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ABSTRACT

This thesis applies algebraic graph theory to random walks. Using the concept of a

graph’s fundamental matrix and the method of spectral decomposition, we derive a formula

that calculates expected hitting times for discrete-time random walks on finite, undirected,

strongly connected graphs. We arrive at this formula independently of existing literature,

and do so in a clearer and more explicit manner than previous works. Additionally we apply

primitive roots of unity to the calculation of expected hitting times for random walks on

circulant graphs. The thesis ends by discussing the difficulty of generalizing these results

to higher moments of hitting time distributions, and using a different approach that makes

use of the Catalan numbers to investigate hitting time probabilities for random walks on

the integer number line.
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1. INTRODUCTION

Random walk theory is a widely studied field of mathematics with many applications,

some of which include household consumption [Ha], electrical networks [Pa-1], and con-

gestion models [Ka]. Examining random walks on graphs in discrete time, we quantify

the expected time it takes for these walks to move from one specified vertex of the graph

to another, and attempt to determine the distribution of these so-called hitting times (see

Definitions 1.9 below) for random walks on the integer number line.

We start by recording basic definitions from graph theory that are relevant to our study,

and providing a basic example. The informed reader can skip this subsection, and the

reader seeking a more rigorous introduction to algebraic graph theory should consult [Bi].

Definitions 1.1. A graphG = (V,E) is a vertex set V combined with an edge setE, where

members of E connect members of V . We say G is an n-vertex graph if |V | = n. By

convention we disallow multiple edges connecting the same two vertices and self-loops;

that is, there is at most one element of E connecting i to j when i 6= j, and no edges

connecting i to j when i = j, where i, j ∈ V . Furthermore, we call G undirected when an

edge connects i to j if an only if an edge connects j to i.

Unless otherwise specified, we assume G is undirected throughout this paper, and thus

define an edge as a two-way path from i to j where i, j ∈ V and i 6= j.

Definition 1.2. We say that a graphG is strongly connected if for each vertex i, there exists

at least one path from i to any other vertex j of G.

Definition 1.3. When an undirected edge connects i and j, we say that i and j are adjacent,

or that i and j are neighbors. We denote adjacency as i ∼ j.

Definition 1.4. We call an n-vertex graph k-regular if there are exactly k edges leaving

each vertex, where 1 ≤ k < n and n > 1.

Definition 1.5. The n-vertex graphG is vertex-transitive if its group of automorphisms acts

transitively on its vertex set V . This simply means that all vertices look the same locally,

i.e. we cannot uniquely identify any vertex based on the edges and vertices around it.

Definition 1.6. An n-vertex graph G is bipartite if we can divide V into two disjoint sets

U and W such that no edge in E connects two vertices from U or two vertices from W .

Equivalently, all edges connect a vertex in U to a vertex in W .
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The undirected 6-cycle, two representations of which are given below in Figure 1, pro-

vides an easy way to visualize the above definitions, and is the example we will be using

throughout the thesis.

FIGURE 1. Two representations of the undirected 6-cycle.

From Definitions 1.2 and 1.4, we can immediately see that the undirected 6-cycle is

strongly connected and 2-regular. Furthermore, Definition 1.5 tells us that the undirected

6-cycle is vertex-transitive, because the labeling of the vertices does not matter. Whatever

labeling we choose, each vertex will still be connected to two other vertices by undirected

edges, and thus labeling is the only way we can uniquely identify each vertex. In fact, if we

assume undirectedness, no multiple edges, and no self-loops, then k-regularity is equivalent

to vertex-transitivity. Finally, from Definition 1.6 and from the graph on the right in Figure

1, we can see that the undirected 6-cycle is bipartite, with disjoint vertex sets U = {1, 3, 5}
and W = {2, 0, 4}.

Definition 1.7. A random walk on an n-vertex graph G is the following process:

• Choose a starting vertex i of G.

• Let A ⊂ V = {j : i ∼ j}. Choose an element j of A uniformly at random.

• If not at the walk’s stopping time (see Definition 2.4 below), move to j, and repeat

the second step. Otherwise end at j.

Definition 1.8. Consider a random walk on an n-vertex graph G, where G is isomorphic

to a bipartite graph. We refer to this phenomenon by saying either that the walk or G is

periodic. If G is not isomorphic to a bipartite graph, then the walk and G are aperiodic.

Thus when referring to G, we use “bipartite” and “periodic” interchangeably. This is

a slight abuse of the terminology: processes are periodic, not graphs. However, we are
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comfortable describing a graph as periodic in this paper because we only discuss graphs in

the context of random walks.

Note that our definition of a random walk is a discrete time definition. All of the results

in this paper apply to discrete time random walks, but are convertible to continuous time,

according to [Al-F1].

Definitions 1.9. The hitting time for a random walk from vertex i to a destination is the

number of steps it takes the walk to reach the destination starting from i. Define the walk’s

destination as the first time it visits vertex j; then we denote the walk’s expected hitting

time as Ei[Tj], and the variance of the walk’s hitting time distribution as V ari[Tj].

Just as with any other expected value, we can intuitively define Ei[Tj] as a weighted

average. Thus Ei[Tj] =
∑∞

n=0 n · P (walk first reaches j starting from i in n steps). We

can define V ari[Tj] in the same probabilistic manner. Because of the infinite number of

possible random walks we must take into account, calculating Ei[Tj] and V ari[Tj] values

from the probabilistic definition appears to be a very difficult task to carry out. In this

thesis we develop a more tractable method for quantifying hitting time distributions. Our

main result is the use of spectral decomposition of the transition matrix (see Definitions

2.2 below) to produce a natural formula for the calculation of expected hitting times on

n-vertex, undirected, strongly connected graphs. The rest of the thesis is organized as

follows: Section 2 constructs a theoretical conceptualization of hitting times for random

walks on graphs, Section 3 uses spectral decomposition to develop a hitting time formula

and applies primitive roots to the construction of spectra of transition matrices, Section 4

applies our methodology in sample calculations, Section 5 attempts to quantify hitting time

distributions on the number line, and Section 6 concludes.

2. A THEORETICAL FOUNDATION FOR RANDOM WALKS AND HITTING TIMES

In the following subsections, we construct a rigorous framework that both supports nat-

ural observations about random walks on graphs and allows us to move toward our goal

of calculating expected hitting times for random walks on finite graphs. The reader is

instructed to see the literature for proofs of any unproved assertions below.

2.1. Understanding Random Walks on Graphs in the Context of Markov Chains. We

appeal to [No] for the following association of random walks on graphs to discrete time

Markov chains. The following definitions and results are summaries of relevant results
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from [No], Sections [1.1] and [1.4]. See [Sa] as well for a background on finite Markov

chains.

Definitions 2.1. Let I be a countable set. Denote i ∈ I as a state and I as the state-space.

Furthermore, if ρ = {ρi : i ∈ I} is such that 0 ≤ ρi ≤ 1 for all i ∈ I , and
∑

i∈I ρi = 1,

then ρ is a distribution on I .

Consider a random variable X , and let ρi = P (X = i); then X has distribution ρ,

and takes the value i with probability ρi. Let Xn refer to the state at time n; introducing

time-dependence allows us to use matrices to conceptualize the process of changing states.

Definitions 2.2. We say that a matrix P = {pij : i, j ∈ I} is stochastic if every row

is a distribution, which is to say that each entry is non-negative and each row sums to 1.

Furthermore, P is a transition matrix if P is stochastic such that pij = P (Xn+1 = j|Xn =

i), where pij is independent of X0, . . . , Xn−1. We express P (Xn = j|X0 = i) as p(n)ij .

Definition 2.3. (See Theorem [1.1.1] of [No]). A Markov chain is a set {Xn} such that

X0 has distribution ρ, and the distribution of Xn+1 is given by the ith row of the transition

matrix P for n ≥ 0, given that Xn = i.

Definition 2.4. A random variable S, where 0 ≤ S ≤ ∞, is called a stopping time if the

events {S = n}, where n ≥ 0, depend only on X1, . . . , Xn.

These definitions allow us to introduce a property that is necessary for our conception of

hitting times for random walks on graphs.

Theorem 2.5. (Norrris’s strong Markov property; see Theorem [1.4.2] of [No]). Let {Xn}
be a Markov chain with initial distribution ρ and transition matrix P , and let S be a stopping

time of {Xn}. Furthermore, let XS = i. Then {XS+n} is a Markov chain with initial

distribution δ and transition matrix P , where δj = 1 if j = i, and 0 otherwise.

We now apply random walks on graphs to this Markov chain framework.

Proposition 2.6. Consider a random walk starting at vertex i of an n-vertex graph G. Let

S be a stopping time such that XS = i. Then the random walk, together with S, exhibits

Norris’s strong Markov property.
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Proof. First of all, define Xt as the position of the walk at time t, t ≥ 0. Trivially, we

see that X0 = i. Let ρ = {ρj : 1 ≤ j ≤ n}, where ρj = 1 if j = i and 0 otherwise.

Then X0 has distribution ρ. Furthermore, define P as {pij : 1 ≤ i, j ≤ n} where pij is the

number of edges going from vertex i to j divided by the total number of edges leaving i.

From the definition of a random walk given above, we see that pij = P (Xt+1 = j|Xt = i).

Furthermore, we calculate pij from the structure of the graph; the positions of the walk

have no bearing on the transition probabilities. Thus pij is independent of X0, . . . , Xt−1.

Then {Xt} is a Markov chain with initial distribution ρ and transition matrix P .

We now consider S. The event set {S = n} refers to the set of occurrences in which

after n steps, the walk is again at vertex i, where n ≥ 0. Clearly these events depend only

on the first n steps of the walk; hence S is a stopping time. Thus according to Theorem

2.5, {XS+t} is a Markov chain with initial distribution δi = ρ and transition matrix P . 2

This result is simply saying that the Markov process “begins afresh” after each stopping

time is reached, and is intuitively clear. In the next subsection, we use this framework to

develop a theoretical conception of hitting times for random walks on graphs.

