl N∑
d=1

µ(d)
ν(d)∑
i=1

[
N

d2

](
GP (N) + O

( 1
log N

))

=
Sc(r, P )GP (N)

P

logl N∑
d=1

µ(d)
ν(d)∑
i=1

[N/d2]∑
t′=0

(
1 + O

( 1
log N

))

=
Sc(r, P )GP (N)

P

logl N∑
d=1

µ(d)

(
O(ν(d)) +

2N∑
t=N

D(t)≡0(d2)

1

)(
1 + O

( 1
log N

))

=
Sc(r, P )GP (N)

P
|F|+ Sc(r, P )

P
· o(N). (5.26)

In the last line, the error term follows from Equation 5.4 (which gives the d, t-sums are |F|+o(N))
and Lemma A.2 (which gives ν(d) � dε). Dividing by |F| = cFN + o(N), the error term will not
contribute when we sum over primes, leaving us with Sc(r,P )GP (N)

P .

5.7.2 Second Sum: O(PR)Gd,i,P ([N/d2]) Summing over i and d yields

S2(r, P ) �
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

PR|Gd,i,P ([N/d2])|
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� PR
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

||G||∞

� PR
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

1. (5.27)

As ν(d) � dε, we obtain

S2(r, P ) � PR logl(1+ε) N 6 PR log2l N = P 1+ r
2 log2l N. (5.28)

We divide by |F| = cFN + o(N), hit it with 1
P r and then sum over the primes. By Lemma 5.1,

for small support (σ = σ1 + σ2 < 2
3m) there is no contribution.

5.7.3 Third Sum:
∑[N/d2]−1

u=0
u
P Sc(r, P )

(
Gd,i,P (u)−Gd,i,P (u+1)

)
We apply Partial Summation,

where au = Gd,i,P (u)−Gd,i,P (u + 1) and bu = u
P Sc(r, P ). Thus

S3(d, i, r, P ) =

(
Gd,i,P (0)−Gd,i,P

(
[N/d2]

)) [N/d2]− 1
P

Sc(r, P )

−
[N/d2]−2∑

u=0

(
Gd,i,P (0)−Gd,i,P (u + 1)

) 1
P

Sc(r, P ). (5.29)

Using the Taylor Expansion, we gain a 1
log N in the first term, making it of size Sc(r,P )

P
[N/d2]
log N �

Sc(r,P )
P

|F|
d2 log N

.

For the second term, we have < [N/d2] summands, each � 1
log N

Sc(r,P )
P . We again obtain a term

of size Sc(r,P )
P

|F|
d2 log N

.
We sum over i and d.

S3(r, P ) �
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

Sc(r, P )
P

|F|
d2 log N

� Sc(r, P )
P

|F|
log N

logl N∑
d=1

ν(d)∑
i=1

1
d2

� Sc(r, P )
P

|F|
log N

logl N∑
d=1

ν(d)
d2

. (5.30)

As ν(d) � dε, S3(r, P ) � Sc(r,P )
P

|F|
log N .

5.7.4 Fourth Sum:
∑[N/d2]−1

u=0 O(PR)
(
Gd,i,P (u)−Gd,i,P (u+1)

)
Using the Taylor Expansion for

Gd,i,P (u) − Gd,i,P (u + 1) is insufficient. That gives NP R

d2 log N
. Summing over i and d is manageable,

giving O(PR |F|
log N ). Dividing by the cardinality of the family yields O( P R

log N ).

The problem is in summing over the primes, as we no longer have 1
|F| . We multiply by 1

P r . We
recall the definitions of r and R and unwind the above.
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Consider the case r = (1, 0). Then P = p1 = p, R = 1 + r1
2 = 3

2 , and 1
P r = 1

p . We have

Nmσ∑
p=logl N

1
p

p
3
2

log N
� Nmσ. (5.31)

As N →∞, this term diverges. We need significantly better cancellation in

S4(r, P ) =
logl N∑
d=1

µ(d)
ν(d)∑
i=1

[N/d2]−1∑
u=0

O(PR)
(
Gd,i,P (u)−Gd,i,P (u + 1)

)
. (5.32)

Taking absolute values and using the maximum of the O(PR) terms gives

S4(r, P ) � PR
logl N∑
d=1

ν(d)∑
i=1

[N/d2]−1∑
u=0

∣∣∣Gd,i,P (u)−Gd,i,P (u + 1)
∣∣∣. (5.33)

The constant is independent of P . Taking the maximum of the PR term involves the maximum
of either the incomplete sum or one complete sum. Using Hasse, the constant is at most 2r1+r2 .
Thus, the constant in Equation 5.33 does not depend on P .

If exactly one of the rj ’s is non-zero, then

Gd,i,P (u)−Gd,i,P (u + 1) = g
( log p

log C(ti(d) + ud2)

)
− g
( log p

log C(ti(d) + (u + 1)d2)

)
(5.34)

for some Schwartz function g of compact support.
If both of the rj ’s are non-zero, we may write Gd,i,P (u) as the product of two functions, say g1

and g2. Thus

Gd,i,P (u) =
2∏

j=1

gj

( log pj

log C(ti(d) + ud2)

)
(5.35)

Recall

|a1a2 − b1b2| = |a1a2 − b1a2 + b1a2 − b1b2|
6 |a1a2 − b1a2|+ |b1a2 − b1b2| = |a2| · |a1 − b1|+ |b1| · |a2 − b2|. (5.36)

We apply the above to our function Gd,i,P (u) = g1(d, i, p1;u)g2(d, i, p2;u). Each gj(d, i, pj ;u) can
be bounded independently of d, i, pj and u, as each gj is a Schwartz function defined in terms of
the n-level density test functions. Let B = maxj ||gj ||∞. Then

S4(d, i, r, P )(u) = Gd,i,P (u)−Gd,i,P (u + 1)

=
2∏

j=1
rj 6=0

gj

( log pi

log C(ti(d) + ud2)

)
−

2∏
j=1
rj 6=0

gj

( log pj

log C(ti(d) + (u + 1)d2)

)

6
2∑

j=1
rj 6=0

B ·

∣∣∣∣∣gj

( log pj

log C(ti(d) + ud2)

)
− gj

( log pj

log C(ti(d) + (u + 1)d2)

)∣∣∣∣∣. (5.37)
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We sum the above over u, i and d. Let ti,d(u) = ti(d) + ud2.

S4(r, P ) 6 2rPR
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

[N/d2]−1∑
u=0

S4(d, i, r, P )(u)

6 2rPR
logl N∑
d=1

ν(d)∑
i=1

2∑
j=1
rj 6=0

B

[N/d2]−1∑
u=0

∣∣∣∣∣gj

( log pj

log C(ti,d(u))

)
− gj

( log pj

log C(ti,d(u + 1))

)∣∣∣∣∣. (5.38)

We show the u-sums are bounded independent of pj , i, d, and N . We may add

∣∣∣∣∣gj(0)− gj

( log pj

log C(ti(d))

)∣∣∣∣∣+
∣∣∣∣∣gj

( log pj

log C(ti(d) + [N/d2]d2)

)
− gj(1000σ)

∣∣∣∣∣. (5.39)

As each gj is a Schwartz function, they are of bounded variation. Let xu(d, i, pj) = pj

log Nti(d)+ud2
.

