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ABSTRACT

Given an ensemble of N × N random matrices, an interesting question to ask is: Do

the empirical spectral measures of typical matrices converge to some limiting measure

as N → ∞? The limiting measures of several canonical matrix ensembles, such as the

symmetric Wigner, Toeplitz, and Hankel matrices, have been well studied. It is known

that in the limit, the Wigner matrices have a semicircular distribution, the Toeplitz have

a near-Gaussian distribution, and the Hankel have a non-unimodal distribution. Although

it is not fully understood why, these ensembles exhibit the remarkable property that as

more constraints are introduced to the structure of a random matrix ensemble in the form

of a pattern on the matrix entries, new limiting distributions other than the semicircle can

arise. It is natural, then, to explore the question: To what extent will a patterned random

matrix continue to have a semicircular limiting eigenvalue distribution? In the following,

we explore this question by generalizing the Toeplitz and Hankel ensembles. The resulting

matrix ensembles with bivariate polynomial link functions have unique limiting spectral

distributions. In specific cases, we establish that when the variables in the polynomial are

raised to the same power, the limiting distribution becomes non-semicircular, but when the

variables are raised to different powers, the limiting distribution remains semicircular.
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1. INTRODUCTION

This section contains the history and background of the field of random matrix theory as

well as important technical definitions and methods.

1.1. History and Background. Although random matrices were first used by John Wishart

as a tool in the study of population statistics in the 1920s [Wis], the field really flourished

in the 1950s when Eugene Wigner conjectured that random matrices could be used to ap-

proximate the spacing between adjacent energy levels in heavy nuclei [Wig1, Wig2, Wig3,

Wig4, Wig5]. His work was supported several years later by contributions from Freeman

Dyson [Dy1, Dy2], and then in the 1970s, Hugh Montgomery discovered that random ma-

trices could also predict answers to problems in number theory, including the distribution

of the zeroes of the Riemann zeta function [Mon]. Since then, random matrix theory has

had significant application not only to nuclear physics and number theory, but also to en-

gineering, data analysis, multivariate statistics, operator algebra, wireless communications,

dynamical systems, finance, and diffusion processes, as described in Bose [B] and Firk and

Miller [FM] and exemplified in Miller, Novikoff, and Sabelli [MNS], Baik, Borodin, Deift,

and Suidan [BBDS], and Krbalek and Seba [KrSe].

The original physics problem that motivated Wigner was how to describe the energy

levels of large atoms, as explained in Firk and Miller. In quantum mechanics, it is well

known that particles or systems can occupy different energy levels. The nature of the

energy levels for hydrogen, an atom with just one electron and one proton, is completely

understood through the Schrödinger equation. However, complicated atoms with more

than two subatomic particles are not fully understood; uranium, for example, has over two

hundred protons and neutrons in the nucleus. In operator form, the Schrödinger equation is

described by an energy operator H , a wavefunction Ψ, and energy levels E:

HΨ = EΨ. (1.1)

In this formulation of quantum mechanics, the energy operator takes the form of an infinite-

dimensional matrix so that the wavefunctions can be thought of as eigenfunctions and the

energy levels can be thought of as eigenvalues. Understanding the energy levels of an atom

is then equivalent to understanding the eigenvalues of a matrix operator. Wigner’s fascinat-

ing discovery was that the energy operator H can be modeled by a sequence of matrices.

He considered collections of N × N matrices in which the entries were independently

chosen from a fixed probability distribution p. By taking an average over all such random

matrices in the limit as N → ∞, the eigenvalues in this averaging and limiting process

become excellent predictors for the energy levels of heavy nuclei. The image in Figure 1 is
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FIGURE 1. A Wigner distribution of adjacent eigenvalues fitted to the spac-

ing distribution of 932 s-wave resonances in the interaction 238U + n at en-

ergies up to 20 keV.

of sample data fitted to a random matrix eigenvalue distribution, taken from Firk and Miller

with permission.

Discoveries such as this launched random matrix theory as a field of mathematical re-

search. The research typically investigates the properties of random matrix eigenvalues as

the dimensions of these matrices become very large. The main attributes studied are the

spacing distribution between adjacent eigenvalues, the limiting spectral distribution, and

the spectral width, or range from minimum to maximum eigenvalue.1 In this paper, we

investigate the limiting spectral distribution.

The limiting spectral distributions of several canonical matrix ensembles, such as the

symmetric Wigner, Toeplitz, and Hankel matrices, have been well studied. The Wigner

matrices are simply real symmetric matrices:

1“Eigenvalue distribution” is synonymous with “spectral distribution”, and often the words “distribution”

and “measure” are used interchangeably.
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WN =



a11 a12 a13 . . . a1N

a12 a22 a23 . . . a2N

a13 a23 a33 . . . a3N

...
...

... . . . ...

a1N a2N a3N . . . aNN


. (1.2)

The entries in the upper triangle are all independent, identically distributed random vari-

ables, while those in the lower triangle are fixed by the symmetry constraint. It has been

proved that Wigner matrices have a semicircular limiting spectral distribution for the nor-

malized eigenvalues [Wig6], given by

fWigner(x) =


1

2π

√
4− x2 |x| ≤ 2

0 otherwise .

(1.3)

The Wigner matrices have N(N+1)
2

independent parameters. For matrix ensembles with

fewer independent parameters, or “degrees of freedom,” different limiting spectral distribu-

tions other than the semicircle can arise. The real symmetric Toeplitz and Hankel matrices,

for example, each have N degrees of freedom, and they do not have semicircular limiting

spectral distributions. These matrices have appeared in time-series analysis and combina-

torics. The Toeplitz matrices are fixed along diagonals

TN =



a0 a1 a2 . . . aN−1

a1 a0 a1 . . . aN−2

a2 a1 a0 . . . aN−3

...
...

... . . . ...

aN−1 aN−2 aN−3 . . . a0


(1.4)

while the Hankel matrices are fixed along skew diagonals
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HN =



a2 a3 a4 . . . aN+1

a3 a4 a5 . . . aN+2

a4 a5 a6 . . . aN+3

...
...