2.2. Interpreting Hitting Times as a Renewal-Reward Process. In accordance with

[Al-F1], we use renewal-reward theory as a way to think about hitting times for random

walks on graphs. Doing so is a prerequisite for all the results we obtain regarding hitting

times. We appeal to [Co] for the following outline of a renewal-reward process.

Definitions 2.7. Let S1, S2, S3, S4, . . . be a sequence of positive i.i.d.r.v.s such that 0 <

E[Si] < ∞. Denote Jn =
∑n

i=1 Si as the nth jump time and [Jn−1, Jn] as the nth renewal

interval. Then the random variable (Rt)t≥0 such that Rt = sup{n : Jn ≤ t} is called a

renewal process. Rt refers to the number of renewals that have occurred by time t. Now

let W1, W2, W3, W4, . . . be a sequence of i.i.d.r.v.s such that −∞ < E[Wi] < ∞. Then

Yt =
∑Rt

i=1Wi is a renewal-reward process.

We can see a natural relation between Definitions 2.7 and Markov chains, which we

prove as the following proposition.

Proposition 2.8. Consider a random walk on an n-vertex graph G starting from vertex i.

Consider a sequence of stopping times S1, S2, S3, . . . such that XSn = i for all n ≥ 1. Let

Yt refer to the total number of visits to an arbitrary vertex j that have occurred by the most

recent stopping time. Then Yt is a renewal-reward process.
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Proof. Let Sn refer to the number of steps the walk takes between the (n− 1)st and nth

stopping times, such that XS1+S2+...+Sn−1 = XS1+S2+...+Sn = i. Note that by Proposition

2.6, the random walk on G together with the stopping time Sn satisfies Theorem 2.5, which

is to say that the portion of the walk between the (n − 1)st and nth stopping times is

independent of all previous portions of the walk. Furthermore, the starting and ending

positions of each portion of the walk between stopping times are the same, and are governed

by the same transition matrix P , also in accordance with the strong Markov property. Thus

S1, S2, S3, S4, . . . is a sequence of i.i.d.r.v.s such that 0 < E[Si] <∞.

Now, let Jn =
∑n

i=1 Si refer to the number of steps the walk has taken by the time

the nth stopping time occurs. Furthermore let Rt = sup{n : Jn ≤ t} be the number of

stopping times that have been reached by time t. Then according to Definitions 2.7, Rt is

a renewal process. Now let Vn be the number of visits to vertex j between the (n − 1)st

and nth stopping times. Once again, because the portion of the walk between the (n− 1)st

and nth stopping times is independent of all previous portions of the walk; for all n, the

portion of the walk between the (n − 1)st and nth stopping times share the same start and

endpoints; and the entire walk is governed by transition matrix P , we conclude that V1, V2,

V3, V4, . . . is a sequence of i.i.d.r.v.s such that −∞ < E[Vi] <∞. Therefore Yt =
∑Rt

i=1 Vi

is a renewal-reward process, and Yt is the number of visits to vertex j by the most recent

stopping time. 2

We now introduce some key insights that allow us to think about how to calculate ex-

pected hitting times on strongly connected finite graphs. The reader is instructed to see

[No] for proofs.

Theorem 2.9. (The Asymptotic Property of Renewal-Reward Processes). Consider renewal-

reward process Yt =
∑Rt

j=1Wj as described in Definitions 2.7. Assume the process begins

in state i. Then limt→∞
Yt
t

= Ei[W1]
Ei[S1]

.

Definitions 2.10. (Irreducibility of the Transition Matrix). If an n-vertex graph G is

strongly connected, then we say its transition matrix P is irreducible. Irreducibility im-

plies the existence of a unique probability distribution π on the n vertices of G such that

πj =
∑n

i=1 πipij for 1 ≤ j ≤ n. We refer to π as the graph’s stable distribution.

Theorem 2.11. (The Ergodic Theorem; see Theorem 1 of [Al-F1]). Let Nj(t) be the

number of visits to vertex j during times 1, 2, . . . , t. Then for any initial distribution,

t−1Nj(t)→ πj as t→∞, where π = (π1, . . . , πj, . . . , πn) is the stable distribution.
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With these insights, we arrive at a crucial proposition.

Proposition 2.12. (See Proposition 3 of [Al-F1]). Consider a random walk starting at

vertex i on an n-vertex, strongly connected graph G. Furthermore, let S be a stopping time

such that XS = i and 0 < Ei[S] <∞. Then Ei[number of visits to j before time S]

= πjEi[S] for each vertex j.

Proof. We bring the previous results to bear. Consider a sequence of stopping times

S1, S2, S3, . . ., and assume that these stopping times, together with a stopping time S, are

all governed by the same distribution. Let Yt refer to the total number of visits to an arbi-

trary vertex j that have occurred by the most recent stopping time. By Proposition 2.8, Yt
is a renewal-reward process. Then according to the asymptotic property of renewal-reward

processes, limt→∞
Yt
t

= Ei[W1]
Ei[S1]

. Since S is distributed identically with S1, S2, S3, . . ., re-

place S1 with S and W1 with W in the above expression:

lim
t→∞

Yt
t

=
Ei[W ]

Ei[S]
.

Now by Definitions 2.10, because G is strongly connected, its corresponding transition

matrix P is irreducible. Hence we can use the Ergodic Theorem to express the asymptotic

proportion of time the walk spends visiting vertex j:

lim
t→∞

Nj(t)

t
= πj,

where Nj(t) is the total number of visits to vertex j by the tth step of the walk. Note that

Nj(t) 6= Yt; rather, Yt = Nj(Smost recent). However, relative to t, Nj(t) − Yt becomes

arbitrarily small as t→∞. Hence the two limits are equal, and thus we have

Ei[W ]

Ei[S]
= πj

or Ei[W ] = πjEi[S]. Noting thatW refers to the number of visits to j before stopping time

S, we arrive at our result. 2

2.3. Two Basic Results. Proposition 2.12 is very useful because as long as S is a stopping

time such that XS = i, we can choose S to be whatever we want. By smart choices of

S and clever manipulation, [Al-F1] uses this proposition to prove many useful properties,

some of them regarding expected hitting times. We prove one of these properties below.
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Result 2.13. (See Lemma 5 of [Al-F1]). Consider a random walk starting from vertex i on

an n-vertex, strongly connected graph G. Define T+
i as the first return time to i. Then

Ei[T
+
i ] =

1

πi
.

Proof. Substituting i for j and T+
i for S in Proposition 2.12, we get

Ei[number of visits to i before time T+
i ] = πiEi[T

+
i ].

We follow [Al-F1]’s convention, and include time 0 and exclude time t in accounting for

the vertices a t-step walk visits. Note that we visit vertex i exactly once by the first return

time: the visit occurs exactly at time 0, since we exclude time T+
i . Substituting 1 in for

Ei[number of visits to i before time T+
i ], we arrive at our result. 2

Applying Result 2.13 to k-regular graphs, we can quantify specific hitting times, as

shown below.

Proposition 2.14. Consider an n-vertex, k-regular, undirected, strongly connected graph

G. Let π represent the stable distribution on G’s vertices. Then π is the uniform distribu-

tion.

Proof. First of all, becauseG is strongly connected, the transition matrix P is irreducible,

which implies the existence of a stable distribution π. To show π is uniform, note that since

G is k-regular, k edges leave each vertex. Furthermore, because G is undirected, we know

that the number of edges leaving vertex i is equal to the number of edges leading to i for

each vertex i of G. Thus P (Xt+1 = j|Xt = i) = P (Xt+1 = i|Xt = j). This implies that

pij = pji for 1 ≤ i, j ≤ n, which means that P is symmetric. Furthermore, if i is connected

to j, then pij = pji = 1/k, and pij = pji = 0 otherwise. Because each vertex is connected

to k vertices, we see that each row of P, and hence each column as well by symmetry,

contains k non-zero terms, each equalling 1/k. Now, let πi = 1/n for 1 ≤ i ≤ n. We see

that

πi =
1

n

= πj for 1 ≤ j ≤ n

= k · πj ·
1

k

= k · πj ·
1

k
+ (n− k) · πj · 0

=
n∑
j=1

πjpji,



12

which is the irreducibility condition. Thus the stable distribution is uniform, and is unique

by Definition 2.10. 2

From Proposition 2.14 and Result 2.13, we can immediately see that the expected first

return time for undirected, k-regular, strongly connected graphs is simply equal to n, the

number of vertices on the graph:

Ei[T
+
i ] = n. (2.14a)

From (2.14a) we can infer another result regarding expected hitting times for random walks

on this class of graphs.

Result 2.15. Assume vertices i and j are adjacent. Consider a random walk starting at

vertex j on an n-vertex k-regular undirected graph G. Then Ej[Ti] = n− 1.

Proof. Consider a random walk on G starting at vertex i. After one step, the walk is at j

with probability 1/k for all j such that j ∼ i. Thus we see the following:

Ei[T
+
i ] = n

= 1 +
1

k

∑
i∼j

Ej[Ti]

= 1 +
1

k
· k · Ej[Ti]

= 1 + Ej[Ti],

yielding Ej[Ti] = n− 1 for j ∼ i. 2

When G is regular, it is possible to construct general formulas for Ei[Tj] for the cases

when the shortest path from i to j is of length 2 or 3 (see [Pa-2]). In what follows, we work

toward an explicit formula that does not depend on the regularity of G, and yields expected

hitting time values for random walks on any finite, undirected, strongly connected graph.

We employ spectral decomposition of G’s transition matrix to achieve such a formula.

This application of the spectral decomposition of P to hitting times is well-known; see

[Al, Al-F2, Br, Ta], for instance. However, this literature assumes the background we have

just provided, it often gives results in continuous time, and it does not explicitly state a

formula for determining Ei[Tj] values. Thus while the following methodology is by no

means novel, by fully deriving and stating the formula that it permits, and by remaining

in discrete time, we present hitting time results in what we believe to be a clearer, more

straightforward, and more intuitive manner than the existing literature.
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3. A METHODOLOGY FOR CALCULATING EXPECTED HITTING TIMES

3.1. The Fundamental Matrix and its Role in Determining Expected Hitting Times.
With Proposition 2.12 and a clever choice of S, [Al-F1] defines the fundamental matrix,

from which we can calculate expected hitting times for random walks on any graph with

stable distribution π. We paraphrase their ingenuity in this subsection.