As the conductors are monotone increasing, xu(d, i, pj) > xu+1(d, i, pj). Thus, we have a
partition of [0, 1000σ], and we may now apply theorems on bounded variation to bound the u-sum
independent of pj , i, d and N , obtaining � 1000σ.

The above is an exercise in the bounded variation of g(x) on [0, σ]. If we were to regard this as
a problem in the bounded variation of gj;pj ,d,i we would have u ranging over at least

[
0, [N/d2]

]
.

Even though we would gain a 1
log N from the derivatives, the bounded variation bound depends

on the size of the interval, which here is of length [N/d2]. We could also argue that each gj has
continuous, bounded first derivative on [0, 1000σ]. By the Mean Value Theorem, the u-sum is �
||g′j ||∞ · |1000σ − 0|.

Thus, the u and the j-sums are universally bounded. We are left with � PR. Summing over i
and d gives � PR logl(1+ε) N . We multiply by 1

P r and sum over the primes. The prime sums give
Nh(σ); dividing by the cardinality of the family (a multiple of N), we find there is no contribution
for small support.

Note: if our conductors are not monotone, we cannot apply theorems on bounded variation. The
problem is we could transverse [0, 1000σ] (or a large subset of it) up to N

d2 times. This is why S4 is
the most difficult of the error pieces, and why we needed to obtain polynomial expressions for the
conductors for good t.

5.7.5 Summary of Contributions for d < logl N

Lemma 5.5 Contributions for d < logl N . Based on our Sieving Assumptions for the family (for
good D(t) the conductors are given by a monotone polynomial in t, a positive percent of t ∈ [N, 2N ]
give D(t) good), the main term contribution from d < logl N is Sc(r,P )

P GP (N)|F|. The error terms

are either of size Sc(r,P )
P o(|F|), which won’t contribute when we sum over primes, or are such that

their sum over primes will not contribute.

5.8 Contributions from t ∈ T
5.8.1 Preliminaries We are left with estimating the contributions from the troublesome set

T =
{

t ∈ [N, 2N ] : ∃d > logl N with d2|D(t)
}

(5.40)
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We will show in Theorem A.5 that |T | = o(N). By Cauchy-Schwartz

∣∣∣∑
t∈T

S(t)
∣∣∣ 6

(∑
t∈T

S2(t)
) 1

2
(∑

t∈T
1
) 1

2
6
( 2N∑

t=N

S2(t)
) 1

2
o
(√

N
)
. (5.41)

We then sum over the primes, and need to show the sum over t is O(N). As it stands, however,
this is not sufficient to control the error. Quick sketch: assume S(t) = at(p)g( log p

log C(t)). Ignoring the
t-dependence in the conductors, we have

2N∑
t=N

S(t) ≈ g2
( log p

log C(N)

)N

p

∑
t(p)

a2
t (p)

≈ g2
( log p

log C(N)

)N

p
p2 = O(Np). (5.42)

Taking the square-root, we hit it with 1
p and sum over p 6 Nσ, which is not O(

√
N).

S(t) is the product of at most two terms involving factors such as a
rj

t (pj). We hit this with
factors p

−rj

j and sum over p. Thus, instead of S(t) consider S1(t)S2(t), where Sj(t) incorporates the

sum over primes to the jth power and all relevant factors.

S =
2N∑

t=N

[
2∏

j=1
rj 6=0

∑
pj>logl N

p
−rj

j gj

( log pj

log C(t)

)
a

rj

t (pj)

]2

=
2N∑

t=N

2∏
w=1

2∏
j=1
rj 6=0

∑
pjw>logl N

p
−rjw
jw

gjw

( log pjw

log C(t)

)
a

rjw
t (pjw). (5.43)

We proceed similarly as in the d 6 logl N case, except now there are no d and i, and we have
potentially four factors instead of one or two. On expanding, we combine terms where we have the
same prime occurring multiple times. There are several types of sums: four distinct primes (four
factors), three distinct primes (three factors), . . ., all primes the same (one factor). We do the worst
case, when there are four factors; the other cases are handled similarly.

5.8.2 A Specific Case: Four Distinct Primes Assume we have four distinct primes. Relabelling,
we have p−riari

t (pi) for i = 1 to 4. Let P =
∏4

i=1 pi. Interchange the t-summation with the pi-
summations. As before, we apply partial summation to

∑2N
t=N

∏4
i=1 ari

t (pi) ·gi(pi, t)p−ri =
∑2N

t=N a(P, t)·
b(P, t), the only change being the addition of the factors

∏
i p
−ri . Now A(u) =

∑u
t=N a(P, t)

= u−N
P Sc(r, P ) +O(

∏4
i=1 p

1+
ri
2

i ), Sc(r, P ) =
∏4

i=1 Ari,F (pi) by Lemma 2.1. Let PR =
∏4

i=1 p
1+

ri
2

i ;
the error in the partial summation is O(PR).

As in Equation 5.25 we have

S =
4∏

i=1

∑
pi

2N∑
t=N

ari
t (pi) · p−riG(P, t)

=
4∏

i=1

∑
pi

(N

P
Sc(r, P ) + O(PR)

)
p−ri

i G(P, 2N)
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−
4∏

i=1

∑
pi

2N−1∑
u=N

(u−N

P
Sc(r, P ) + O(PR)

)
p−ri

i

(
G(P, u)−G(P, u + 1)

)
. (5.44)

For r > 2 by Hasse Ar,F (p) 6 2rp1+ r
2 . For r = 1, A1,F (p) � p by [De]. Hence ∀r, Ar,F (p) � pr.

4∏
i=1

Sc(P )
pi

p−ri
i �

4∏
i=1

Ari,F (pi)
p1+ri

i

�
4∏

i=1

pri
i

p1+ri
i

=
4∏

i=1

1
pi

. (5.45)

We can immediately handle the first sum. Inserting absolute values yields something like

4∏
i=1

∑
pi

log pi

log C(2N)

∣∣∣gi

( log pi

log C(2N)

)∣∣∣ 1
pi
�

4∏
i=1

O(1) (5.46)

where the last result (the sums over the primes) follows from Corollary C.2.
Pulling out the prime factors and using partial summation again, the third sum is handled

similarly.
The second and fourth pieces are more difficult, and result in significantly decreased support.

We analyze this loss later. For now, we need only note that the second sum is
∏

i

∑
pi

p
ri/2
i . For test

functions of small support, this sum is o(N).
There is a slight obstruction in applying the same argument to the fourth sum, namely, that

G(P, u) could be the product of four factors. Similar to the identity |a1a2 − b1b2| 6 |a1| · |a1 − b1|
+|b1| · |a2 − b2|, we have

|a1a2a3a4 − b1b2b3b4| 6 |a2a3a4| · |a1 − b1|+ |b1a3a4| · |a2 − b2|
+ |b1b2a4| · |a3 − b3|+ |b1b2b3| · |a4 − b4|

6
4∏

j=1

(
|aj |+ |bj |+ 1

) 4∑
i=1

|ai − bi| (5.47)

The rest of the proof in this case is identical to the fourth sum in the d 6 logl N case.
Note: as we have always inserted absolute values before summing over primes, it is permissible

to extend from the primes are distinct to all possible 4-tuples.

5.8.3 Handling the Other Cases The other cases (especially cases where some primes are equal)
are handled similarly. The only real change is if we have less than four factors, and this only affects
the Fourth Sum. For example, if we have three factors instead of 4, set a4 = b4 = 1 in Equation
5.47.