... . . . ...

aN+1 aN+2 aN+3 . . . a2N


. (1.5)

Although it is not fully understood why, these ensembles exhibit the intriguing property

that as more constraints are introduced to a patterned random matrix, new limiting mea-

sures other than the semicircle can arise. It is known that the Toeplitz matrices have a

near-Gaussian distribution, as shown in Bose, Chatterjee, and Gangopadhyay [BCG], Bryc,

Dembo, and Jiang [BDJ], and Hammond and Miller. It is also known that the Hankel ma-

trices have a non-unimodal distribution, as shown by Bryc, Dembo, and Jiang. It is natural,

then, to explore the following questions: To what extent will a patterned random matrix

continue to have a semicircular limiting eigenvalue distribution? Which classes, or ensem-

bles, of matrices will have a non-semicircular distribution?

We explore these questions by generalizing the Toeplitz and Hankel ensembles. These

matrices have already been generalized in several ways. For example, it has been proved

by Massey, Miller, and Sinsheimer [MMS] that Toeplitz matrices with palindromic rows

have a Gaussian limiting spectral distribution, and it has been demonstrated by Jackson,

Miller, and Pham [JMP] that Toeplitz matrices whose rows contain more than one palin-

drome have a limiting spectral distribution with very fat tails. In our generalization, the

Toeplitz matrices can be thought of as having fixed, or constant, entries along lines of slope

-1, and the Hankel matrices can be thought of as having fixed entries along lines of slope

1. What if we changed that slope to 1
2
, or some other slope? What if we required that all

entries lying on the same parabola were constant, or along the same curve of some other

polynomial? A 5× 5 matrix with slope -1
2

might be like this:

A5 =


a3 a4 a5 a6 a7

a4 a6 a7 a8 a9

a5 a7 a9 a10 a11

a6 a8 a10 a12 a13

a7 a9 a11 a13 a15

 . (1.6)

In this paper, we explore matrices in which the pattern structure is described by some

polynomial. In specific cases, we establish that when the variables in the polynomial are
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raised to the same power, the limiting measure is non-semicircular, but when the variables

are raised to different powers, the limiting measure is semicircular.

1.2. Definitions and Methodology.

1.2.1. Random Matrices and Link Functions. A random matrix AN is an N × N matrix

whose entries are random variables drawn from a fixed probability distribution p(x). The

notion of randomness for a particular matrix depends on the distribution from which its

entries are drawn. For our purposes, we will be considering probability distributions with

all moments finite2:

(1) p(x) ≥ 0 for all x

(2)
∫∞
−∞ p(x)dx = 1

(3)
∫∞
−∞ |x|

kp(x)dx <∞ for all k ≥ 0.

Since any such probability distribution can be scaled to have mean 0 and variance 1, we

will also assume that for any random variable X with distribution p(x),

E[X] = 0 and E[X2] = 1. (1.7)

A particular random matrix is constructed from a sequence of independent, identically

distributed random variables with distribution p(x), called the input sequence: {ai : i ∈ Z}
or {aij : i, j ∈ Z}. The way in which the input sequence gives a pattern to a random matrix

is dictated by the link function, L(i, j), as it tells us which entries (i, j) are constructed

from which random variables. 3 It is therefore a function that maps the entries of a matrix

to the input sequence of random variables:

L(i, j) : {1, 2, ..., N}2 → Z for all 1 ≤ i, j ≤ N. (1.8)

A random matrix constructed from an input sequence and link function is of the form

AN = [[aL(i,j)]]. (1.9)

Since we will be working with symmetric matrices, we will also impose the symmetry

condition L(i, j) = L(j, i). The aforementioned Wigner, Toeplitz, and Hankel matrices are

listed below with their particular link functions.

2For several convergence results, we will also assume that all the moments are uniformly bounded.
3We borrow the excellent notation in Bose, Hammond and Miller, and Xiong [X] in the remaining intro-

ductory sections.
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Wigner:

L(i, j) = (min[i, j],max[i, j]) (1.10)

WN =



a11 a12 a13 . . . a1N

a12 a22 a23 . . . a2N

a13 a23 a33 . . . a3N

...
...

... . . . ...

a1N a2N a3N . . . aNN


(1.11)

Toeplitz:

L(i, j) = |i− j| (1.12)

TN =



a0 a1 a2 . . . aN−1

a1 a0 a1 . . . aN−2

a2 a1 a0 . . . aN−3

...
...

... . . . ...

aN−1 aN−2 aN−3 . . . a0


(1.13)

Hankel:

L(i, j) = i+ j (1.14)

HN =



a2 a3 a4 . . . aN+1

a3 a4 a5 . . . aN+2

a4 a5 a6 . . . aN+3

...
...

... . . . ...

aN+1 aN+2 aN+3 . . . a2N


. (1.15)

Since these matrices are governed by random variables, we can express the probability

of observing a particular matrix, or more exactly, the probability that the entry (i, j) lies in

the interval [αij, βij] for a matrix AN contained in the outcome space ΩN :

Prob
(
AN ∈ ΩN : aL(i,j) ∈ [αij, βij]

)
= Π1≤i≤j≤N

∫ βij

αij

p(x)dx. (1.16)

We can also define a probability measure for our matrices, which holds the information

about its eigenvalues. For real symmetric matrices of size N , there are N real eigenvalues

(including multiplicity) that can be ordered as λ1 ≤ λ2 ≤ · · · ≤ λN . The probability
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measure for a matrix of size N is called the empirical spectral measure for normalized

eigenvalues. It is denoted by

µAN (x)dx =
1

N

N∑
i=1

δ

(
x− λi(AN)√

N

)
dx, (1.17)

where δ(x) is the Dirac-delta functional.4 This measure is “empirical” because it depends

on the unknown eigenvalues of the matrix. Integrating the empirical measure gives the frac-

tion of eigenvalues less than or equal to x. We can use this to define the empirical spectral

distribution, a cumulative distribution function, for a matrix of size N :

FAN (x) =

∫ x

−∞
µAN (x)dx =

#
{
i ≤ N : λi√

N
≤ x

}
N

. (1.18)

Since the entries of any matrix AN are random, the empirical measure and spectral distri-

bution are both random.