Definition 3.1. Consider a graph G with irreducible transition matrix P and stable distri-

bution π. The graph’s fundamental matrix Z is defined as the matrix such that

Zij =
∞∑
t=0

(p
(t)
ij − πj).

It is verifiable that the fundamental matrix Z has rows summing to 0, and when π is

uniform, constant diagonal entries (proved as Proposition 7.3 in the appendix). These prop-

erties will come into play later in our discussion, especially in manipulating the following

definition.

Definition 3.2. Consider a random walk on an n-vertex graph G in which for each vertex

j, P (walk starts at j) = πj . Then we refer to the expected number of steps it takes the

walk to reach vertex i as Eπ[Ti].

Theorem 3.3. (The Convergence Theorem; See Theorem 2 of [Al-F1]). Consider a Markov

chain {Xn}. Then P (Xt = j) → πj as t → ∞ for all states j, provided the chain is

aperiodic.

These definitions set us up to prove our first general result about expected hitting times.

Proposition 3.4. (See Lemma 11 of [Al-F1]). For an n-vertex graph G with fundamental

matrix Z and stable distribution π,

Eπ[Ti] =
Zii
πi
.

Proof. We get at the notion of Z in the following manner. Consider a random walk on

G starting at vertex i. Let t0 ≥ 1 be some arbitrary stopping time and define S as the time

taken by the following process:

• wait time t0,

• and then wait, if necessary, until the walk next visits vertex i.
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Note that after time t0, the graph has probability distribution δ, where P (Xt0 = j) = δj for

1 ≤ j ≤ n. Hence E[S] = t0 + Eδ[Ti]. Furthermore, note that the number of visits to i by

time t0 is geometrically distributed, because we can treat Xn = i as a Bernoulli Trial for

all n from 1 to t0− 1. Also, it easy to see that the walk makes no visits to i after time t0− 1

(remember that we do not include time S in our accounting). Therefore we can express

Ei[Ni(t0)] as the sum of the i to i transition probabilities:

E[Ni(S)] =

t0−1∑
n=1

p
(n)
ii + 1

=

t0−1∑
n=0

p
(n)
ii because the walk starts at i.

Invoking Proposition 2.12 and setting j = i, we achieve the following expression:

t0−1∑
n=0

p
(n)
ii = πi(t0 + Eδ[Ti]).

Rearranging, we get
t0−1∑
n=0

(p
(n)
ii − πi) = πiEδ[Ti].

Now let t0 → ∞. By definition, the left hand term converges to Zii. Furthermore, by the

convergence theorem, as t0 becomes large, δ approaches π if G is aperiodic. Therefore the

expression becomes Zii = πiEπ[Ti], and we arrive at our result.

Now let G be periodic. Then by definition Xt0 oscillates between disjoint vertex subsets

U and W as t0 → ∞. Without loss of generality assume that when n is odd, P (Xn ∈
U) = 0 and when n is even, P (Xn ∈ W ) = 0. Thus i ∈ U , meaning that for odd n,

p
(n)
ii − πi = −πi, a constant. Hence the infinite series does not converge. However, if we

scale each partial sum by 1/n, these terms become arbitrarily small as n → ∞. Denoting

the mth partial sum of the series as sm, we see that limt0→∞
1

t0−1
∑t0−1

m=0 sm exists. Thus

the series
∑t0−1

n=0 (p
(n)
ii − πi) is Cesàro summable (see [Har], for instance), and by definition

of Z, the Cesàro sum is equal to Zii. Considering the right hand side, note that by the

convergence theorem, for odd n, as n → ∞, the distribution of Xn converges to a stable

distribution on the elements of W ; we call this distribution πW . Furthermore, for even n,

as n → ∞, the distribution of Xn converges to a stable distribution on the elements of U ;

call this distribution πU . Define δn as the distribution of Xn on the vertices of G; then the

odd terms of the sequence {δn} approach πW and the even terms approach πU . Consider
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ρn = 1
n

∑n
i=0 δn; then for large n,

ρn ≈
1

n

(n
2
πW +

n

2
πU

)
=

1

2
(πW + πU),

or equivalently,

lim
n→∞

ρn =
1

2
(πW + πU).

Hence the Cesàro average of this sequence exists.

Now, consider a random walk on G that starts from vertex i, where i ∈ U with proba-

bility 1/2, and i ∈ W with probability 1/2. Then from this starting distribution δ0, {δn}
converges to π = 1

2
(πW + πU), as indicated above. Using Cesàro summation as above, we

again see that
t0−1∑
n=0

(p
(n)
ii − πi)→ Zii for t0 →∞,

where pii refers to the average of the two i to i transition probabilities. Therefore Zii =

πiEπ[Ti], completing the proof for the periodic case. 2

Proposition 3.4 allows us to calculate expected hitting times for a random walk to a

specific vertex when the starting vertex is determined by the stable distribution. We seek to

extend this result so that we can determine expected hitting times for explicit walks from

vertex i to vertex j. We use the following lemma to do so.

Lemma 3.5. (See Lemma 7 of [Al-F1]). Consider a random walk on a graph G with stable

distribution π. Then, for j 6= i,

Ej[number of visits to j before time Ti] = πj(Ej[Ti] + Ei[Tj]).

Proof. Assume the walk starts at j. Define S as “the first return to j after the first visit to

i.” Then we have Ej[S] = Ej[Ti] +Ei[Tj]. Because there are no visits to i before Ti and no

visits to j after Ti by our accounting convention, substitution into Proposition 2.12 yields

the result. 2

We are now ready to associate Z with explicit hitting times, and do so below.

Proposition 3.6. (See Lemma 12 of [Al-F1]). For an n-vertex graph G with fundamental

matrix Z and stable distribution π,

Ei[Tj] =
Zjj − Zij

πj
.
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Proof. We proceed in the same manner as above. Consider a random walk on G starting

at vertex j. Define S as the time taken by the following process:

• wait until the walk first reaches vertex i,

• then wait a further time t0,

• and finally wait, if necessary, until the walk returns to j.

Define δ as the probability distribution such that δk = Pk(Xt0 = k). Then Ej[S] =

Ej[Ti] + t0 +EδTj. Furthermore note that between times Ti and t0, the number of visits to

j is geometrically distributed, so

Ej[Nj(t0)] = Ej[number of visits to j before time Ti] +

t0−1∑
t=0

p
(t)
ij .

Once again we appeal to Proposition 2.12, and by the same reasoning as above, we achieve

Ej[number of visits to j before time Ti] +

t0−1∑
t=0

p
(t)
ij = πj(Ej[Ti] + t0 + EδTj).

SubtractingEj[number of visits to j before time Ti] from both sides and appealing to Lemma

3.5, we obtain
t0−1∑
t=0

p
(t)
ij = πj(−Ei[Tj] + t0 + EδTj).

Rearranging yields
t0−1∑
t=0

(p
(t)
ij − πj) = πj(EδTj − Ei[Tj]).

Once again, we let t0 →∞ and end up with

Zij = πj(Eπ[Tj]− Ei[Tj]).

Finally, Proposition 3.4 allows us to write

Zij = Zjj − πjEi[Tj],

and the proof is complete for the aperiodic case. When G is periodic, we employ the same

argument as above, with the addition that if j ∈ U , p(n)ij = 0 for odd n, and if j ∈ W , then

p
(n)
ij = 0 for even n. 2

As Aldous and Fill observe in [Al-F1], because hitting time results are transferable to

continuous time, where the periodicity issue does not arise, it is easier to switch to con-

tinuous time to evaluate random walks that are periodic in the discrete case. However, we

believe that remaining in discrete time is fruitful because it gives us a more tangible sense

of the oscillatory nature of discrete time random walks on bipartite graphs.
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3.2. Making Sense of the Fundamental Matrix. As we can see from the above section

and ultimately from Proposition 3.6, the fundamental matrix is a powerful tool for our pur-

poses, so long as we can determine it. However, for most graphs it is essentially impossible

to calculate the sum of this infinite series, just as it seems difficult to calculate an expected

hitting time from its probabilistic definition. We therefore seek to equate this definition of

Z with a more useable one. To do so, we make use of the following lemma. While the

results of the next two sections are known, we arrive at them independently of the existing

literature.

Lemma 3.7. Let graph G have irreducible transition matrix P . Define P∞ as the n by n

matrix such that P∞ij
= πj for all i. Then PP∞ = P∞ = P∞P . Furthermore, P∞P∞ =

P∞.

Proof. Define Jn as the n column vector of all ones. Thus we have PP∞ = PJnπ. Now,

by stochasticity of P , PJn = Jn, so PP∞ = Jnπ = P∞. Similarly, P∞P = JnπP . Since

P is irreducible, πP = π. So, P∞P = Jnπ = P∞. To show P∞P∞ = P∞, we write the

following:

(P∞P∞)ij = π1πj + π2πj + · · ·+ πnπj

= πj(π1 + π2 + · · ·+ πn)

= πj because π is a distribution

= P∞ij
.

2

The commutativity of P with respect to P∞ is a crucial property, and we use it to express

Z in terms of matrices we can easily calculate.

Proposition 3.8. Consider an n-vertex graph G with irreducible transition matrix P and

fundamental matrix Z. Then
∞∑
t=0

(
P t − P∞

)
= Z = (I − (P − P∞))−1 − P∞.

Proof. Consider
∑∞

t=0 (P t − P∞) and let t = 0. In this case, P 0 − P∞ = I − P∞ =

(P − P∞)0 − P∞. For t ≥ 1, we appeal to the binomial theorem, and note that (1 + x)t =∑t
i=0

(
t
i

)
xi. Now, let x = −1. Clearly

0 = (1 + (−1))t =
t∑
i=0

(
t

i

)
(−1)i.
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This means that for t ≥ 1, if we negate every other term of the expansion of (P − P∞)t,

the coefficients of the terms will sum to 0. Since P and P∞ commute, this yields

(P − P∞)t =

(
t

0

)
P t −

(
t

1

)
P t−1P∞ +

(
t

2

)
P t−2P 2

∞ − · · · ±
(
t

t

)
P t
∞

=

(
t

0

)
P t −

(
t

1

)
P∞ +

(
t

2

)
P∞ − · · · ±

(
t

t

)
P∞ by Lemma 3.7

= P t − P∞ by the binomial theorem.