5.9 Determining the Admissible Supports of the Test Functions
The largest errors arise from ri = 1 terms, using Hasse to trivially bound partial sums of at(p) by
p3/2 (at most p terms, each term at most 2

√
p). Let C(t) be a polynomial of degree m for good

t. We assume all supports are at most 1
2 (as otherwise p2 could exceed N , changing some of our

arguments above). In the 1-level densities, we encounter errors like

Nσm∑
p=logl N

1
p

log p

log Nm
g
( log p

log Nm

)
p

3
2 �

Nσm∑
p=logl N

p
1
2 � N

3σm
2 . (5.48)
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We divide by |F|, a multiple of N . The errors are negligible for σ < min
(

2
3m , 1

2

)
.

In the 2-level density, the worst case (not including the Cauchy-Schwartz arguments to handle
the over-counting of almost square-free numbers) was when we had two ri = 1 terms. We have two
functions of support σ1 and σ2, and we obtain

2∏
i=1

Nσim∑
pi=logl N

1
p

log pi

log Nm
g
( log pi

log Nm

)
p

3
2
i �

2∏
i=1

Nσm∑
pi=logl N

p
1
2
i � N

3(σ1+σ2)m
2 (5.49)

We divide by a multiple of N and see the errors are negligible for σ1 + σ2 < min
(

2
3m , 1

2

)
. Thus,

for σ1 = σ2, the support of each test function is half that from the 1-level density.
In applying Cauchy-Schwartz, we decrease further the allowable support. The worst case is where

we have four distinct primes with ri = 1. We sum as before, and obtain N3(σ1+σ2)m (there is no
factor of 2 as two of the primes are associated to test functions with support σ1 and two to σ2). We
take the square-root, and this must be O(

√
N). Thus, we now find σ1 + σ2 < 1

2
2

3m . Setting σ1 = σ2

yields the support is one-quarter that of the 1-level density.

5.10 1- and 2-Level Densities
Assume the original family has rank r over Q(t). The Birch and Swinnerton-Dyer conjecture and
Silverman’s Specialization Theorem imply, for all t sufficiently large, each curve’s L-function has r
family zeros at the critical point.

The Birch and Swinnerton-Dyer conjecture is only used for interpretation purposes. The results
below are derived independently of this conjecture; however, assuming this allows us to interpret
some of the n-level density terms as contributions from expected family zeros.

Definition 5.6 Non-Family Density. Let D
(r)
n,F (f) be the n-level density from the non-family

zeros (ie, the trivial contributions from r family zeros have been removed).

Theorem 5.7 Dn,F (f) and D
(r)
n,F (f), n = 1 or 2. For any one-parameter family of rank r over

Q(t) satisfying

i) for good t(relative to D(t)), the conductors C(t) are a monotone polynomial in t;

ii) up to o(N), the good t ∈ [N, 2N ] are obtainable by sieving up to d = logl N ; further, the
number of such t is |F| = cFN + o(N), cF > 0;

iii) A1,F (p) = −rp + O(1), A2,F (p) = p2 + O(p
3
2 ).

Then for fi even Schwartz functions of small but non-zero support σi,

D1,F (f) = f̂1(0) +
1
2
f1(0) + rf1(0)

D
(r)
1,F (f1) = f̂1(0) +

1
2
f1(0) (5.50)

and

D2,F (f) =
2∏

i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)
+(r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0)

D
(r)
2,F (f1) =

2∏
i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du
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−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1). (5.51)

Removing the contribution from r family zeros, for small support the 2-level density of the
remaining zeros agrees with SO(even), O or SO(odd) if the signs are all even, equidistributed, or
all odd. If Tate’s conjecture is true for the surface, we may interpret r as the rank of E over Q(t).

Let m = deg C(t). For the 1-level density, σ < min(1
2 , 2

3m). For the 2-level density, σ1 +σ2 < 1
3m .

For families where ∆(t) has no irreducible factors of degree 4 or more, the sieving is unconditional,
otherwise the results are conditional on ABC or the Square-Free Sieve conjecture.

Proof: When we sieve we obtain Sc(r,P )GP (N)
P plus lower order terms. By Theorem 5.2, the family

satisfies Conditions 4.7. Thus Lemma 4.6 is applicable. 2

As remarked, we do not need to assume A1,F (p) = −rp+O(1). A more cumbersome proof (using
Lemma C.6) handles A1,F (p) for surfaces where Tate’s conjecture is known.

To apply Theorem 5.7, we need

i) the conductors are monotone polynomials for D(t) good;
ii) a positive percent of D(t) are good, and all but o(N) of the good t may be taken in the required

arithmetic progressions;
iii) knowledge of A1,F (p) and A2,F (p).

For rational surfaces, by passing to a subsequence the above conditions are satisfied. By changing
t → ct + t0, Tate’s algorithm yields C(t) is a monotone polynomial for D(t) good (Theorem B.2).
By Theorem A.5, |F| = cFN + o(N), cF > 0 (ie, a positive percent of D(t) are good). If Tate’s
conjecture is true, Rosen-Silverman (Theorem 2.2) gives A1,F (p); if j(Et) is non-constant, Michel’s
Theorem (Theorem 2.3) gives A2,F (p). We have proved

Theorem 5.8 Rational Surfaces Density Theorem. Consider a one-parameter family of
elliptic curves of rank r over Q(t) that is a rational surface. Assume GRH, j(Et) is non-constant,
and the ABC or Square-Free Sieve conjecture if ∆(t) has an irreducible polynomial factor of degree
at least 4. Let fi be an even Schwartz function of small but non-zero support σi and m = deg C(t).
For the 1-level density, σ < min(1

2 , 2
3m). For the 2-level density, σ1 + σ2 < 1

3m . Assume the Birch
and Swinnerton-Dyer conjecture for interpretation purposes.

Let M(t) be the product of the irreducible polynomials dividing ∆(t) and not c4(t). If M(t) is
non-constant, then the signs of Et, t good, are equidistributed as N → ∞ (see [He]). In this case,
N(F ,−1) = 1

2 .

After passing to a subsequence,

D1,F (f1) = f̂1(0) +
1
2
f1(0) + rf1(0)

D
(r)
1,F (f1) = f̂1(0) +

1
2
f1(0). (5.52)

and

D2,F (f) =
2∏

i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)
+(r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0)

D
(r)
2,F (f1) =

2∏
i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

27



Steven J. Miller

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1). (5.53)

The 2-level non-family density is SO(even) (SO(odd), O) if all curves are even (odd, the signs
are equidistributed).

Thus, for small support, the 1- and 2-level non-family density agrees with the predictions of
Katz and Sarnak; further, the densities confirm that the curves’ L-functions behave in a manner
consistent with having r zeros at the critical point, as predicted by the Birch and Swinnerton-Dyer
conjecture.

6. Examples

6.1 Constant Sign Families
We consider several families where the sign of the functional equation is always positive or negative.
We verify the Katz-Sarnak predictions, assuming only GRH.

6.1.1 F : y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 Square-Free Let F : y2 = x3 + 24(−3)3(9t + 1)2,
t ∈ [N, 2N ], 9t+1 square-free. Note y2 = x3 +24(−3)3D2 is equivalent to y3 = x3 +Dz3. Birch and
Stephens [BS] calculate the sign of the functional equation for y3 = x3 + Dz3, D cube-free. It is

εED
= −w3

∏
p6=3

wp, (6.1)

where w3 = −1 if D ≡ ±1,±3(9) and 1 otherwise, wp = −1 if p|D, p ≡ 2(3) and 1 otherwise, and
D is cube-free.