1.2.2. The Method of Moments. We would like to understand the distribution of eigen-

values in the limit as the size of the matrices grows to infinity. In order to do so, it is

important to connect the behavior of the empirical distributions to the moments that char-

acterize them, because it will be the moments that we are able to compute by hand. The

critical connection is established in the following moment convergence theorem from Bose

and Hammond and Miller.

Theorem 1.1 (The Method of Moments.) Let {AN}∞N=1 be a sequence of random vari-

ables and {FN}∞N=1 be the corresponding sequence of cumulative distribution functions

such that their moments, Mk(N) =
∫∞
−∞ x

kdFN(x), exist for all k. Let {Mk}∞k=1 be a

sequence of moments that uniquely determine a probability distribution whose cumulative

distribution function is denoted by F . If limN→∞Mk(N) = Mk for each k ≥ 1, then the

sequence of cumulative distribution functions for the random variables converges weakly

to the limiting distribution: limN→∞FN = F .5

We will use the moments of the empirical spectral distributions to investigate the limiting

spectral distribution. The kth moment for the empirical spectral distribution of a random

4See section 7.1 for a heuristic on the size of the normalization factor.
5See section 7.2 for a description of Riesz’s condition, which determines whether a sequence of moments

uniquely determines a probability distribution.
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matrix A of size N is given by:

Mk(AN) =

∫ ∞
−∞

xkµAN (x)dx (1.19)

=

∫ ∞
−∞

xk
1

N

N∑
i=1

δ

(
x− λi(AN)√

N

)
dx =

1

N

N∑
i=1

(
λi(AN)√

N

)k
=

1

N
k
2

+1

N∑
i=1

λki (AN).

(1.20)

Our goal is to explore the behavior of the limiting spectral distribution for a typical se-

quence of random matrices. So instead of considering a particular sequence of matrices

and their moments, we compute the average moment values over all such matrices where,

for a given N , the average moment is computed by weighting each matrix of size N by the

probability of observing that matrix (Eq. 1.16). The average kth moment for matrices of

size N is given by

Mk(N) = E [Mk(AN)] . (1.21)

The moments of the typical, or expected, limiting spectral distribution are given by

Mk = limN→∞Mk(N). (1.22)

With these tools, we can formally state the Moment Convergence Theorem for Random

Matrices, which follows directly from the Method of Moments.

Theorem 1.2 (Moment Convergence Theorem for Random Matrices.) Suppose {AN}∞N=1

is an arbitrary sequence of random matrices with distributions {FAN}∞N=1. Suppose there

exists some sequence of moments {Mk}∞k=1 such that they uniquely determine a probability

distribution whose cumulative distribution function is denoted by F. If limN→∞Mk(N) =

Mk and limN→∞Var[Mk(AN)] = 0 for every positive integer k, then the sequence {FAN}∞N=1

converges in probability to the limiting spectral distribution of the ensemble, F .

This theorem contains the same ideas in the Method of Moments, except instead of a se-

quence of fixed moments, it considers a sequence of average moments over the ensemble

with diminishing variance. This condition ensures that the limiting moments and limiting

distribution will hold for most sequences of random matrices that one might construct.

1.2.3. Eigenvalue-Trace Lemma and Circuits. It would be impossible to compute the mo-

ments of an empirical spectral distribution directly from the eigenvalues, since we do not

yet know the eigenvalues. Instead, we use the Eigenvalue-Trace Lemma to rewrite the mo-

ments in terms of the matrix trace, which is what we do know.
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Lemma 1.1 (Eigenvalue-Trace Lemma). For a square matrix of size N denoted by AN
and with eigenvalues λi(AN),

Trace(AkN) =
N∑
i=1

λki (AN). (1.23)

Using the Eigenvalue-Trace Lemma, the empirical moments are written as

Mk(AN) =
1

N
k
2

+1

N∑
i=1

λki (AN) =
1

N
k
2

+1
Tr(AkN). (1.24)

Expanding Tr(AkN), we have

Mk(AN) =
1

N
k
2

+1

∑
1≤i1,...,ik≤N

ai1i2ai2i3 · · · aiki1 , (1.25)

where ai1i2 denotes the value of the entry of AN with indices (i1, i2). Using linearity of

expectation, we can write the kth expected moment as

Mk(N) =
1

N
k
2

+1

∑
1≤i1,...,ik≤N

E [ai1i2ai2i3 · · · aiki1 ] . (1.26)

Using the link function, we can write this expansion in terms of the input sequence ele-

ments6:

Mk(N) =
1

N
k
2

+1

∑
1≤i1,...,ik≤N

E[aL(i1,i2)aL(i2,i3) · · · aL(ik,i1)]. (1.27)

The above sum is taken over all combinations of positive integers {i1, ..., ik} less than N .

Each distinct combination of index values is a circuit. We will therefore define a circuit π

as a function from the entry indices to their integer values:7

π : {0, 1, 2, ..., k} → {1, 2, ..., N} such that π(0) = π(k). (1.28)

The kth average moment is then written succinctly as

Mk(N) =
1

N
k
2

+1

∑
π:πcircuit

E[Xπ], (1.29)

where

Xπ = aL(π(0),π(1))aL(π(1),π(2)) · · · aL(π(k−1),π(k)). (1.30)

6Although technically we might say that aij refers to a matrix entry and aL(i,j) refers to the input sequence

variable whose value describes that entry, we use both notations interchangeably.
7Here the index values have been shifted down by one, so that the first index i1 is mapped by π(0), and

the last index i1 is relabeled π(k) under the constraint that π(0) = π(k). This seemingly confusing switch of

notation will actually help us in later proofs.
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We call an input variable index L(π(i − 1), π(i)) an L-value. If an L-value is repeated

exactly e times in a circuit, then the circuit has an edge of order e. If a circuit has all edges

e ≥ 2, then the circuit is L-matched. Circuits that are not L-matched do not contribute

to the moment, since the expected value of a product of independent random variables is

the product of the expected values and since the distribution p(x) is assumed to have mean

zero.