We get from the second line to the third line above by knowing that the coefficients of the

terms sum to 0, and the first term, P t, has coefficient 1. So we now have

∞∑
t=0

(P t − P∞) = (P − P∞)0 − P∞ +
∞∑
t=1

(P − P∞)t

=
∞∑
t=0

(P − P∞)t − P∞.

Consider
∑∞

t=0(P − P∞)t. The first term of this geometric series is I , and the common

factor is (P − P∞). From linear algebra, we know that geometric series of powers of

the matrix A converge if and only if A’s eigenvalues are strictly less than 1 in absolute

value. Now because P and P∞ are real and symmetric, the eigenvalues of (P − P∞) are

real; furthermore, because P and P∞ commute, they are simultaneously diagonalizable,

and hence λPi
− λP∞i

= λ(P−P∞)i , where λPi
P = λPi

~v and λP∞i
P = λP∞i

~v, and ~v is

the eigenvector that corresponds to both λPi
and λP∞i

. Note that P∞ has rank 1 and null

space of dimension n − 1; therefore it has the eigenvalue 1 with multiplicity 1 and 0 with

multiplicity n − 1. Let G be aperiodic; then P has eigenvalue 1 with multiplicity 1, and

all other eigenvalues are strictly less than 1 in absolute value. Because P and P∞ are

doubly stochastic, the only eigenvector ~v such that P~v = ~v and P∞ = P∞~v is Jn. Thus

λP1 = λP∞1
= 1, and λ(P−P∞)1 = 1−1 = 0. Furthermore, because λP∞i

= 0 for 2 ≤ i ≤ n

and |λP∞i
| < 1 for 2 ≤ i ≤ n, we conclude that the eigenvalues of A = (P − P∞) are

strictly less than 1 in absolute value. Therefore, from linear algebra, the series converges

to a sum satisfying

(I − A)(I + A+ A2 + · · · ) = I.

Because A has eigenvalues all less than 1 in absolute value, (I −A) has all nonzero eigen-

values, and hence is invertible. Thus the sum of the series is (I−A)−1 = (I−(P−P∞))−1,
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completing the proof for the aperiodic case:

Z =
∞∑
t=0

(P t − P∞)

=
∞∑
t=0

(P − P∞)t − P∞

= (I − (P − P∞))−1 − P∞.

When G is periodic, -1 is an eigenvalue of P , a result which we prove as Proposition 7.2 in

the appendix. Because P and P∞ are simultaneously diagonalizable, this eigenvalue of -1

from P is paired with an eigenvalue of 0 from P∞, and so P −P∞ has an eigenvalue of -1.

Thus
∑∞

t=0(P − P∞)t oscillates in the limit, which we would expect based on the proof of

Proposition 3.4 for the periodic case. We appeal to Abel summation (see [Har]) to evaluate

this sum. To do so, let 0 < α < 1. Write

∞∑
t=0

(P t − P∞)αt

=
∞∑
t=0

(P − P∞)tαt − P∞ from above

=
∞∑
t=0

(α(P − P∞))t − P∞.

Because |α| < 1, α(P −P∞) has eigenvalues all strictly less than 1 in absolute value. Once

again, because α(P −P∞) has no eigenvalues equal to 1, (I−α(P −P∞)) has all nonzero

eigenvalues and hence is invertible. Therefore the sum
∑∞

t=0(P
t − P∞)αt converges to

(I − α(P − P∞))−1 − P∞. Making use of this equality and noting that the Abel sum of∑∞
t=0(P − P∞)t is simply the limit of

∑∞
t=0(P

t − P∞)αt as α approaches 1 from below,

we find that
∞∑
t=0

(P − P∞)t = (I − (P − P∞))−1.

Note that from the proof of Proposition 3.6, the series
∑∞

t=0(p
(t)
ij − P∞ij

) is Cesàro sum-

mable for each i and j, with Cesàro sum equal to Zij . Hence
∑n

t=0(P
t − P∞) is Cesàro

summable, with Cesàro sum equal toZ. Because the Abel sum exists and equals the Cesàro

sum whenever the latter exists, we see that the Abel sum of
∑n

t=0(P
t − P∞) is equal to Z,

and therefore Z = (I − (P − P∞))−1 − P∞ in the periodic case as well. 2
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3.3. Toward an Explicit Hitting Time Formula. Using Proposition 3.8 and Proposition

3.6, we can quantify hitting times on any finite, strongly connected graph. However, the

fundamental matrix is an abstract concept that is hard to visualize. It is hard to tell exactly

where the actual values for the hitting times are coming from. Thus it would be nice if

we could determine hitting times straight from the transition matrix, because we obtain the

transition matrix directly from the graph itself. We work toward quantifying first Eπ[Tj]

values and then Ei[Tj] values using only the transition matrix and its spectrum in this

subsection. Doing so requires associating the spectrum of the fundamental matrix with that

of the transition matrix, which we accomplish with the following lemma.

Lemma 3.9. For an n-vertex graphGwith irreducible transition matrix P and fundamental

matrix Z, λZ1 = 0, and for 2 ≤ m ≤ n,

λZm = (1− λPm)−1,

where λPm refers to the mth largest eigenvalue of P .

Proof. From Proposition 3.8, we write Z = (I − (P − P∞))−1 − P∞. From linear

algebra, we know that if two matrices commute with each other and are symmetric, then

they are simultaneously diagonalizable. To show Z is symmetric, note that P is symmetric

by undirectedness of G, P∞ is symmetric by uniformity of π, and I is symmetric by defini-

tion. Because differences of symmetric matrices are symmetric and inverses of symmetric

matrices are symmetric, Z = (I − (P − P∞))−1 − P∞ is symmetric.

We now must show that P and Z commute. By definition, P commutes with I and with

itself, and by Lemma 3.7, P commutes with P∞. Thus we have

PZ = P ((I − (P − P∞))−1 − P∞) from Proposition 3.8

= P (I − (P − P∞))−1 − PP∞ by distributivity of matrix multiplication

= P (I − (P − P∞))−1 − P∞P by Lemma 3.7.

= (I − (P − P∞))−1P − P∞P because P commutes with I, P∞, and itself

= ((I − (P − P∞))−1 − P∞)P by distributivity of matrix multiplication

= ZP.

Thus P commutes with Z, meaning that the two are simultaneously diagonalizable. This

implies that for every eigenvalue λZm such that Z~v = λZm~v, P~v = λPm~v, where 1 ≤
m ≤ n and ~v is an eigenvector in the shared eigenspace. Now we know that λP1 = 1 (see

appendix) with eigenvector Jn. Hence λZ1 is also associated with Jn. Because Z has rows

summing to 0 and Jn has constant entries, λZ1 must be 0.
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For 2 ≤ m ≤ n, simultaneous diagonalizability of P and Z combined with properties of

eigenvalues allows us to write

λZm = λ((I−(P−P∞))−1−P∞)m

= λ(I−(P−P∞))−1
m
− λP∞m

= (λIm − (λPm − λP∞m
))−1 − λP∞m

.

As we observed in the proof of Proposition 3.8, λP∞k
= 0 for 2 ≤ k ≤ n, so we get rid of

these terms and arrive at our result:

(λIm − (λPm − λP∞m
))−1 − λP∞m

=(λIm − λPm)−1

=(1− λPm)−1, which is defined for 2 ≤ m ≤ n.

2

With this crucial lemma, which provides a natural formula relating the eigenvalues of

Z to those of P , we are in position to explicitly quantify expected hitting times. Recall

that Eπ[Tj] refers to the expected number of steps it takes a random walk to reach vertex

j in which the starting vertex is determined by the stationary distribution. Thus it makes

intuitive sense to think of these values as an average of hitting times with an explicit starting

vertex. We prove this a priori intuition below.

Proposition 3.10. For a random walk on an n-vertex graph G with irreducible transition

matrix P and uniform stable distribution π, we have

Eπ[Tj] =
1

n

n∑
j=1

Ei[Tj] =
n∑

m=2

(1− λPm)−1 = τ for all j.

Proof. By Proposition 3.4, Eπ[Tj] = 1
πj
Zjj . Because the rows of Z sum to 0, we can

write

Eπ[Tj] =
1

πj
Zjj −

n∑
j=1

Zij.
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Since the diagonal entries of Z are constant when π is uniform, this becomes

Eπ[Tj] =
1

n
· 1

πj

n∑
j=1

(Zjj − Zij)

=
1

n

n∑
j=1

Zjj − Zij
πj

=
1

n

n∑
j=1

Ei[Tj] by Proposition 3.6.

Now, when π is uniform, Proposition 3.4 gives Eπ[Tj] = 1
πj
Zjj = nZjj . Using m in the

same way as in Lemma 3.9, we write

nZjj = Tr(Z) because Z has constant diagonal entries for uniform π

=
n∑

m=1

λZm

=
n∑

m=2

λZm

=
n∑

m=2

(1− λPm)−1 by Lemma 3.9.

2

Thus when π is uniform, the average of the expected hitting times for random walks

on G is simply equal to the sum of the fundamental matrix’s eigenvalues; and because

of the natural relation between Z and P , we can easily express this sum in terms of the

eigenvalues of P . This is a very nice result. Spectral decomposition of Z and P allows

us to determine a similarly nice formula for Ei[Tj] values, and one that does not rely on

uniformity of π.

Proposition 3.11. For a random walk on an n-vertex graph G with irreducible transition

matrix P , for any vertices i and j,

Ei[Tj] =
1

πj

n∑
m=2

(1− λPm)−1ujm(ujm − uim),

where ujm refers to the jth entry of the eigenvector of P that corresponds to λPm .

Proof. Recall that Z is symmetric, and from linear algebra we know that symmetric

matrices can be diagonalized by an orthogonal transformation of their eigenvectors and

eigenvalues. Thus Z = UΛUT , where U is an n × n matrix whose columns are the unit
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eigenvectors of Z, and Λ is the diagonal matrix consisting of Z’s eigenvalues. Hence by

definition, Zij = (UΛUT )ij . By the rules of matrix multiplication,

(UΛUT )ij =
n∑

m=1

n∑
k=1

(uimΛmku
T
kj).