Consider D = D(t) = 9t + 1. Mod 9 it is 1, so −w3 is 1. Assume a prime congruent to 2 mod 3
divides 9t+1. If there were only one such prime, the remaining primes would be congruent to 1 mod
3, and the product over all primes dividing 9t + 1 would be congruent to 2 mod 3, a contradiction.
Hence the number of primes congruent to 2 mod 3 dividing 9t + 1 is even. For 9t + 1 square-free,
this proves the functional equation is even.

Applying Tate’s algorithm (see [Mil]), we find the conductors C(t) are 33(9t + 1)2 for 9t + 1
square-free. δD = 1, k = 1, ak = 9 so P = {2, 3}. As ν(2) = 1 and ν(3) = 0, by Theorem A.5
cF > 0.

For p ≡ 2(3), x → x3 is an automorphism and at(p) = 0. Therefore in the sequel we assume all
primes are congruent to 1 mod 3, for any sum involving a prime congruent to 2 mod 3 is zero.

For p > 3 and p ≡ 1 mod 3, direct calculation gives

A1,F (p) = 0
A2,F (p) = 2p2 − 2p = 2p2 + O(p). (6.2)

From Michel’s Theorem, Theorem 2.3, we expect A2,F (p) = p2 + O(p
3
2 ); however, his theorem

is only applicable for non-constant j(Et). As j(Et) is constant, we must directly compute A2,F (p).
Further, as at(p) trivially vanishes for half of the primes, we expect and observe twice the predicted
contribution at the other primes. Finally, we will see later that the correction term to A2,F (p)
contributes a potential lower order term to the density functions.

By Dirichlet’s Theorem for Primes in Arithmetic Progressions (using Lemma C.1 instead of
Corollaries C.2 and C.3), we see the factors of 2 compensate for the restriction to primes congruent
to 1 mod 3, and this will be harmless in the applications.
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Thus, the family satisfies the conditions of Theorem 5.8 with r = 0. We verify (for small sup-
port) the Katz-Sarnak predictions. As all the signs are even, conditional only on GRH, we observe
SO(even) symmetry, which is distinguishable from SO(odd) and O symmetry.

6.1.2 F : y2 = x3±4(4t+2)x, 4t+2 Square-Free Let F : y2 = x3+4(4t+2)x, 4t+2 square-free.
We need to study sums of

(
x3±4(4t+2)x

p

)
. For p > 2, changing variables by t → t− 2−1, t → ±16−1t,

we are led to study sums of
(
x3+tx

p

)
. If p ≡ 3 mod 4 then

(−1
p

)
= −1. Changing variables x → −x

shows at(p) = −
∑

x(p)

(
ft(x)

p

)
vanishes; therefore, in the sequel we only consider p ≡ 1 mod 4.

Birch and Stephens [BS] calculate the sign of the functional equation for this family. For general
D, D not divisible by 4 or any fourth power, the sign of the functional equation for the curve
y2 = x3 + 4Dx is

w∞w2

∏
p2||D

wp, (6.3)

where w∞ = sgn(−D), w2 = −1 if D ≡ 1, 3, 11, 13 mod 16 and 1 otherwise, wp = −1 for p ≡ 3(4)
, and wp = 1 for other p > 3.

By restricting to positive, even, square-free D, we force the sign of the functional equation to be
odd. Hence εD = −1 if D = 4t+2, D square-free. If we had taken D = −(4t+2), 4t+2 square-free,
we would have found εD = +1.

From Tate’s algorithm, for D(t) = ±(4t + 2) square-free, C(t) = 26(4t + 2)2. δD = 1, k = 1,
ak = 4 so P = {2}. As ν(2) = 0, by Theorem A.5 cF > 0.

For p > 2 and p ≡ 1 mod 4, direct calculation gives

A1,F (p) = 0
A2,F (p) = 2p2 − 2p = 2p2 + O(p). (6.4)

For the family F± : y2 = x3 ± 4(4t + 2)x, 4t + 2 square-free, all curves in F− have even sign,
all curves in F+ have odd sign. The families satisfy the conditions of Theorem 5.8 with r = 0. We
verify (for small support) the Katz-Sarnak predictions. As all the signs are even (odd), conditional
only on GRH, we observe SO(even) (SO(odd)) symmetry.

6.1.3 F : y2 = x3 + tx2 − (t + 3)x + 1 For this family (due to Washington)

c4(t) = 24(t2 + 3t + 9)
∆(t) = 24(t2 + 3t + 9)2

j(Et) = 28(t2 + 3t + 9). (6.5)

Washington ([Wa]) proved the rank is odd for t2 + 3t + 9 square-free, assuming the finiteness of
the Tate-Shafarevich group. Rizzo [Ri] proved the rank is odd for all t. While j(Et) is non-constant,
M(t) = 1 (M(t) is the product of all irreducible polynomials dividing ∆(t) but not c4(t)). Thus,
Helfgott’s results on equidistribution of sign are not applicable.

For sieving convenience, we replace t with 12t+1. Let D(t) = 144t2 +60t+13. Tate’s algorithm
yields for D(t) square-free, C(t) = 23(144t2 + 60t + 13).

δD = −2435, k = 2, ak = 2432 so P = {2, 3}. D(t) is a primitive integral polynomial. For p |r 6
the number of incongruent solutions of D(t) ≡ 0 mod p2 equals the number of incongruent solutions
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of D(t) ≡ 0 mod p (see [Nag]). As ν(2) = ν(3) = 0, by Theorem A.5, cF > 0.
Direct calculation gives

A1,F (p) = −p

[
1 +

(
−1
p

)]
. (6.6)

Hence A1,F (p) is −2p for p ≡ 1(4) and 0 for p ≡ 3(4). By Theorem 2.2, the rank over Q(t) is 1.

As j(Et) is non-constant, by Michel’s Theorem A2,F (p) = p2 + O(p
3
2 ).

The conditions of Theorem 5.8 are satisfied with r = 1. We again verify the Katz-Sarnak
predictions: there are two pieces to our densities. The first equals the contribution from 1 zero at
the critical point; the second agrees with SO(odd) for small support.

6.2 Rational Families
We give two examples of rational families of elliptic curves over Q(t). See [Mil] for proofs, as well
as a new method to generate rational families of moderate rank.

6.2.1 Rank 1 Example Consider the rational family y2 = x3 + 1 + tx2.

c4(t) = 16t2

∆(t) = −16(4t3 + 27)

j(Et) = −256
t6

4t3 + 27
M(t) = 4t3 + 27. (6.7)

If we replace t with 6t + 1, we can easily calculate the conductors for D(t) = 4(6t + 1)3 + 27
square-free. In [Mil] we show C(t) = 22

(
4(6t + 1)3 + 27

)
for D(t) square-free. By Hooley ([Ho],

Theorem 3, page 69), as D(t) is an irreducible polynomial of degree 3, cF > 0.
Direct calculations [Mil] gives A1,F (p) = −p, and a more involved calculation gives A2,F (p)

= p2 − 3ph3,p(2) −1 + p
∑

x(p)

(
4x3+1

p

)
= p2 + O(p

3
2 ), where h3,p(2) is one if 2 is a cube mod p and

zero otherwise. Note this shows Michel’s bound for A2,F (p) is sharp.
As j(Et) and M(t) are non-constant, we expect the signs to be equidistributed.
The Rational Surfaces Density Theorem is applicable, and we obtain orthogonal symmetry for

the density of the non-family zeros.