It is possible for two different circuits to yield the same set of L-values; these are equiv-

alent circuits. Two circuits, π1 and π2, are equivalent if and only if their L-values match at

the same locations for all 1 ≤ i, j ≤ N :

L(π1(i− 1), π1(i)) = L(π1(j − 1), π1(j))⇐⇒ L(π2(i− 1), π2(i)) = L(π2(j − 1), π2(j)).

(1.31)

An equivalence class of circuits is a partition of the set {1, 2, ..., k}. We can label an

equivalence class by a word of length k, where the first occurrence of each letter in the

word is in alphabetical order. If we let w[i] denote the ith entry of word w, the equivalence

class of circuits corresponding to w will be given by

Π(w) = {π : w[i] = w[j]⇐⇒ L(π(i− 1), π(i)) = L(π(j − 1), π(j))} . (1.32)

For example, if k = 6, the partition {{1, 3, 5, 6}, {2, 4}} is represented by the word ababaa.

This identifies all circuits π for which L(π(0), π(1)) = L(π(2), π(3)) = L(π(4), π(5)) =

L(π(5), π(6)) and L(π(1), π(2)) = L(π(3), π(4)).

The size of w, or number of distinct letters, is denoted by |w|:

|w| = #{L(π(i− 1), π(i)) : 1 ≤ i ≤ k}. (1.33)

The positions of the letters in a word i, for 1 ≤ i ≤ k, along with the additional value i = 0,

are called vertices.8 A vertex is generating if either i = 0 or w[i] is the first occurrence of

a letter in the word. Otherwise, the vertex is non-generating. For example, if w = ababcb,

then the generating vertices are {0, 1, 2, 5} and the nongenerating vertices are {3, 4}.
The number of generating vertices in an L-matched word is equivalent to the maximum

number of degrees of freedom one has in choosing a circuit that corresponds to that word,

because once the generating vertices are chosen, the non-generating vertices are fixed by

the fact that they have to satisfy matched L-values. For example, consider the word abab

for the Toeplitz link function L(i, j) = |i − j|. The word dictates the following system of

8“Vertex” and “index” are basically synonymous in this paper.
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equations:

|π(0)− π(1)| = |π(2)− π(3)| and |π(1)− π(2)| = |π(3)− π(4)|. (1.34)

We can choose π(0), π(1), and π(2) freely, but then π(3) is fixed by the matching con-

straints and π(4) is defined to be equal to π(0).

Since there are at most N choices for each generating vertex, and since there are |w|+ 1

generating vertices, the size of the equivalence class for word w is at most

#Π(w) = O(N |w|+1). (1.35)

In fact, we can rewrite the average kth moment using words and their equivalence classes:

Mk(N) =
∑

w:w is L-matched and of length k

1

N
k
2

+1

∑
π:π∈Π(w)

E[Xπ]. (1.36)

We are interested in computing Mk to determine the limiting spectral distribution, but not

all circuits will contribute in the limit as N → ∞. We have already seen that only L-

matched words contribute to the moment. Moreover, it turns out that if a matrix ensemble

satisfies certain properties, then only pair-matched words contribute, words in which every

letter appears exactly twice. Bose calls the sufficient property for this condition Property

B:

∆(L) = supNsupt∈Z+sup1≤k≤N #{m : 1 ≤ m ≤ n, L(k,m) = t} <∞. (1.37)

For a matrix satisfying Property B, its ∆(L) value, the maximum number of repetitions of

the same random variable in any row or column, is finite. For the Wigner, Toeplitz, and

Hankel matrices, their ∆(L) values are 1, 2, and 2, respectively. The following lemma is

from Bose, the excellent proof of which we follow closely:

Lemma 1.2: (Pair-Matched Words.) Only pair-matched words contribute and odd mo-

ments are zero.

Proof. Let w be a word with at least one edge of order greater than or equal to three.

Since contributing words must be L-matched, there are at most k + 1 generating vertices.

For a word of length 2k, constructing one edge of order three requires eliminating one

generating vertex, leaving k generating vertices. For a word of length 2k+1, because there

is an odd number of vertices, there must already be at least one edge of order three, which

again allows for at most k generating vertices. So there are k degrees of freedom from the

generating vertices in both cases. For each non-generating vertex, there are at most ∆(L)

choices. Once all the generating vertices are chosen, each non-generating vertex must
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satisfy a particular L-value in a particular row or column of the matrix, and by Property B,

there are at most ∆(L) choices for a particular random variable, or L-value, in any row or

column. Since there are at most k non-generating vertices, we then have

#Π(w) ≤ ∆(L)kNk = O(Nk). (1.38)

From (Eq. 1.36), there must be k + 1 degrees of freedom for the contribution to Mk to

be nonzero. Terms of order O(Nk) will not contribute. Since odd moments sum over

words with at least one edge greater than or equal to three, odd moments are zero, and it

suffices to check even moments. For the even moments, only words that are pair-matched

contribute. �

Since only even moments with pair-matched words of length 2k contribute, the moments

of the limiting spectral distribution can finally be written as

M2k = limN→∞M2k(N) =
∑

w:w is pair-matched of length 2k

limN→∞
1

Nk+1
#Π(w). (1.39)

In other words, computing the limiting moments reduces to checking all possible pair-

matched words, and for each word, finding the number circuits corresponding to that word.

Counting the number of circuits for a given word becomes equivalent to counting the num-

ber of integer solutions to a set of Diophantine, or integer-valued, equations.9

If the moments M2k can be computed or shown to exist, it is possible to prove conver-

gence to a limiting spectral distribution via Theorem 1.2. The following sections, essen-

tially paraphrasing Bose and Hammond and Miller, describe general proofs of convergence

for broad classes of random matrix ensembles. These convergence results apply to all of

the matrices considered in this paper.