Now, Λmk is nonzero only where m = k, so we have

Zij = (UΛUT )ij

=
n∑

m=1

uimΛmmu
T
mj

=
n∑

m=1

uimλZmu
T
mj

=
n∑

m=1

λZmuimujm

=
n∑

m=2

λZmuimujm as observed in the proof of Lemma 3.9

= λZ2ui2uj2 + · · ·+ λZnuinujn

= (1− λP2)
−1ui2uj2 + · · ·+ (1− λZn)−1uinujn by Lemma 3.9

=
n∑

m=2

(1− λPm)−1uimujm.

Appealing to Proposition 3.6 completes the proof:

Ei[Tj] =
1

πj
(Zjj − Zij)

=
1

πj

(
n∑

m=2

(1− λPm)−1ujmujm −
n∑

m=2

(1− λPm)−1uimujm

)

=
1

πj

n∑
m=2

(1− λPm)−1ujm(ujm − uim).

2

When G is k-regular and π is uniform, Proposition 3.11 becomes

Ei[Tj] = n

n∑
m=2

(1− λPm)−1ujm(ujm − uim). (3.11a)
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3.4. Applying Roots of Unity to Hitting Times. Almost everything we have done up

to this point is generalizable to any undirected, strongly connected graph G. However,

when G exhibits circulancy, as in the case of the undirected 6-cycle, results from complex

analysis give us a unique way to construct the spectrum of P . [Al-F2] alludes to the process

of using roots of unity to construct the spectra of transition matrices of n-cycles and hence

obtain expected hitting times.

Definition 3.12. We call a graph G circulant if each row of its transition matrix P is equal

to a cyclic shift of the first row. That is, the i-th row is equal to the first row, except that

each entry is shifted, in a cyclic manner, i− 1 places to the right.

We can immediately verify that the undirected 6-cycle is circulant from looking back at

its transition matrix. The following definitions formalize the notion of circulancy.

Definitions 3.13. A Cayley graph is a visual representation of the group (S, ∗), where S
is a set and ∗ is an operation on S that is closed and associative, with exactly one element

in S being the identity element. We label the vertices of Cayley graph G such that each

vertex corresponds to exactly one element of the set S . No elements of S are left out and

no elements are represented by multiple vertices; that is, our labeling must result in a map

φ : S → V (recall that V is G’s vertex set) such that φ is both one-to-one and onto. Hence

G is an |S|-vertex graph. We choose a set A ⊂ S, which we call the alphabet. Then for

all a ∈ A, a directed edge connects vertex φ(x) to vertex φ(y) if and only if x ∗ a = y,

where x, y ∈ S and φ(x), φ(y) ∈ V . Note that G is |A|-regular. By convention, we say that

G = Cay(S,A).

Thus the undirected 6-cycle is a Cayley graph representing (Z6,+6) on generators 1 and

5 (or -1); that is, when G is the undirected 6-cycle, G = Cay(Z6, {±1}). This is why we

label the vertices of the undirected 6-cycle from 0 to 5 instead of from 1 to 6. It is easy

to show that finite undirected graphs are Cayley graphs if and only if they are circulant

(proved as Proposition 7.4 in the appendix). When this is the case, we can use primitive

roots of unity to generate orthonormal spectra for their transition matrices. The following

theorem and proof is taken from [La]:

Theorem 3.14. If X = Cay(Zn,S), then Spec(X) = {λx : x ∈ Zn} where

λx =
∑
s∈S

exp

(
2πixs

n

)
.
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Proof. (See [La]). Let T be the linear operator corresponding to the adjacency matrix of

a circulant graph X = Cay(Zn, {a1, a2, . . . , am}). If f is any real function on the vertices

of X we have

T (f)(x) = f(x+ a1) + f(x+ a2) + · · ·+ f(x+ ak).

Let ω be a primitive nth root of unity and let g(x) = ωmx for some m ∈ Zn. Then

T (g)(x) = ωmx+ma1 + ωmx+ma2 + · · ·+ ωmx+mak

= ωmx (ωma1 + ωma2 + · · ·+ ωmak) .

Thus g is an eigenfunction and ωma1 + ωma2 + · · ·+ ωmak is an eigenvalue. 2

This theorem applies to the spectrum of the adjacency matrix of a Cayley graph. How-

ever, the transition matrix is simply the adjacency matrix divided by the graph’s regularity.

That is, assuming that |S| = k, we divide each entry of a graph’s adjacency matrix by k to

come up with the graph’s transition matrix. The following corollary naturally arises.

Corollary 3.15. If X = Cay(Zn,S) has transition matrix P , then Spec(X) = {λPx : x ∈
Zn} where

λx =
1

k

∑
s∈S

exp

(
2πixs

n

)
.

Proof. Let R be a linear operator corresponding to G’s transition matrix, and substitute

R for T in the above proof:

R(f)(x) =
1

k
(f(x+ a1) + f(x+ a2) + · · ·+ f(x+ ak)) .

Defining ω and g exactly as above,

R(g)(x) =
1

k

(
ωmx+ma1 + ωmx+ma2 + · · ·+ ωmx+mak

)
=
ωmx

k
(ωma1 + ωma2 + · · ·+ ωmak) .

So, this new g is an eigenfunction ofR, and 1
k

(ωma1 + ωma2 + · · ·+ ωmak) is an eigenvalue

of P . 2

Hence we can generate hitting times for random walks on circulant graphs directly from

primitive roots of unity.
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4. SAMPLE CALCULATIONS

In the series of calculations that follow, we quantify expected hitting times for random

walks on G, where G is the undirected 6-cycle (reproduced below as Figure 2).

FIGURE 2. For reference, a reprint of the graph on the left in Figure 1.

Calculation 4.1. Using Mathematica, we approximate expected hitting times by simulating

a random walk onG 100,000 times with a given starting vertex and a given stopping vertex,

and taking the average of the sample. Using this method, we find thatE0[T1] ≈ 5, E0[T2] ≈
8, and E0[T3] ≈ 9.

As 0 ∼ 1 and G is 2-regular, π is uniform and hence E0[T1] = n − 1 = 5, which

agrees with our Mathematica approximation. Furthermore, due to the undirectedness and

regularity of G, E0[T5] = E0[T1] = 5, E0[T4] = E0[T2] ≈ 8, and E0[Tj] = Ej[T0] for all j.

Noting that E0[T0] trivially equals 0, we use Proposition 4.4 to calculate Eπ[T0]:

Eπ[T0] =
1

6

5∑
i=0

Ei[T0]

=
1

6
(0 + 5 + 8 + 9 + 8 + 5)

=
35

6
.

Calculation 4.2. Using Proposition 3.8 combined with Propositions 3.4 and 3.6, we recal-

culate G’s fundamental matrix and use it to determine Eπ[Tj] and Ei[Tj] values, hoping

these values agree with our Mathematica simulations. First, note that G has the following
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transition matrix P :

P =



0 1/2 0 0 0 1/2

1/2 0 1/2 0 0 0

0 1/2 0 1/2 0 0

0 0 1/2 0 1/2 0

0 0 0 1/2 0 1/2

1/2 0 0 0 1/2 0


.

Using P , the identity matrix, and P∞, which in this case is the 6×6 matrix where each entry

is equal to the uniform stable distribution value 1
6
, we construct Z according to Proposition

3.8:

Z = (I − (P − P∞))−1 − P∞

=



35/36 5/36 −13/36 −19/36 −13/36 5/36

5/36 35/36 5/36 −13/36 −19/36 −13/36

−13/36 5/36 35/36 5/36 −13/36 −19/36

−19/36 −13/36 5/36 35/36 5/36 −13/36

−13/36 −19/36 −13/36 5/36 35/36 5/36

5/36 −13/36 −19/36 −13/36 5/36 35/36


.

Appealing to Propositions 3.4 and 3.6, we can calculate the hitting times as follows:

E0[T1] = 1
π1

(Z11 − Z01) = 6
(
35
36
− 5

36

)
= 5.

E0[T2] = 1
π2

(Z22 − Z02) = 6
(
35
36

+ 13
36

)
= 8.

E0[T3] = 1
π3

(Z33 − Z03) = 6
(
35
36

+ 19
36

)
= 9.

Eπ[T0] = 1
π0

(Z00) = 6
(
35
36

)
= 35

6
= Eπ[Tj] = τ for all j.

Indeed, the Mathematica simulations verify these results.

Calculation 4.3. Because the G has the uniform stable distribution, for all j, Eπ[Tj] =

τ , as verified in the above calculation. Thus we use the spectra of Z and P , as sug-

gested by Proposition 3.10, to calculate τ again. The set of eigenvalues of the transition

matrix is
{

1, 1
2
, 1
2
,−1

2
,−1

2
,−1

}
, and the set of eigenvalues of the fundamental matrix is
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0, 2, 2, 2

3
, 2
3
, 1
2

}
. In accordance with Proposition 3.10, we write

n∑
m=2

(1− λPm)−1 =
1

1− 1/2
+

1

1− 1/2
+

1

1 + 1/2
+

1

1 + 1/2
+

1

1 + 1

= 2 + 2 +
2

3
+

2

3
+

1

2

=
35

6

= τ

=
n∑

m=2

λZm .

Hence our Mathematica simulations verify Proposition 3.10 and Lemma 3.9.

Calculation 4.4. Using Proposition 3.11, we recalculate Ei[Tj] values on G using spectral

decomposition of P . The eigenvalues and orthonormal eigenvectors of P are as follows:

λP1 = 1, with eigenvector
[

1 1 1 1 1 1
]T
/
√

6;

λP2 = 1
2
, with eigenvector

[
1 0 −1 −1 0 1

]T
/2;

λP3 = 1
2
, with eigenvector

[
−1/2 −1 −1/2 1/2 1 1/2

]T
/
√

3;

λP4 = −1
2
, with eigenvector

[
−1 0 1 −1 0 1

]T
/2;

λP5 = −1
2
, with eigenvector

[
−1/2 1 −1/2 −1/2 1 −1/2

]T
/
√

3;

and λP6 = −1, with eigenvector
[
−1 1 −1 1 −1 1

]T
/
√

6.