6.2.2 Rank 6 Example We give a more exotic example. See [Mil] for the details. Let

A = 8916100448256000000
B = −811365140824616222208
C = 26497490347321493520384
D = −343107594345448813363200
a = 16660111104
b = −1603174809600
c = 2149908480000

(6.8)

The rational family y2 = x3t2 + 2g(x)t− h(x), g(x) = x3 + ax2 + bx + c and h(x) = (A− 1)x3 +
Bx2 + Cx + D, has A1,F (p) = −6p + O(1) for p large. Therefore, the family has rank 6 over Q(t).
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Writing in Weierstrass normal form yields

y2 = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t−A + 1)x
+(2ct−D)(t2 + 2t−A + 1)2

c4(t) = 2193771131(1475t3 + · · · − 7735999878503076170786750620939)
c6(t) = −225311(625t5 + · · ·)

j(Et) =
50141357421875t9 + · · ·
−1171875t10 + · · ·

∆(t) = −24431856(75t10 + · · ·). (6.9)

This is a rational surface, j(Et) and M(t) are non-constant. Thus, by the Rational Surfaces
Density Theorem, we verify the Katz-Sarnak predictions for a family of rank 6 over Q(t)!

7. Summary and Future Work

Our main result is that, modulo standard conjectures, the fluctuations of the non-family low lying
zeros in one-parameter families of elliptic curves agree with the Katz-Sarnak conjectures. Further,
a family of rank r over Q(t) has a density correction which equals the contribution of r zeros at the
critical point, providing further evidence for the Birch and Swinnerton-Dyer conjecture.

We have found four families where the observed density agrees with the density of one (and
only one) symmetry group. As expected, the first piece equals the contribution from r zeros at the
critical point (where r is the geometric rank of the family), and the second equals SO(even) if all
curves have even sign and SO(odd) if all curves have odd sign.

For these four families, we assumed only GRH. We are able to unconditionally handle the
dependence of the conductors on t, the signs of the functional equations, and the error terms.

In general, the greatest difficulty is handling the variation in the conductors. Unlike other families
investigated ([ILS], [Ru]), the conductors of elliptic curves vary wildly in a given family. If the
discriminant ∆(t) has an irreducible factor of degree 4 or greater, either ABC or the Square-Free
Sieve Conjecture must be assumed to perform the necessary sieving; if all irreducible factors are of
degree at most 3, the sieving is unconditional.

The crucial observation is that, if we sieve to a positive percent subset where the conductors
are monotone, then we can bound the error terms. Note the extreme delicacy of our arguments: for
conductors of size log N , we cannot bound the error terms if the conductors range from log N− log c
to log N + log c for some constant c.

It was observed in [Mil] that in every family where A2,F (p) can be directly calculated,

A2,F (p) = p2 + h(p)−mFp + O(1), (7.1)

where h(p) is of size p
3
2 and averages to zero, and mF is a positive constant, often different for

different families.
We have shown all rational families (with the same distribution of signs) have equal 1 and 2-

level densities. We can, however, try to expand the densities in powers of 1
log N . The different mFp

terms will lead to potential corrections to the densities of size 1
log N , giving the exciting possibility

of distinguishing different families by lower order corrections to the common densities.

Unfortunately, the size of the errors in the 1 and 2-level densities are O
(

log log N
log N

)
; thus, a

significantly more delicate analysis is needed before we can expand the densities.
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Appendix A. Sieving Families of Elliptic Curves

Given a one-parameter family of elliptic curves Et, we need to control the conductors C(t) to
determine the 1- and 2-level densities. Let the curves have discriminants ∆(t), and let D(t) be the
product of the irreducible polynomial factors of ∆(t).

D(t) may always be divisible a fixed square; let B be the largest square dividing D(t) for all t. We
prove in Theorem B.2 that for a rational elliptic surface, by passing to a subsequence τ = c1t + c0,
for D(τ)

B square-free, C(t) is given by a polynomial in τ . Call such t (or D(t) or τ) good.
In order to evaluate the sums of

∏
i a

ri
t (pi), it is necessary to restrict t to arithmetic progressions;

however, restricting to t good (D(τ)
B square-free) does not yield t in arithmetic progressions.

We overcome this difficulty by doing a partial sieve with good bounds on over-counting. For
notational convenience, we consider the case where B = 1 below, and indicate how to modify for
general B.

Let S(t) be some quantity associated to our family which we desire to sum over Tsqfree, where

Tsqfree =
{

t ∈ [N, 2N ] : D(t) is sqfree
}

TN =
{

t ∈ [N, 2N ] : d2 |r D(t) for 2 6 d 6 logl N
}

. (A.1)

Clearly Tsqfree ⊂ TN . We show TN is a union of arithmetic progressions, and |TN − Tsqfree| =
o(N).

The main obstruction is estimating the number of t ∈ [N, 2N ] with D(t) divisible by the square
of a prime p > logl N . If k = deg D(t),

∑
D(t) sqfree

t∈[N,2N ]

S(t) =
Nk/2∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t)

=
logl N∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) +
Nk/2∑

d>logl N

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t). (A.2)

For k > 3, the second piece is too difficult to estimate – there are too many d terms (d runs
to Nk/2). If all the irreducible factors of D(t) are of degree at most 3, the second piece is small.
For factors of degree at most 2, this follows immediately, while for factors of degree 3 it follows
from Hooley ([Ho]). For larger degrees, we need the ABC conjecture (or one of its consequences,
the Square-Free Sieve conjecture).

A.1 Incongruent Solutions of Polynomials
Recall the following basic facts (see, for example, [Nag]) for an integral polynomial D(t) of degree
k and discriminant δ:

i) Let p be a prime not dividing the coefficient of xk. Then D(t) ≡ 0 mod p has at most k
incongruent solutions.

ii) Let D(t) ≡ 0 mod pαi
i have νi incongruent solutions. If the primes are distinct, there are

∏r
i=1 νi

incongruent solutions of D(t) ≡ 0 mod
∏r

i=1 pαi
i .

iii) Suppose p|r δ. Then the number of incongruent solutions of D(t) ≡ 0 mod p equals the number
of incongruent solutions of D(t) ≡ 0 mod pα.
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Definition A.1. Let ν(d) be the number of incongruent solutions of D(t) ≡ 0 mod d2.

Lemma A.2. For d square-free, ν(d) � dε.

The proof combines the above facts with the standard bound of the divisor function, τ(d) � dε.

A.2 Common Prime Divisors of Polynomials

Lemma A.3. Let f(t) and g(t) be integer polynomials with no non-constant factors over Z[t]. Then
∃c (independent of t) such that if p divides both f(t) and g(t), then p|c. In particular, f(t) and g(t)
have no common large prime divisors.

Proof: Euclid’s algorithm.