1.2.4. Existence and Uniqueness of the Limiting Spectral Distribution. Bose proves that

if a random matrix ensemble has a link function that satisfies Property B and the limiting

moments exist, then the limiting spectral distribution exists. Moreover, the limiting spectral

distribution is uniquely specified by its moments. We sketch the proof given by Bose. By

Property B, odd moments are zero. The average 2kth moment is given by

M2k =
∑

w:w is pair-matched of length 2k

limN→∞
1

Nk+1
#Π(w). (1.40)

It can be shown that there are (2k − 1)!! ways of grouping 2k objects in pairs, so for

words of length 2k, the maximum number of words w we sum over is (2k − 1)!! = (2k)!
2kk!

.

For each word, there are at most k + 1 degrees of freedom for the generating vertices,

9In this paper we only consider matrix ensembles that satisfy Property B.
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leaving ∆(L)k choices for the non-generating vertices so that each word contributes at most

∆(L)kNk+1. We then have thatM2k(N) ≤ (2k)!
2kk!

∆(L)k+O
(

1
N

)
. Also by Property B under

the assumption of the existence of the limiting moments, the expected moments converge

to the limiting moments almost surely, so that M2k ≤ (2k)!
2kk!

∆(L)k. These moments satisfy

Riesz’s condition.10 By Theorem 1.2, the limiting spectral distribution of the ensemble

exists and is uniquely determined.

1.2.5. Convergence in Probability. Assume that all moments Mk exist, are finite, and

uniquely determine a probability distribution. By Theorem 1.2, it suffices to show that

Var[Mk(AN)]→ 0 to prove convergence in probability. Here is a sketch of the proof from

Hammond and Miller. Although it was specifically designed for real symmetric Toeplitz

matrices, it is general enough to apply to any matrix ensemble considered in this paper.

The empirical spectral distributions converge in probability to the limiting spectral dis-

tribution if the empirical moments converge in probability to the limiting moments. The

moments converge in probability if ∀ε > 0,

limN→∞Prob ({AN ∈ ΩN : |M2k (AN)−M2k| > ε}) = 0. (1.41)

By the triangle inequality,

|M2k (AN)−M2k| ≤ |M2k (AN)−M2k (N) |+ |M2k (N)−M2k|. (1.42)

By Chebyshev’s inequality,

Prob ({AN ∈ ΩN : |M2k (AN)−M2k (N) | > ε}) ≤ Var[M2k (AN)]

ε2

≤ E[M2k (AN)2]− E[M2k (AN)]2

ε2
.

(1.43)

Since all higher moments exist and are finite by assumption, |M2k (N) − M2k| → 0 as

N →∞. It suffices to show that for all 2k,

limN→∞
(
E
[
M2k (AN)2]− E [M2k (AN)]2

)
= 0, (1.44)

By (Eq. 1.26), we have

E
[
M2k (AN)2] =

1

N2k+2

∑
1≤i1,...,i2k≤N

∑
1≤j1,...,j2k≤N

E [ai1i2 · · · ai2ki1aj1j2 · · · aj2kj1 ] , (1.45)

10See section 7.2.
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E [M2k (AN)]2 =
1

N2k+2

∑
1≤i1,...,i2k≤N

E [ai1i2 · · · ai2ki1 ]
∑

1≤j1,...,j2k≤N

E [aj1j2 · · · aj2kj1 ] .

(1.46)

There are two possibilities for the contribution from the i configurations, ai1i2 · · · ai2ki1 ,

and the j configurations, aj1j2 · · · aj2kj1 ,. If in an i configuration, any entry aisis+1 is not

equal to any entry ajtjt+1 in a j configuration, then together, the these two configurations

contribute equally to E
[
M2k (AN)2] and E [M2k (AN)]2. It suffices to estimate the dif-

ference for the crossover cases, where we have at least one pair of entries from the i and

j configurations matched, aisis+1 = ajtjt+1 . These cases contribute unequally to the two

expected values above. We adopt the standard method of counting degrees of freedom in

Hammond and Miller and show that the contribution from crossover cases is O2k

(
1
N

)
to

both E
[
M2k (AN)2] and E [M2k (AN)]2. Essentially, it can be shown that one crossover is

associated with at least one loss of degrees of freedom. As in the full proof in Hammond

and Miller, we will show that for all of the matrix ensembles in this paper, only entries

paired in opposite triangles of a matrix can be matched. For our matrix ensembles, all re-

maining steps of the proof follow trivially except changes in the constants Ok

(
1
N

)
, which

do not alter the result that the contribution from crossover cases diminishes as N →∞.

1.2.6. Almost Sure Convergence. Assume that all momentsMk exist, are finite, and uniquely

determine a probability distribution. Then, if the empirical moments converge almost

surely to the limiting moments, the empirical spectral distributions converge almost surely

to the limiting spectral distribution. We appeal to the excellent proofs of almost sure con-

vergence in Bose and Hammond and Miller. The arguments in Hammond and Miller were

designed for Toeplitz matrices, but they can be generalized easily. The arguments in Bose

apply to any ensemble of matrices whose link function satisfies Property B. To prove almost

sure convergence of moments, it suffices to show that

∞∑
n=1

E [Mk (AN)− E [Mk (AN)]]4 <∞ for every k ≥ 1. (1.47)

If we assume that the input distribution p(x) has mean zero, variance one, and uniformly

bounded moments of all order, it is possible to show

E
[

1

N
Tr (AN)k − E

[
1

N
Tr (AN)k

]]4

= O
(
N−2

)
(1.48)

Almost sure convergence then follows.
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FIGURE 2. aabbcc is a Catalan word.

FIGURE 3. abcabc is not a Catalan word.

1.2.7. Non-Crossing Pair Partitions, Catalan Words, and the Semicircle Measure. Pair-

matched words of length 2k can be classified as non-crossing partitions or crossing parti-

tions. Consider the set {1, 2, ..., 2k}. Arrange the elements on a circle sequentially. Con-

sider any pair partition of this set and draw an edge between two points of each partition.

The partition is said to be non-crossing if none of the edges crosses another, and crossing

otherwise.

It can be shown that non-crossing partitions are in bijection with Catalan words. A pair-

matched word is called a Catalan word if (1) there is at least one double letter, (2) if any

double letter is deleted, the remaining word of length 2k−2 is either empty or has a double

letter, and (3) repeating the process in the previous step ultimately leads to an empty word.