E0(T1) = 6
n∑

m=2

(1− λm(P ))−1 u1m(u1m − u0m)

= 6
(

2 · 0(0− 1/2) + 2 · −1/
√

3(−1/
√

3 + 1/2
√

3) + 2/3 · 0(0 + 1/2)

+2/3 · 1/
√

3(1/
√

3 + 1/2
√

3) + 1/2 · 1/
√

6(1/
√

6 + 1/
√

6)
)

= 6
(

2 · 0 + 2 · −1/
√

3 · −1/2
√

3 + 2/3 · 0

+2/3 · 1/
√

3 · 1/
√

3 + 1/2 · 1/
√

6 · 1/
√

6
)

= 6 (0 + 1/3 + 0 + 1/3 + 1/6)

= 5

= 6(Z11 − Z01).
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E0(T2) = 6
n∑

m=2

(1− λm(P ))−1 u2m(u2m − u0m)

= 6
(

2 · −1/2(−1/2− 1/2) + 2 · −1/2
√

3(−1/2
√

3 + 1/2
√

3)

+2/3 · 1/2(1/2 + 1/2) + 2/3 · −1/2
√

3(−1/2
√

3

+1/2
√

3) + 1/2 · −1/
√

6(−1/
√

6 + 1/
√

6)
)

= 6
(

2 · −1/2 · −1 + 2 · −1/2
√

3 · 0+

2/3 · 1/2 · 1 + 2/3 · −1/2
√

3 · 0 + 1/2 · −1/
√

6 · 0
)

= 6 (1 + 0 + 1/3 + 0 + 0)

= 8

= 6(Z22 − Z02).

Once again, Mathematica supports Proposition 3.11.

Calculation 4.5. Finally, we use primitive roots of unity, as suggested by Corollary 3.15,

to recalculate the spectrum and expected hitting times for random walks on the undirected

6-cycle. Note that ω = exp(2πi
6

), m ranges from 0 to 5, k = 2, a1 = −1, and a2 = ak = 1.

Using these parameters we compute eigenvectors and eigenvalues as follows:

λP1 =
ω0·1 + ω0·−1

2
=

1 + 1

2
= 1.

We have u1 = [ω0x]T for x ranging from 0 to 5. Thus,

u1 =
[
ω0 ω0 ω0 ω0 ω0 ω0

]T
=
[

1 1 1 1 1 1
]T
.

We calculate the second eigenvalue and eigenvector in a similar manner:

λP2 =
ω1·1 + ω1·−1

2

=
exp(2πi

6
) + exp(−2πi

6
)

2

=
cos π

3
+ i sin π

3
+ cos −π

3
+ i sin −π

3

2

=
1 + i

(√
3
2
−
√
3
2

)
2

=
1

2
.
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Furthermore, u2 = [ω1x]T for x ranging from 0 to 5. Thus,

u2 = [ ω1·0 ω1·1 ω1·2 ω1·3 ω1·4 ω1·5 ]T

= [ ω0 ω1 ω2 ω3 ω4 ω5 ]T .

Now, all but one of these entries will be a complex number. To come up with eigenvectors

without complex entries, we add this eigenvector to the one generated when m = 5:

u2Real
= [ ω0 ω1 ω2 ω3 ω4 ω5 ]T + [ ω0 ω5 ω10 ω15 ω20 ω25 ]T

= [ 1 1/2 −1/2 −1 −1/2 1/2 ]T .

Using this method, we calculate all eigenvalues and eigenvectors, create linear combina-

tions of the eigenvectors with real entries as necessary, normalize these linear combinations,

and come up with the following:

λP1 = 1, with unit eigenvector
[

1 1 1 1 1 1
]T
/
√

6.

λP2 =
1

2
, with unit eigenvector

[
1 1/2 −1/2 −1 −1/2 1/2

]T
/
√

3.

λP3 =
1

2
, with unit eigenvector

[
0 1 1 0 −1 −1

]T
/2.

λP4 = −1

2
, with unit eigenvector

[
1 −1/2 −1/2 1 −1/2 −1/2

]T
/
√

3.

λP5 = −1

2
, with unit eigenvector

[
0 1 −1 0 1 −1

]T
/2.

λP6 = −1, with unit eigenvector
[

1 −1 1 −1 1 −1
]T
/
√

6.

Note that these eigenvectors are not all the same as they were in Calculation 4.4, yet they

are still orthonormal. In fact, we note that this process automatically produces orthonormal

eigenvectors, though we do have to correct for complex entries. In Calculation 4.4 we used

the Gram-Schmidt process to orthogonalize the eigenvectors. Using Proposition 3.11, we
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once again compute E0(T1).

E0[T1] = 6
n∑

m=2

(1− λPm)−1 u1m(u1m − u0m)

= 6
(

2 · 1/2
√

3(1/2
√

3− 1/
√

3) + 2 · 1/2(1/2− 0)+

2/3 · −1/2
√

3(−1/2
√

3− 1/
√

3) + 2/3 · 1/2(1/2− 0)

+1/2 · −1/
√

6(−1/
√

6− 1/
√

6)
)

= 6
(

2 · 1/2
√

3 · −1/2
√

3 + 2 · 1/4 + 2/3 · −1/2
√

3 · −3/2
√

3

+2/3 · 1/4 + 1/2 · −1/
√

6 · −2/
√

6
)

= 6 (−1/6 + 1/2 + 1/6 + 1/6 + 1/6)

= 5

= n− 1

= 6(Z11 − Z01).

Calculations 4.1 through 4.4 provide numerical verification, in the case of the undirected

6-cycle, of the technique we developed in Sections 2 and 3 for calculating expected hit-

ting times for random walks on finite, undirected, strongly connected graphs. Furthermore,

Calculation 4.5 verifies that mean hitting times on circulant graphs appear to come directly

from primitive roots of unity. While we do need to correct for complex entries, the above

process automatically constructs orthogonal spectra, and does not depend on the symmetry

of P . Further investigation may reveal that as long as G is circulant, P need not be sym-

metric in order to use roots of unity to construct hitting times. This completes our analysis

of mean hitting times.

5. USING CATALAN NUMBERS TO QUANTIFY HITTING TIME PROBABILITIES

5.1. The Question of Variance: A Closer Look at Cycles. We have developed a method-

ology for calculating expected hitting times on undirected, strongly connected graphs. The

natural question is: can we use this same methodology to calculate higher moments of the

distribution of hitting times? In short, the answer appears to be no. The spectra of transition

matrices are naturally suited to calculating expected hitting time values, but an analogous

general formula appears not to exist for calculating variances of hitting times for random

walks on graphs. The theoretical background developed in Section 2 is appropriate and
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necessary for understanding expected values of hitting times, but it does not seem to offer

any insight about how to explicitly calculate their variances.

While our hopes of achieving any result regarding variances in the general case are slim,

some literature exists on variances of hitting times in the asymptotic case. We turn our

attention to [Al].

Proposition 5.1. (See Proposition 7 of [Al]). For a sequence of n-vertex, vertex-transitive

graphs {Gn} with n→∞, the following are equivalent:

• 1/τ(1− λP2)→ 0;

• Dπ(Tj/τ)→ µ1 and V arπ[Tw/τ ]→ 1 for all j,

where Dπ(Tj/τ) refers to the distribution D of stopping times Tj/τ for a random walk on

graph Gn in which the starting vertex is determined by the uniform stable distribution π,

and µ1 is the exponential distribution with mean 1.

Using Mathematica, we investigate whether Proposition 5.1 holds for random walks with

explicit starting and destination vertices. We consider the sequence {C5n}, where Cn is the

undirected n-cycle. Letting n range from 200 to 1000, we simulate 75 random walks from

vertex 0 to vertex 1 and obtain the variance of this sample for each value of n. We display

our results below in Figure 3.
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FIGURE 3. A probability density histogram describing the distribution of

our results. We plot the probability of occurrence as a function of the base

10 logarithm of V ar0[T1/(n − 1)]. We expect a distribution that tails off

to the right, with a mode near 0, but instead see a distribution centered at

approximately 10. While the histogram does not seem to verify Proposition

5.1, we feel that this is very likely due to the lack of a sufficient number of

iterations or a large enough range of n, and believe that Proposition 5.1 does

indeed apply to the explicit case.

Vertex-transitive graphs exhibit many nice properties (circulancy, regularity, uniform π),

and undirected n-cycles are very simple vertex-transitive graphs. Thus we continue to

study cycles in an effort to say something quantitative about hitting time distributions. In

particular, we study the asymptotic cycle, which is simply the integer number line. Because

the methodology developed in the previous sections appears irrelevant, and we have no

suitable alternative, we turn to the probabilistic method given in the introduction for further

analysis. When using the probabilistic method we must account for all possible paths of a

certain length w from vertex i to vertex j, and iterate this process over all possible lengths

w. This is a daunting task. As analyzed below, studying random walks on the number line

is most promising in terms of yielding results because there exists a systematic method of

accounting for all such paths.

Definition 5.2. Pi(Tj = w) refers to the probability that a random walk starting at vertex i

first reaches j in w steps.

We seek to determine first hitting time probabilities as given in Definition 5.2 with the help

of the Catalan numbers.
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5.2. A Brief Introduction to the Catalan Numbers. Catalan numbers are well-studied

quantities, and the informed reader may skip this subsection. [Hi] provides a rigorous

overview of Catalan numbers, and we appeal there for the following definitions.

Definition 5.3. Consider an integer lattice. A path from point (c, d) to point (a, b) is called

p-good if it lies entirely below the line y = (p−1)x, where each step of the path is in either

an eastward or a northward direction.

Definition 5.4. (See (1.2) of [Hi]). The kth Catalan number, Ck, is the number of 2-good

paths from (0,−1) to (k, k − 1). Moreover,

Ck =
1

k + 1

(
2k

k

)
.