A.3 Calculating |TN |

∑
t∈TN

1 =
logl N∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

1. (A.3)

There are N
d2 ν(d) + O(ν(d)) solutions to D(t) ≡ 0 mod d2 for t ∈ [N, 2N ]. By Lemma A.2,

ν(d) � dε for square-free d. Thus

|TN | =
logl N∑
d=1

µ(d)

[
N

d2
ν(d) + O(ν(d))

]
= N

logl N∑
d=1

µ(d)ν(d)
d2

+ O(logl(1+ε) N). (A.4)

As ν(d) � dε for square-free d,

∣∣∣ ∏
p<logl N

(
1− ν(p)

p2

)
−

logl N∑
d=1

µ(d)ν(d)
d2

∣∣∣� ∞∑
d=logl N

dε

d2
� 1

logl(1−ε) N
. (A.5)

Therefore

|TN | = N
∏

p<logl N

(
1− ν(p)

p2

)
+ O

( N

logl(1−ε) N

)
+ O(logl(1−ε) N). (A.6)

We may take the product over all primes with negligible cost as

1−
∏

p>logl N

(
1− ν(p)

p2

)
�

∑
n>logl N

nε

n2
� 1

logl(1−ε) N
. (A.7)

We have shown

Lemma A.4. TN = {t ∈ [N, 2N ] : d2 |r D(t) for 2 6 d 6 logl N}.

|TN | = N
∏
p

(
1− ν(p)

p2

)
+ O

( N

logl(1−ε) N

)
. (A.8)
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A.4 Estimating Tsqfree

Assuming the ABC conjecture, Granville ([Gr], Theorem 1) proves the number of t ∈ [N, 2N ] such
that D(t) is square-free is

|Tsqfree| = N
∏
p

(
1− ν(p)

p2

)
+ o(N). (A.9)

Again, if the degree of D(t) is at most 3, the ABC conjecture is not needed. The family has a
positive percent of t giving D(t) square-free (as we are assuming no square divides D(t) for all t,
no ν(p) = p2, hence the product can be bounded away from 0).

A.5 Evaluation of |TN − Tsqfree| and Applications
By Equations A.8 and A.9, as Tsqfree ⊂ TN , we have |TN − Tsqfree| = o(N).

We have proved

∑
t∈[N,2N ]

D(t) sqfree

S(t) =
∑
t∈TN

S(t) + O
(∑

t∈T
S(t)

)

=
logl N∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) + O
(∑

t∈T
S(t)

)
. (A.10)

We use arithmetic progressions to handle the piece with d 6 logl N , and Cauchy-Schwartz to
handle t ∈ T .

∑
t∈T

S(t) �
(∑

t∈T
S2(t)

) 1
2
(∑

t∈T
1
) 1

2 �
( ∑

t∈[N,2N ]

S2(t)
) 1

2
o
(√

N
)
. (A.11)

If we can show
∑2N

t=N S2(t) = O(N), then the error term is negligible as N →∞.

A.6 Conditions Implying |F| = cFN + o(N), cF > 0
Assume no square divides D(t) for all t. The number of t ∈ [N, 2N ] with D(t) not divisible by
d2, d 6 logl N , is N

∏
p

(
1 − ν(p)

p2

)
+ o(N). Let D(t) =

∏
i D

ri
i (t), Di(t) irreducible. By multiple

applications of Lemma A.3, ∃c such that ∀t, there is no prime p > c which divides two of the Di(t).
Thus, if D(t) is divisible by p2 for a large prime, one of the factors is divisible by p2. As there are
finitely many factors, it is sufficient to bound by o(N) the number of t ∈ [N, 2N ] with p2|D(t) for
a large prime for irreducible D(t).

Let |F| equal the number of t ∈ [N, 2N ] with D(t) square-free. Let cF =
∏

p6logl N

(
1 − ν(p)

p2

)
.

We have seen extending the product to all primes costs O( 1
logl(1−ε) N

). Thus, we need only bound
cF away from zero.

Let D(t) = akt
k + · · ·+ a0 with discriminant δ. For p |r akδ, ν(p) 6 k.

Let P be the set of primes dividing akδ and all primes at most
√

k. The contribution from p 6∈ P
is bounded away from 0. Therefore, if ν(p) < p2 for p|akδ and p 6

√
k, then cF > 0.

If D(t) is divisible by a square for all t, the above arguments fail. Let P be the largest product
of primes such that ∀t, P 2|D(t). By changing variables τ → Pmt + t0, for m sufficiently large,
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D(τ) is divisible by fixed powers of p|P , depending only on D(t0). Thus, instead of sieving to D(t)
square-free, we sieve to D(τ) square-free except for primes dividing P .

Let δτ denote the new discriminant. As the discriminant is a product over the differences of the
roots, t0 does not change the discriminant, and Pm rescales by a power of P . Thus, δτ = PMδ.
Further, the new leading coefficient is Pmkak. Thus, for p |r P , our previous arguments are still
applicable, except we are no longer sieving over p|P . We have shown

Theorem A.5 Conditions on D(t) implying |F| = cFN +o(N). Assume no square divides D(t)
for all t. Let P be the set of primes dividing akδ and all primes at most

√
k. If ∀p ∈ P, ν(p) 6 p2−1,

then |F| = cFN + o(N), cF > 0. If ∀t, B2|D(t) (∃p ∈ P, ν(p) = p2), let P be the product of all
primes either in P or dividing B. By changing variables to τ = Pmt + t0 for m large and sieving to
D(τ) square-free except for p|P (where ∀t, the power of p|P dividing D(t) is constant), we again
obtain |F| = cFN + o(N), cF > 0. In this case, cF no longer includes factors from p|P .

If all irreducible factors of D(t) have degree at most 3, these results are unconditional; if there
is an irreducible factor with degree at least 4 these results are conditional, and a consequence of the
ABC or Square-Free Sieve conjecture.

Further, let T = {t ∈ [N, 2N ] : ∃d > logl N with d2|D(t)}. Then T = o(N).

Appendix B. Handling the Conductors C(t)

For many families of elliptic curves, by sieving to a positive percent subsequence of t we obtain a
sub-family where the conductors are a monotone polynomial in t. In particular, we prove this for
all rational surfaces.

Tate’s algorithm (see [Cr], pages 49−52) allows us to calculate the conductor C(t) for an elliptic
curve Et over Q:

C(t) =
∏

p|∆(t)

pfp(t), (B.1)

where for p > 3, if the curve is minimal for p then fp(t) = 0 if p |r ∆(t), 1 if p|∆(t) and p |r c4(t),
and 2 if p|∆(t) and p|c4(t). If p > 3 and p12 |r ∆(t), then the equation is minimal at p. See [Si1].

Let ∆(t) = d∆1(t)∆2(t), where
(
∆2(t), c4(t)

)
= 1 and ∆1(t) is the product of powers of irre-

ducible polynomials dividing ∆(t) and c4(t). By possibly changing d, we may take ∆i(t) primitive.
Let Di(t) be the product of all irreducible polynomials dividing ∆i(t), D(t) = D1(t)D2(t).

For t with D(t) square-free except for small primes, C(t) = D2
1(t)D2(t) if ∆(t) has no irreducible

polynomial factor occurring at least 12 times (except for corrections from the small primes). Hence,
while fp(t) may vary, the product of pfp(t), except for a finite set of primes, is well behaved.

Let

P0 = {p : p 6 deg ∆(t)} ∪ {p : p|cd}, P0 =
∏

p∈P0

p. (B.2)

The idea is that while for such p, fp(t) may vary, by changing variables from t to Pm
0 t + t1 for

some enormous m, for p ∈ P0, fp(Pm
0 t + t1) = fp(t1). Thus, for this subsequence and these primes,

fp(t) is constant.
We need two preliminary results. First, given a finite set of primes P0, we may find an m and a

t1 such that for those primes, fp(Pm
0 t + t1) is constant. Second, Lemma A.3: given two polynomials
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with no non-constant factors over Q, there is a finite set of primes P2 such that if ∃t such that ∃p
dividing both polynomials, then p ∈ P2.