For example, aabbcc is a Catalan word, while abcabc is not a Catalan word, as shown in

Figures 2 and 3.
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The number of Catalan words of length 2k is given by the 2kth Catalan number

C2k :=
1

k + 1

(
2k

k

)
. (1.49)

It can also be shown that the 2kth moment of the semicircle measure is exactly C2k, with

odd moments zero.11 This is critical, because then one can prove that an ensemble of

matrices has a semicircular limiting spectral distribution by showing that all Catalan words

contribute one to the 2kth moment and all non-Catalan words contribute zero.

2. POLYNOMIALS OF ORDER ONE

In this section we will generalize the real symmetric Toeplitz and Hankel link functions

to a class of bivariate polynomial link functions in which the polynomials are order one.

This lets us investigate all matrices in which random variables are fixed along lines with

rational slopes.

2.1. Generalized Toeplitz Matrices. Real symmetric Toeplitz matrices are matrices that

are constant along the diagonals. In other words, the entries in the upper triangle of the

matrix are described by the same random variable if they lie along the same line of slope

-1, as though the columns j were the x-axis and the rows i were the y-axis. What if we

change the slope of these lines to −1
2
, or −3

2
, or some other negative rational number?

The link function for Toeplitz matrices was written as L(i, j) = |i− j|, but we can also

write the link function as:

L(i, j) =


i− j i ≤ j

−i+ j i > j.

(2.1)

This splits any matrix into two zones, where Zone 1 describes the upper triangle i ≤ j, and

Zone 2 describes the lower triangle i > j, as in Figure 4.12 For example, if two matched

entries ai1i2 = ai3i4 are such that ai1i2 , ai3i4 ∈ Zone 1, their L-values must satisfy

π(0)− π(1) = π(2)− π(3), (2.2)

11See section 7.4.
12We could have defined the zones to exclude the main diagonal, as the values of the main diagonal do not

affect the limiting distribution of the eigenvalues. Likewise, we could have set the main diagonal to be zero

by definition.



20

FIGURE 4. A matrix A is split into two zones, where Zone 1 is the upper

triangle of the matrix including the main diagonal, and Zone 2 is the lower

triangle of the matrix.

while if one entry ai1i2 ∈ Zone 1 and the other entry ai3i4 ∈ Zone 2, their L-values must

satisfy

π(0)− π(1) = −π(2) + π(3). (2.3)

We can change the link function slope by introducing parameters α and β to define a gen-

eralized Toeplitz link function.13 This is, for fixed α, β ∈ Q+

Lα,β(i, j) =


αi− βj i ≤ j

−βi+ αj i > j.

(2.4)

A matrix with α = β reduces to the original Toeplitz, while a 5× 5 matrix with α = 2 and

β = 1 would have the structure

A =


a1 a0 a−1 a−2 a−3

a0 a2 a1 a0 a−1

a−1 a1 a3 a2 a1

a−2 a0 a2 a4 a3

a−3 a−1 a1 a3 a5

 . (2.5)

It is known that the moments of the limiting spectral distribution of large Toeplitz ma-

trices are bounded above by the moments of the Gaussian distribution, where the 2kth

13We disregard irrational parameters, since this would simply give us Wigner matrices. Moreover, for

other general link functions, we will suppress the subscripts α and β on Lα,β(i, j).



21

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Normalized Eigenvalues

0.2

0.4

0.6

0.8

Probability
Histogram of Normalized Eigenvalues

-1.0 -0.5 0.0 0.5 1.0
Normalized Eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability
Histogram of Normalized Eigenvalues

-1.0 -0.5 0.0 0.5 1.0
Normalized Eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability
Histogram of Normalized Eigenvalues

-1.0 -0.5 0.0 0.5 1.0
Normalized Eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability
Histogram of Normalized Eigenvalues

FIGURE 5. Histograms of numerical eigenvalues of 100 generalized

Toeplitz matrices of size 1200 × 1200. Each has α = 1. Clockwise from

the upper left, β is equal to 1, 2, 3, and 4. The red curve is the semicircle

distribution of Eq. 1.3 for an eigenvalue normalization of 2
√
N . See section

7.1 for details on normalizations for the eigenvalues.

Gaussian moment is given by (2k − 1)!! The following table compares low moments for

the Gaussian, Toeplitz, and semicircular distributions:

Moment Gaussian Toeplitz Semicircle

M4 3 22
3

2

M6 15 11 5

M8 105 64 4
16

14

(2.6)

Numerics suggest that the generalized Toeplitz matrices have a near-semicircular limit-

ing spectral distribution.14 Figure 5 shows simlutions of the limiting spectral distribution

for generalized Toeplitz matrices for α = 1 and several values of β. The first histogram

clearly shows the near-Gaussian behavior for β = 1, which corresponds to original Toeplitz

matrices. Although the other distributions appear semicircular, note the slight tails, ears,

and dip in the histogram for β = 2 that show deviation from the semicircle, shown in red.

As β increases, the histograms show that the limiting distribution more closely resembles

the semicircle distribution. We can compute low moments for the generalized Toeplitz en-

semble and show that they deviate from the Catalan numbers by a factor that depends on

α and β. We can also prove that as either α or β tends to infinity, the limiting spectral

distribution converges to the semicircle.

14Explanation of numerical calculations is provided in section 6.
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FIGURE 6. Partitions for the Catalan word aabb and non-Catalan word abab.

2.1.1. Odd Moments. Because the slopes of lines connecting random variables via this link

function can never be zero, ∆(L) is at most one. Odd moments are then zero because these

matrices satisfy Property B.

2.1.2. Zeroth and Second Moments. Calculating the zeroth and second moments is simple:

M0 = limN→∞
1

N

N∑
i=1

E
[
λ0
i (AN)

]
= 1,

M2 = limN→∞
1

N2

∑
1≤i1, i2≤N

E [ai1i2ai2i1 ] = limN→∞
1

N2

∑
1≤i1, i2≤N

E
[
a2
L(i1i2)

]
= 1.