For our purposes, we introduce and use the following definitions:

Definition 5.5. A p-fine path is a path from (c, d) to (a, b) that is never above the line

y = (p− 1)x and contains only eastward and northward steps.

Definition 5.6. (Equivalent definition of the kth Catalan Number). Ck is the number of

2-fine paths from (0, 0) to (k, k).

We prefer Definition 5.6 because it allows for a more tangible conceptualization of the

Catalans. In particular, this definition lets us view the kth Catalan number as the number

of paths of k "eastward" steps and k "northward" steps on the integer lattice, such that the

number of northward steps never exceeds the number of eastward steps. Figure 4 below

uses this concept to illustrate C4:
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FIGURE 4. (Source: Wikimedia Commons). A demonstration of the 14

possible ways to move from (0, 0) to (4, 4) such that the number of north-

ward steps never exceeds the number of eastward steps. Thus C4 = 14.

An equivalent conceptualization of Ck is the number of "legal" arrangements of k pairs

of parentheses, meaning that when the sequence of parentheses is scanned sequentially, the

number of right parentheses never exceeds the number of left parentheses. In this vein, we

see that

C1 = 1 = |{()}|

C2 = 2 = |{()(), (())}|

C3 = 5 = |{()()(), (())(), (()()), ()(()), ((()))}|
...

The following well-known lemma provides another natural observation about the Cata-

lan numbers.

Lemma 5.7. (See (1.4) of [Hi]). Catalan numbers satisfy the following recurrence relation:

Ck =
∑

i+j=k−1

CiCj, k ≥ 1; C0 = 1.

5.3. Application to Hitting Time Probabilities. We now apply the Catalan numbers to

our purposes. We start by proving the following proposition.
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Proposition 5.8. Consider a random walk on the integer number line starting at 0 and

stopping upon the first visit to 1. Then,

P0(T1 = 2k + 1) =
Ck

22k+1
,

where k is a non-negative integer.

Proof. Let us consider a 2k + 1 step random walk on the number line, starting at 0,

ending at 1, and not visiting 1 until the walk’s last step. Let l(n) represent the number of

"lefts" after the nth step of the walk and r(n) be the number of "rights" after the nth step of

the walk. We immediately know the following:

• l(2k + 1) = k = r(2k + 1)− 1.

• l(n) ≥ r(n) for n < 2k + 1.

That is, in a 2k + 1 step walk from 0 to 1, there can never be more rights than lefts until

n = 2k+ 1, i.e. until the last step of the walk. This is because as soon as the walk ventures

to the right of 0, it hits 1 and stops. So, the walk ventures to the right of 0 exactly at its

last step. Thus all the path variation in the 2k + 1 step walks from 0 to 1 occurs in the

first 2k steps; when trying to account for all the 2k + 1 step walks from 0 to 1, we need

only consider the first 2k steps. Consider a transformation of the first 2k steps of the walk,

which maps the number line to the integer lattice, the starting position of the walk to (0, 0),

the ending position of the walk to (k, k), "left" to "east", and "right" to "north." Note that

in the partial walk, which has length 2k, the number of rights never exceeds the number

of lefts. This means that the transformed partial walk’s number of northward steps never

exceeds its number of eastward steps, which is to say that the path is never above the line

y = x. Hence, the partial walk is isomorphic to a 2-fine path from (0, 0) to (k, k). From

Definition 5.6, we know that Ck such paths exist. Because the last step of the walk is fixed,

there are Ck different 2k + 1 step random walks starting at 0 and ending at 1, with no

intermediary visits to 1. Noting that each step of the walk occurs with probability 1/2, we

see that P0(T1 = 2k + 1) = Ck

22k
· 1
2

= Ck

22k+1 . 2

We devote the next proposition to the calculation of P0(T2 = 2m).

Proposition 5.9. Consider a random walk on the number line starting at 0 and stopping

upon the first visit to 2. Then

P0(T2 = 2m) =
Cm
22m

,

where k is a non-negative integer.
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Proof. Note that a 2m step walk from 0 to 2 must visit 1 at least once. Let k ≤ m. Then,

P0(T2 = 2m) = P0(T1 = 2k + 1)P1(T2 = 2(m− k)− 1)

= P0(T1 = 2k + 1)P0(T1 = 2(m− k)− 1) by vertex transitivity

=
m∑
k=0

P0(T1 = 2k + 1)P0(T1 = 2(m− k − 1) + 1)

=
m∑
k=0

Ck
22k+1

· Cm−k−1
22(m−k−1)+1

by Proposition 5.8

=
1

22m

m∑
k=0

CkCm−k−1

=
Cm
22m

by Lemma 5.7.

2

In a similar manner, we find that

• P0(T3 = 2m+ 1) = 1
22m+1 (Cm+1 − Cm), and

• P0(T4 = 2m) = 1
22m

(Cm+1 − Cm).

These derivations set us up to make a generalization about hitting times on the number line.

Theorem 5.10. Consider a random walk on the number line starting at 0. We can express

P0(T2n = 2m) as a linear combination of Catalan numbers, ranging from Cm−2n−1+n to

Cm+2n−1−1, with m ≥ 0 and n ≥ 1. That is,

P0(T2n = 2m) = αn,m+2n−1−1Cm+2n−1−1 + αn,m+2n−1−2Cm+2n−1−2 + · · ·

+αn,m−2n−1+nCm−2n−1+n

= [Cm+2n−1−1, Cm+2n−1−2, · · · , Cm−2n−1+n]~αT ,

where ~αT is the column vector of the αn coefficients, and has length 2n − n.

Proof. We proceed by induction. As given by Proposition 5.9, when n = 1,

P0(T21 = 2m) =
Cm
22m

= α1,m+21−1−1Cm+21−1−1.

For the inductive assumption, we assume the result holds for all n = k; that is,

P0(T2k = 2m) = αk,m+2k−1−1Cm+2k−1−1 + αk,m+2n−1−2Cm+2k−1−2 + · · ·

+αk,m−2k−1+nCm−2k−1−1.
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Let us now calculate P0(T2k+12m). To do so, we split the random walk from 0 to 2k+1 into

two partial walks, one from 0 to 2k and one from 2k to 2k+1. Thus we have

P0(T2k+1 = 2m) = P0(T2k = 2l)P2k(T2k+1 = 2(m− l))

= P0(T2k = 2l)P0(T2k = 2(m− l))

=
m−2k−1∑
l=2k−1

(
αk,l+2k−1−1Cl+2k−1−1 + αk,l+2n−1−2Cl+2k−1−2

+ · · ·+ αk,l−2k−1+nCl−2k−1−1
)

·
(
αk,m−l+2k−1−1Cm−l+2k−1−1 + αk,m−l+2k−1−2Cm−l+2k−1−2

+ · · ·+ αk,m−l−2k−1+nCm−l−2k−1−1
)
.

Note that we index from 2k−1 to m − 2k−1 because each partial walk must contain at

least 2 · 2k−1 = 2k steps. That is, if l was less than 2k−1, then the walk from 0 to 2k−1

would be impossible, and if l was greater than m − 2k−1, then the walk from 2k−1 to

2k would be impossible. We now simplify the expression by introducing indices a and b

to account for the sums of Catalan numbers corresponding to the first and second partial

walks, respectively, and by using (?) to denote the α coefficients:

=
m−2k−1∑
l=2k−1

2k−1−1∑
a=−2k−1+k

2k−1−1∑
b=−2k−1+k

Cl+aCm−l+b(?)

=
∑
a

∑
b

m−2k−1∑
l=2k−1

Cl+aCm−l+b(?)

=
∑
a

∑
b

m−2k−1∑
l=2k−1

Cl+aCm+b+a−(l+a)(?).

Let u = l + a; our expression becomes

∑
a

∑
b

m+a+b−(b+2k−1)∑
u=2k−1+a

CuCm+b+a−u(?)

=
∑
a

∑
b

m+a+b∑
u=0

CuCm+a+b−u −
2k−1+a−1∑

u=0

CuCm+a+b−u

−
m+a+b∑

u=m+a+b−(b+2k−1)+1

CuCm+a+b−u

 (?).
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Letting v = m+ a+ b− u and rearranging, we get

∑
a

∑
b

Cm+a+b+1 −
2k−1+a−1∑

u=0

CuCm+a+b−u −
2k−1+b−1∑

v=0

CvCm+a+b−v

 (?)

=
∑
a

∑
b

Cm+a+b+1 −
2k−1+a−1∑

u=0

Cm+a+b−u −
2k−1+b−1∑

v=0

Cm+a+b−v

 (?),

because u and v are independent ofm, and henceCu andCv are absorbed into (?). Thus we

now have 3 terms, and we seek to show that the indices of each must lie betweenm+2k−1

and m− 2k + k + 1, inclusive. To do so, we recall that −2k−1 + k ≤ a, b ≤ 2k−1 − 1, and

hence −2k + 2k ≤ a+ b ≤ 2k − 2. We consider each term individually:

• Cm+a+b+1. This term has the largest index, so if its index satisfies the upper bound,

then the indices of all terms must as well. When a+b is at its maximum,Cm+a+b+1 =

Cm+2k−1. Hence, all indices satisfy the upper bound, and the upper bound is sharp.

When a + b is at its minimum, Cm+a+b+1 = Cm−2k+2k+1, and the lower bound is

satisfied.

•
∑2k−1+a−1

u=0 Cm+a+b−u. We already know that the upper bound is satisfied. To check

the lower bound, we assign u its maximum value of 2k−1 + a − 1: Cm+a+b−u =

Cm+b+1−2k−1 . Now we assign b its minimum value of −2k−1 + k: Cm+b+1−2k−1 =

Cm − 2k + k + 1. Hence the lower bound is satisfied.

•
∑2k−1+a−1

v=0 Cm+a+b−v. By symmetry, the indices of this term satisfy the upper and

lower bounds as well. Hence the lower bound is sharp.