B.1 fp(t), p ∈ P0

Consider the original family of elliptic curves

Et : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t). (B.3)

Assume ∆(t) is not identically zero. Choose t1 such that ∀t > t1, ∆(t) 6= 0. Apply Tate’s
algorithm to Et1 . If the initial equation was non-minimal for p, we change coordinates by T (0, 0, 0, p)
(see [Cr]) and restart. After finitely many passes, Tate’s algorithm terminates.

In determining fp(t1), assume we passed through Tate’s algorithm Lt1(p) times. For each prime
p, after possibly many coordinate changes, one of the following conditions held: p|r ∆, p|r c4, p2|r a6,
p3 |r b8, p3 |r b6, p|r w(a2, a4, a6), p|r xa2

3(a3) + 4xa6(a6), p|r xa2
4(a4)− 4xa2(a2)xa6(a6), p4 |r a4, p6 |r a6,

and every function is polynomial in the ai’s. Thus, after possibly many coordinate changes, some
polynomial (with integer coefficients) of the ai’s is not divisible by either p, p2, p3, p4 or p6.

Consider τ = Pm
0 t + t1. For m enormous, fp(τ) = fp(t1) for p ∈ P0 because in Tate’s algorithm,

we only need the values modulo a power of p. We have

ai(τ) = ai(Pm
0 t + t1) = Pm

0 tâi(Pm
0 t) + ai(t1) = ãi(t) + ai(t1). (B.4)

If m is sufficiently large, we can ignore ãi(t) in all equivalence checks, as for these powers of p,
ãi(t) ≡ 0. Let

nt(p) = ord
(
p, ∆(t)

)
n = max

p∈P0

nt1(p)

L = max
p∈P0

Lt1(p). (B.5)

We prove fp(τ) = fp(t1) for large m. How large must m be? Excluding lines 42 − 65, on each
pass through Tate’s algorithm we sometimes divide our coefficients by powers of p: up to p2 on lines
26 and 30, up to p3 on line 34, up to p4 on line 69, and p12 on line 80. Over-estimating, we divide
by at most p2·2+1·3+1·4+1·12 = p23.

For lines 42 − 65, we have a loop which can be executed at most n + 4 times. We constantly
divide by increasing powers of p; the largest power is the last time through the loop, which is at
most p2(n+6). As we pass through this loop at most n + 4 times, we divide by at most p2n2+20n+48.

Thus, on each pass we have divisions by at most p2n2+20n+48+23. As we loop through the main
part of Tate’s algorithm at most L times, we have divisions by at most p(2n2+20n+71)L. If m >
(2n2 + 20n + 71)L, then ∀t, none of the ãi(t) = Pm

0 tâi(t) terms affect any congruence. Significantly
smaller choices of m work: many of the divisions (for example, from lines 42− 65) arise only once.

B.2 Rational Surfaces I
B.2.1 Preliminaries Recall an elliptic surface y2 = x3 + A(t)x + B(t) is rational iff one of the

following is true: (1) 0 < max{3deg A(t), 2deg B(t)} < 12; (2) 3deg A(t) = 2deg B(t) = 12 and
ordt=0t

12∆(t−1) = 0. See [RSi], pages 46− 47 for more details.
Assume we are in case (1). No non-constant polynomial of degree 11 or more divides ∆(t);

however, a twelfth or higher power of a prime might divide ∆(t). Let k = deg ∆(t), and write
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∆(t) = d∆1(t)∆2(t)
c4(t) = cγ1(t)γ2(t)

P0 = {p : p 6 deg ∆(t)} ∪ {p : p|cd}, P0 =
∏

p∈P0

p. (B.6)

where ∆1(t) through γ2(t) are primitive polynomials, ∆1(t) and γ1(t) are divisible by the same
non-constant irreducible polynomials, and ∆2(t) and c4(t) are not both divisible by any non-constant
polynomial.

Let Di(t) be the product of all non-constant irreducible polynomials dividing ∆i(t), and similarly
for ci(t). Let D(t) = D1(t)D2(t) = ακtκ + · · ·+ α0 (κ 6 k), c(t) = c1(t)c2(t).

Apply Lemma A.3 to c(t) and D2(t). Thus ∃c′ such that if ∃t where p divides both polynomials,
then p|c′. Let P2 be the prime divisors of c′ not in P0 and let P1 be the prime divisors of ακ ·
Discriminant(D(t)) not in P0. Define

P =
2⋃

i=1

Pi, P =
∏
p∈P

p. (B.7)

Note every prime in P is greater than k and not in P0.
As the product of primitive polynomials is primitive, D(t) is primitive. For any prime, either

D(t) mod p is a constant not divisible by p or a non-constant polynomial of degree at most k. In
the second case, as there are at most k roots to D(t) ≡ 0 mod p, we find that given a p > k, ∃tp
such that D(tp) 6≡ 0 mod p. By the Chinese Remainder Theorem, ∃t0 ≡ tp mod p for all p ∈ P.

B.2.2 Calculating the Conductor ∀p ∈ P, D(Pt + t0) ≡ D(t0) 6≡ 0 mod p. As P and P0 are
disjoint, this implies that D(Pt + t0) is minimal for all p ∈ P, as P0 contains the factors of d,2 and
3. Moreover, fp(Pt + t0) = 0 for p ∈ P.

By changing variables again, from t to Pm
0 t + t1, we can determine the powers of p ∈ P0 in the

conductor. Combining the two changes, we send t to τ = P (Pm
0 t + t1) + t0.

Originally we had ∆(t) = d∆1(t)∆2(t). Now we have ∆(τ) = d∆1(τ)∆2(τ). It is possible that
D1(τ)D2(τ) is no longer primitive; however, if there is a common prime divisor p, p divides ακ(P ·
Pm

0 )κ, implying p ∈ P0 t P.
We sieve to D(τ) square-free for p 6∈ P0 t P. As P0 t P contains all primes less than k, as

well as the prime divisors of P0, P , ακ and Discriminant(∆(t)), we can perform the sieving. Note
the discriminants of ∆(t) and ∆(τ) differ by a power of P · Pm

0 . Thus, away from these primes,
D(τ) ≡ 0 mod p2 has at most k < p2 roots, and we may sieve to a positive percent of t. The sieving
is unconditional if each irreducible factor of D(τ) is of degree at most 3.

D(τ) is divisible by fixed powers of primes in P0 and never divisible by primes in P. Thus ∃c1,
c2 with factors in P0 such that D̃(τ) = D1(τ)

c1

D2(τ)
c2

is not divisible by any p ∈ P0 t P. We sieve to
D̃(τ) square-free; for p 6∈ P0 t P, this is the same as D(τ) not divisible by p2.

We need to determine fp(τ) for p ∈ P0, p ∈ P, and p 6∈ P0 t P.
By our previous arguments, if m is sufficiently large, fp(τ) = fp(Pt1 + t0) for p ∈ P0.