(2.7)

The expected value above is 1, since we are drawing from a variance one distribution.

2.1.3. Fourth Moment. To calculate the fourth moment, we compute

M4 = limN→∞
1

N3

∑
1≤i1,i2,i3,i4≤N

E [ai1i2ai2i3ai3i4ai4i1 ]

=
∑

w:w is pair-matched of length 4

limN→∞
1

N3
#Π(w).

(2.8)

The pair-matched words of length four are aabb, abba, and abab, which give us the non-

isomorphic configurations in Figure 6. By relabeling indices, it is easy to see that the

matchings for aabb and abba, respectively, give equivalent systems of equations:

aL(i1,i2) = aL(i2,i3) and aL(i3,i4) = aL(i4,i1) (2.9)

aL(i1,i2) = aL(i4,i1) and aL(i2,i3) = aL(i3,i4). (2.10)
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The system of equations for the word abab is

aL(i1,i2) = aL(i3,i4) and aL(i2,i3) = aL(i4,i1). (2.11)

Since any entry can be located in one of two zones, there are 24 = 16 possible diophantine

L-value equations for each of the above sets of entry matchings.

We first count the number of circuits for the word aabb, which will be equivalent to the

number of cuircuits for abba. We define an adjacent pair as a matching between matrix

entries that share one index, as in aL(i1,i2) = aL(i2,i3). We reduce the number of relevant

cases with the following.

Lemma 2.1: (Fourth Moment Adjacent Pairs.) Fourth moment adjacent pairs must be

in opposite zones when α 6= β to yield a nonzero contribution.

Proof. Assume that for an adjacent pair, one entry ai1i2 ∈ Zone 1 and the other entry

ai2i3 ∈ Zone 1. From the link function, we have

απ(0)− βπ(1) = απ(1)− βπ(2) =⇒ π(1) =
απ(0) + βπ(2)

α + β
. (2.12)

Start by choosing values for the four variables π(0), π(1), π(2), and π(3)15. Once π(0)

and π(2) are chosen freely,16 π(1) is fixed as above and π(3) is fixed by the second L-value

equation. There are at most two degrees of freedom here, but there is only a contribution to

the fourth moment if there are more than two degrees of freedom, since we divide by N3.

Assume that for an adjacent pair, one entry ai1i2 ∈ Zone 2 and the other entry ai2i3 ∈
Zone 2. From the link function, we have

−βπ(0) + απ(1) = −βπ(1) + απ(2) =⇒ π(1) =
απ(2) + βπ(0)

α + β
. (2.13)

By the same reasoning, this case does not contribute. Therefore, adjacent matchings must

be in opposite zones. �

Since adjacent pairs must be in opposite zones, we calculate four possibilities:

(1) ai1i2 ∈ Zone 1, ai2i3 ∈ Zone 2, ai3i4 ∈ Zone 1, and ai4i1 ∈ Zone 2:

απ(0) − βπ(1) = −βπ(1) + απ(2) and απ(2) − βπ(3) = −βπ(3) + απ(0) −→
π(0) = π(2), π(1) > π(0) and π(3) > π(0)

15It is not always necessary to distinguish which vertices are generating and which are non-generating in

some counting arguments.
16A “free” index/vertex is one with N possible values.
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(2) ai1i2 ∈ Zone 1, ai2i3 ∈ Zone 2, ai3i4 ∈ Zone 2, and ai4i1 ∈ Zone 1:

απ(0)− βπ(1) = −βπ(1) + απ(2) and − βπ(2) + απ(3) = απ(3)− βπ(0) −→
π(0) = π(2), π(1) > π(0) and π(3) < π(0)

(3) ai1i2 ∈ Zone 2, ai2i3 ∈ Zone 1, ai3i4 ∈ Zone 1, and ai4i1 ∈ Zone 2:

−βπ(0) + απ(1) = απ(1) − βπ(2) and απ(2) − βπ(3) = −βπ(3) + απ(0) −→
π(0) = π(2), π(1) < π(0) and π(3) > π(0)

(4) ai1i2 ∈ Zone 2, ai2i3 ∈ Zone 1, ai3i4 ∈ Zone 2, and ai4i1 ∈ Zone 1:

−βπ(0) + απ(1) = απ(1)− βπ(2) and − βπ(2) + απ(3) = απ(3)− βπ(0) −→
π(0) = π(2), π(1) < π(0) and π(3) < π(0).

(2.14)

Solutions to the four sets of inequalities above are valid as long as π(0), π(1), and π(3) ∈
{1, 2, ..., N}. We define a new function that incorporates this restriction: vx = π(x)

N
, where for

each x ∈ {0, 1, 3}, vx ∈ { 1
N
, 2
N
, ..., N

N
}. Now, the four sets of inequalities are given by:

v1 > v0 and v3 > v0

v1 > v0 and v3 < v0

v1 < v0 and v3 > v0

v1 < v0 and v3 < v0.

(2.15)

Now we count the contribution. By transforming to vx, we have already divided by N3. In

the limit of large N , then, a sum over the appropriate region gives us the moment contribu-

tion. For I(G), the indicator function on the region G, it is∑
v0,v1,v3∈{ 1

N
, 2
N
,...,N

N
}

I(v1 > v0 and v3 > v0, or v1 > v0 and v3 < v0, or v1 < v0 and v3 > v0,

or v1 < v0 and v3 < v0).

(2.16)

In the limit of large N , this just becomes a triple integral:∫ 1

0

∫ 1

0

∫ 1

0

dv0dv1dv3 = 1. (2.17)

Together, aabb and abba contribute two to the fourth moment.