Therefore, the indices of the Catalan numbers that express the probability P0→2k+1(2m)

lie exactly between m+ 2k − 1 and m− 2k + k + 1, inclusive. That is,

P0(T2k+1 = 2m) = αk+1,m+2k−1Cm+2k−1 + αk+1,m+2k−2Cm+2k−2 + · · ·

+αk+1,m−2k+nCm−2k−1

= [Cm+2k−1, Cm+2k−2, · · · , Cm−2k+k+1]~α
T ,

where ~αT is the column vector of the αk+1 coefficients, and has length 2k+1− (k+ 1). This

completes the proof. 2

As indicated by the 0 → 3 case, sometimes we can express Pi(Tj = 2m) if j − i is

even (or Pi(Tj = 2m+ 1) if j − i is odd) as a linear combination of Catalan numbers even

if j − i 6= 2n for n ≥ 0. We believe that following the same inductive process as in the

proof of Theorem 5.10 may reveal that all hitting time probabilities on the number can be

expressed in terms of the Catalan numbers. Furthermore, we may be able to calculate ~αT
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by generalizing from a sufficient number of base cases. If so, we are not far from knowing

the probability distribution for all hitting times on the number line.

Would we be able to apply such a result to finite cycles? Assume i ∼ j such that j is one

vertex clockwise from i. Then we reach j by making a net of one clockwise step or a net

of n − 1 counterclockwise steps. The Catalan number method does not take into account

the probability of this second occurrence, though this probability of course approaches 0

as n → ∞. Not taking into account this tendency to underestimate Pi(Tj = 2m), the

Catalan number method overestimates Pi(Tj = 2m) for large m. This is because there is

no limit on the number of net leftward steps we are allowed to make on the number line.

However, in the finite case, we cannot make too many counterclockwise steps in a row

or we will hit j before having taken 2m steps. The prospect of reaching our destination

before the specified number of steps constrains the number of legal walks we are allowed

to make to a greater extent in the finite case than in the infinite case. Thus we see that the

Catalan method both underestimates and overestimates Pi(Tj = 2m) in different ways. In

the limit, these errors exactly offset each other, and in the finite case, it appears that the

underestimation dominates the overestimation (consider P0(T2 = 2) on the square for a

simple verification of this). It would be interesting to get a sense of the interaction between

the underestimation and the overestimation as n→∞.

6. CONCLUSION

By appealing to the literature to show that random walks on graphs are discrete time

Markov chains that behave as renewal processes, we define the fundamental matrix, and

hence are able to work toward an explicit hitting time formula. Independently of the ex-

isting literature, and remaining in discrete time, we relate the fundamental matrix to the

transition matrix, and use spectral decomposition to generate a hitting time formula that

yields expected hitting time values for random walks on any finite, undirected, strongly

connected graph. Assuming G is undirected makes P symmetric, which facilitates the

proofs of several of our results. However, we believe that strong connectedness of G is

the only necessary condition for the existence of an explicit expected hitting time formula.

Symmetrization of P using powers of π in the case of directed graphs looks promising as

a way to increase the scope of our results.

Furthermore, we investigate, in the spirit of [La], the role primitive roots of unity play

in calculating expected hitting times on circulant graphs. Finally, we discuss the likely

impossibility of generalizing the expected hitting time formula to higher moments, and use

a probabilistic method involving the Catalan numbers to move closer to quantifying hitting
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time distributions for random walks on the number line. With some more investigation, we

believe we can both quantify hitting time distributions for random walks to any destination

vertex on the number line, and analyze how applicable such a distribution is to finite cycles.
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7. APPENDIX

We devote this section to giving our own proofs of known results that are not taken

directly from the literature and may be obvious to some, but not all, informed readers.

Proposition 7.1. An n-vertex undirected graph containing at least one edge is strongly

connected if and only if its transition matrix P has largest eigenvalue 1 of multiplicity 1.

Proof. First of all, note that P has all non-negative entries. Then from linear algebra,

we know that the eigenvalues of a matrix are bounded in absolute value by the largest row

sum. Because P is stochastic, we know that the largest eigenvalue of P must be at most 1,

and furthermore,

P


1
...

1

 =


1
...

1

 .
Thus, 1 is an eigenvalue with eigenvector Jn. Assume 1 is an eigenvalue again with eigen-

vector ~v independent of Jn. Consider vertex i of G, and assume that vi is a maximum

value of ~v; without loss of generality we rescale ~v so that vi = 1. Because G is strongly

connected, i has k neighbors x1, . . . , xk, where 1 ≤ k ≤ n − 1. This implies that the ith

row of P has k non-zero terms, each one corresponding to a neighbor of i, and each one

equaling 1/k. The other n− k terms in the row are 0. Thus we have

1 = Pi~v

=
1

k
vx1 +

1

k
vx2 + · · ·+ 1

k
vxk

=
1

k
(vx1 + · · ·+ vxk).

The vx’s must sum to k; since none of them can be greater than 1, all vx’s must equal 1.

Thus the k neighbors of i correspond to 1’s in ~v as well. Now, choose a neighbor of i: x1
for instance. We know x1 has m neighbors y1, . . . , ym, where 1 ≤ m ≤ n. Then,

1 = Px1~v

=
1

m
vy1 +

1

m
vy2 + · · ·+ 1

m
vym

=
1

m
(vy1 + · · ·+ vym).
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Again, all vy’s must equal 1, and so the m neighbors of x1 correspond to 1’s in ~v as

well. Now, we select a neighbor of x1 different from i, and repeat this process. Because

G is strongly connected, we find that all its vertices are neighbors to vertices correspond-

ing to 1’s in the eigenvector ~v. Hence all vertices correspond to 1’s in ~v; that is, ~v = Jn.

Employing the spectral theorem once again, we see that because P is real and symmetric

(by undirectedness of G), there exists an orthonormal basis of eigenvectors for its eigen-

values. We just showed that λ = 1 has the one-dimensional basis ~v = aJn, where a is a

constant. Hence any eigenvector with 1 as its eigenvalue cannot be linearly independent of

Jn. Therefore we cannot have 1 as a multiple eigenvalue; λ = 1 has multiplicity 1.

Proving the reverse conditional, assume that G is not strongly connected. Because G

contains at least one edge, we can view G as multiple subgraphs, at least one of which is

strongly connected. Hence,

P =

[
A 0

0 B

]
where A is an m×m (irreducible) transition matrix and B is an n−m× n−m transition

matrix. Note that if vertex i has no neighbors, then pii = 1 and pij = 0 for all j 6= i. Then

we have the following: [
A 0

0 B

][
Jm

0

]
= 1

[
Jm

0

]
[
A 0

0 B

][
0

Jn−m

]
= 1

[
0

Jn−m

]
Thus, we see that λ = 1 has multiplicity ≥ 2. Therefore if P has eigenvalue 1 with

multiplicity exactly 1, G must be strongly connected. This completes the proof. 2

Proposition 7.2. An n-vertex, undirected, strongly connected graph G with transition ma-

trix P is periodic if and only if P has an eigenvalue of -1.

Proof. Consider a random walk on periodic graph G starting from vertex i. Since G is

periodic, we can view it as a bipartite graph. This is true if and only if for all vertices j,

Pi(Tj = 2n + φ(i)) = 0 for all n ≥ 0, where φ(i) = 0 or 1, and φ(i) + φ(j) = 1 if i ∼ j.

Because G is strongly connected, j has k neighbors a1, . . . , ak such that pjal = 1/k for

1 ≤ l ≤ k. Hence pja = 1/k if and only if φ(j) + φ(a) = 1; otherwise it takes the value 0.

Consider the n-column vector ~v where ~vj = 1 if φ(j) = 0, and ~vj = −1 if φ(j) = 1. This

is equivalent to the following:
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• Let φ(j) = 0; then

~Pvj = pja1 · −1 + · · ·+ pjak · −1

=
1

k
· −1 + · · · 1

k
· −1

=
−1

k
+ · · · −1

k

= −1

= −~vj.

• Let φ(j) = 1; then

~Pvj = pja1 · 1 + · · ·+ pjak · 1

=
1

k
· 1 + · · · 1

k
· 1

=
1

k
+ · · · 1

k

= 1

= −~vj.

Finally, the above two conditions hold if and only if P~v = −~v, which is equivalent to

saying that −1 is an eigenvalue of P . This result is what gives random walks on bipartite

graphs their oscillatory behavior. 2

Proposition 7.3. The fundamental matrix Z has rows summing to 0, and, when π is uni-

form, constant diagonal entries.

Proof. Using Proposition 3.8, write Z = (I − (P −P∞))−1−P∞. Because we disallow

self-loops, by definition pii = 0 for all i. When π is uniform, P∞ij
= 1/n for all i and

j, so clearly P∞ has constant diagonal entries. Finally, I has constant diagonal entries by

definition. Because differences of matrices with constant diagonal entries themselves have

diagonal entries, and because I−(P−P∞) is symmetric, we conclude that (I−(P−P∞))−1

has constant diagonal entries. Therefore Z has constant diagonal entries.
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To show Z has rows summing to 0, define the ith row sum of Z as |Zi| and note that for

all i,

|Zi| =
∑
j

Zij

=
∑
j

(
∞∑
t=0

p
(t)
ij − πj

)

=
∑
j

(
(p

(0)
ij − πj) + (pij − pij) + · · ·

)
=
∑
j

(p
(0)
ij − πj) +

∑
j

(pij − πj) + · · ·

= (1− 1) + (1− 1) + · · ·

= 0

because all powers of P are stochastic and because π is a distribution. 2

Proposition 7.4. An undirected n-vertex graph G is a Cayley graph if and only if it is

circulant.

Proof. LetG be a Cayley graph; thenG = Cay(S,A). Without loss of generality assume

that the group operation is addition modulo n. From Definitions 2.2 and 3.13, we see that

for vertices φ(x) and φ(y) and for all a ∈ S , pφ(x)φ(y) = 1/k if and only if x +n a = y,

where x, y ∈ S. Otherwise pφ(x)φ(y) = 0. By associativity of addition, (1 +n x) +n a =

1 +n y. Thus by Definitions 3.13, pφ(x)φ(y) = 1/k if and only if p1+nφ(x),1+nφ(y) = 1/k,

and pφ(x)φ(y) = 0 if and only if p1+nφ(x),1+nφ(y) = 0. This is equivalent to saying that

pφ(x)φ(y) = p1+nφ(x),1+nφ(y), or that G is circulant. 2
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