If p ∈ P then p 6∈ P0. Mod p, ∆(τ) = ∆
(
P (P0t + t1) + t0

)
≡ ∆(t0) 6≡ 0. Thus, for these p,

fp(τ) = 0.
Assume p 6∈ P0 t P. The leading term of dD(τ) is dακ(P · Pm

0 )κ. By construction, p does not
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divide the leading coefficient of ∆(τ), as P0 t P contains the prime divisors of d, αk, P and P0. If
we sieve to D̃(τ) square-free for p 6∈ P0 t P, then as the degree of ∆(τ) is at most 10, the curve is
minimal for such p. Thus, fp(τ) is 1 if p|D2(τ) and 2 if p|D1(τ).

Thus, we have shown

Theorem B.1. All quantities as above, for D̃(τ) square-free, the conductors are

C(τ) =
∏

p∈P0

pfp ·

(
|D1(τ)|

c1

)2
|D2(τ)|

c2
. (B.8)

For sufficiently large τ , C(τ) is a monotone increasing polynomial (we may drop the absolute
values), and a positive percent of τ yield D̃(τ) square-free.

B.3 Rational Surfaces II
We consider what could go wrong in our proof if we are in case (2), where 3deg A(t) = 2deg B(t) = 12
and ordt=0t

12∆(t−1) = 0.
Thus, ∆(t) is a degree twelve polynomial, and we need to worry about minimality issues. As

before, we have

∆(t) = −24
(
22A3(t) + 33B2(t)

)
= d∆1(t)∆2(t)

c4(t) = cγ1(t)γ2(t)

P0 = {p : p 6 deg ∆(t)} ∪ {p : p|cd}, P0 =
∏

p∈P0

p. (B.9)

There are three cases:

– ∆(t) not divisible by a twelfth power;
– (αt + β)12|∆(t), (αt + β) |r c4(t);
– (αt + β)12|∆(t), (αt + β)|c4(t).

These cases are handled in a similar fashion as before; see [Mil] for the calculations.

B.4 Generalizations
The previous arguments are applicable to any family where deg ∆(t) 6 12 (which can include some
non-rational families). It is straightforward to generalize these arguments for all families.

B.5 Summary
We summarize our sieving and conductor results:

Theorem B.2 Conductors and Cardinalities for Families. For a one-parameter family with
deg ∆(t) 6 12, which includes all rational families, by sieving to a positive percent subsequence we
obtain a family with conductors given by a monotone polynomial; further, by Theorem A.5, after
changing variables to τ = Pmt + t0, a positive percent of t ∈ [N,N ] give D(τ) square-free except
for primes p|P , where the power of such p dividing D(τ) is independent of t. If all the irreducible
factors of ∆(t) are degree 3 or less, the sieving is unconditional; for degree 4 and higher, the sieving
is a consequence of the ABC or Square-Free Sieve conjecture.

Appendix C. Sums of Test Functions at Primes
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We list several standard sums of test functions over primes. F̂ , f̂i are even Schwartz functions with
compact support, ϕ(m) is the Euler phi-function.

All statements below are straightforward applications of partial summation and RH (or GRH
for Dirichlet L-functions if m 6= 1) to handle the prime sums (see, for example, [Mil]); weaker error
terms are obtainable by the Prime Number Theorem.

Lemma C.1 Sum of F̂ over primes.

1
log N

∑
p≡b(m)

log p

p
F̂
(
a

log p

log N

)
=

1
2aϕ(m)

F (0) + O
( 1

log N

)
. (C.1)

Setting m = 1 and a = 1, 2 yields

Corollary C.2. 1
log N

∑
p

log p
p F̂

(
log p
log N

)
= 1

2F (0) + O
(

1
log N

)
.

Corollary C.3. 1
log N

∑
p

log p
p F̂

(
2 log p

log N

)
= 1

4F (0) + O
(

1
log N

)
.

Lemma C.4.

4
∑

p

log2 p

log2 M

1
p
f̂1f̂2

( log p

log M

)
= 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du + O

( 1
log M

)
. (C.2)

For p ≡ b(m) we have

Lemma C.5.

4
∑

p≡b(m)

log2 p

log2 M

1
p
f̂1f̂2

( log p

log M

)
=

2
ϕ(m)

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du + O

( 1
log M

)
. (C.3)

Lemma C.6. Let E have rank r over Q(t) and assume Tate’s conjecture for E (known if E is a
rational surface). Then

2
∑

p

log p

log X

1
p
f̂
( log p

log X

)−A1,F (p)
p

= rf(0) + o(1). (C.4)

Finally, we constantly encounter sums such as

∑
p

log p

log C(t)
1
pr

f̂
(
r

log p

log C(t)

)
ar

t (p), (C.5)

where r ∈ {1, 2} and log C(t) is k log N + o(log N).
By Hasse, ar

t (p) 6 (2
√

p)r. The contribution Sl from p 6 logl N is

Sl �
1

log N

∑
p6logl N

log p

pr/2
. (C.6)

Clearly the larger contribution is from r = 1. By the Prime Number Theorem,
∑

p6x log p � x.
By partial summation,

∑
p6x

log p√
p �

√
x. Thus

Sl �
√

logl N

log N
. (C.7)

We have shown
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Lemma C.7 Removing Small Primes. The sums over primes p 6 logl N in the Explicit Formula

contribute O(log
l
2
−1 N). For l < 2, this is negligible.

Appendix D. Handling the Error Terms in the 2-Level Density

Following Rudnick-Sarnak [RS] and Rubinstein [Ru], we handle the error terms in the 2-level density,
assuming we are able to prove the 1-level density theorem with error terms. By the Explicit Formula
(Equation 2.3)

∑
ji

Fi

( log NE

2π
γ

(ji)
E

)
= Goodi + O

(
(log NE)−

1
2

)
, (D.1)

where Goodi is the good part of the Explicit Formula, involving F̂ (0), F (0), and sums of aE(p)
and a2

E(p) for primes p > log N .

Multiplying and summing over i yields

1
|F|

∑
E∈F

2∏
i=1

[∑
ji

Fi

( log NE

2π
γ

(ji)
E

)
+ O

(
(log NE)−

1
2

)]
=

1
|F|

∑
E∈F

2∏
i=1

Goodi. (D.2)

Multiplying out the LHS yields terms like

O

[
1
|F|

∑
E∈F

(log NE)−
2−k
2

k∏
m=1

∑
jmi

Fi

( log NE

2π
γ

(jmi )

E

)]
. (D.3)

If each function Fi were positive, we could insert absolute values and move 1
|F|
∑

E∈F past the

log−
2−k
2 NE factor. We assume our family has been sieved, so that the conductors satisfy log NE =

c log N + o(log N).

There are three terms. If k = 0 there is clearly no net contribution. For k = 1 we have a 1-level
density, which is finite by assumption. No error hits the k = 2 piece (this is the piece we want to
calculate!). Only the k = 1 piece is troublesome for Fi not positive.

If Fi is not positive, we increase the above by replacing Fi with a positive function gi such that
gi is an even Schwartz function whose Fourier Transform is supported in the same interval as that of
Fi and gi(x) > |Fi(x)|. As the gi satisfy the necessary conditions, we may apply the 1-Level Density
Theorem to the gi’s, obtaining a bounded quantity. Hitting this with (log NE)−

1
2 , we see there is

negligible contribution.

For a construction of gi, see Rubinstein [Ru], pages 40 − 41 or Rudnick-Sarnak [RS], pages
302− 304.

We have shown:

Theorem D.1 Handling the Error Terms. If we are able to do the 1-level density calculations,
then we may ignore the error terms in the 2-level density.

Note: the error need not be O(log−
1
2 N); o(1) also works.
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