Now we count the contribution for the word abab and show that it only contributes to

the moment when α = β. Choose a zone for the first entry, say Zone 1. Then, the L-value



25

equations have the form

απ(0)− βπ(1) = aL(i3,i4)

aL(i2,i3) =L(i4,i1) .
(2.18)

Assume that α 6= β. We immediately see that in order to avoid introducing an extra linear

constraint, and therefore a loss of degrees of freedom, we must choose ai2i3 ∈ Zone 2. If

we were to sum the two L-value equations after choosing ai2i3 ∈ Zone 1, for example, we

could derive an equation for π(1) in terms of the other indices and apply the arguments

from Lemma 2.1. Following similar arguments from Bose, there are at most 2k+1 degrees

of freedom to start with: 2k L-values and the value of the first index, π(0). The L-value

equations introduce k constraints, leaving us with at most k + 1 degrees of freedom. In-

troducing another constraint leaves only k degrees of freedom, but more than k degrees of

freedom are needed for a nonzero contribution.

By similar reasoning, we would have to choose ai3i4 ∈ Zone 1 and ai4i1 ∈ Zone 2, which

gives

απ(0)− βπ(1) = απ(2)− βπ(3)

−βπ(1) + απ(2) = −βπ(3) + απ(4).
(2.19)

Nevertheless, by summing these two equations, we can still introduce a new linear con-

straint, π(1) = π(3). If we choose the first entry to be in Zone 2, we run into the same

problem. Therefore, the word abab does not contribute when α 6= β.

For α = β, we are reduced to original Toeplitz matrices, and Bose and Hammond and

Miller show that the contribution is 2
3
. Thus, we have17

M4(α, β) =


2 α 6= β

22
3

α = β.

(2.20)

2.1.4. Sixth Moment. The formula for the sixth moment is

M6 = limN→∞
1

N4

∑
1≤i1,i2,i3,i4,i5,i6≤N

E [ai1i2ai2i3ai3i4ai4i5ai5i6ai6i1 ]

=
∑

w:w is pair-matched of length 6

limN→∞
1

N4
#Π(w).

(2.21)

17Mk(α, β) is the kth limiting moment as a function of α and β.
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FIGURE 7. Words for the sixth moment.

The pair-matched words of length six are aabbcc, aabccb, aabcbc, abacbc, and abcabc,

along with other words that are isomorphic to these. The five non-isomorphic configura-

tions are shown in Figure 7. Respectively, there are 2, 3, 6, 3, and 1 versions for the above

configurations.18 We first count the number of circuits for the Catalan words, the first two

words. We begin by showing that, for any moment, adjacent pairs must be located in op-

posite zones for a general class of link functions.

Lemma 2.2 (Adjacent Pairs.) Let L(i,j) be a bivariate polynomial link function, where

p1(x) = amx
m+am−1x

m−1+· · ·+a0 for somem ∈ R+, p2(x) = bnx
n+bn−1x

n−1+· · ·+b0

for some n ∈ R+, all the coefficients in both polynomials are non-negative, and the leading

coefficients are also non-zero:

L(i, j) =

p1(i)± p2(j) i ≤ j

±p2(i) + p1(j) i > j.
(2.22)

18A configuration has x versions if there are x words that yield that configuration. For example, the

configuration corresponding to the word aabb has two versions, since it also corresponds to the word abba.
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Then adjacent pairs must be in opposite zones when p1(x) 6= p2(x).

Proof. Any adjacent pair will have the form aL(i1,i2) = aL(i2,i3). First, assume that ai1i2 ∈
Zone 1, ai2i3 ∈ Zone 1, and the coefficient of p2(x) in the link function is positive. The

corresponding L-value equation will have the form

p1 (π(0)) + p2 (π(1)) = p1 (π(1)) + p2 (π(2)) . (2.23)

From the choice of zones, π(0) ≤ π(1) and π(1) ≤ π(2). The only way to satisfy the L-

value equation is to have π(0) = π(1) = π(2). If we choose ai1i2 to correspond to the first

letter in a word,19 then by definition, π(0) and π(1) are generating vertices. As in the proof

of Lemma 1.2, the degrees of freedom originate from the k + 1 generating vertices. Once

we choose π(0), π(1) is fixed, we lose a generating vertex, and there are at most O(Nk)

solutions where we need at least k+ 1 degrees of freedom for a contribution. If we assume

that the coefficient of p2(x) in the link function is negative, then the L-value equation will

have the form

p1 (π(0))− p2 (π(1)) = p1 (π(1))− p2 (π(2)) . (2.24)

Rearranging, we have

p1 (π(1)) + p2 (π(1)) = p1 (π(0)) + p2 (π(2)) . (2.25)

Choose all k generating vertices except π(1). This occurs with at most k degrees of free-

dom. Then, the non-generating vertices will be fixed by the other L-value equations, with a

total of ∆(L)k choices. Now both π(0) and π(2) are chosen and π(1) is fixed by the above

equation. This loss of the generating vertex π(1) means there are at most O(Nk) solutions

and therefore a contribution of zero to the moment.

Now, assume that ai1i2 ∈ Zone 2 and ai2i3 ∈ Zone 2, and the coefficient of p2(x) in the

link function is positive. The corresponding L-value equation will again have the form

p1 (π(0)) + p2 (π(1)) = p1 (π(1)) + p2 (π(2)) . (2.26)

The zonewise conditions give π(0) < π(1) < π(2), so the L-value equation cannot even

be satisfied. If we assume that the coefficient of p2(x) in the link function is negative, then

the L-value equation will again have the form

p1 (π(1)) + p2 (π(1)) = p1 (π(0)) + p2 (π(2)) (2.27)

and the previous argument applies. �

19For any word, we are free to cycle the letters in the word without changing the underlying configuration.
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Instead of counting the contribution for each sixth moment word, we show that it suffices

to know the contribution of the word aabb to the fourth moment. Consider one version of

the word aabbcc:

aL(i1,i2) = aL(i2,i3)

aL(i3,i4) = aL(i4,i5)

aL(i5,i6) = aL(i6,i1).

(2.28)

No matter what contributing zones ai5i6 and ai6i1 are located in, i5 = i1, since adjacent

pairs must be in opposite zones by Lemma 2.2. Substituting for i5, we can rewrite the first

two equations of the matching as:

aL(i1,i2) = aL(i2,i3)

aL(i3,i4) = aL(i4,i1).
(2.29)

This has the same structure as the fourth moment adjacent matching. It is as though we had

“lifted” the adjacent pair, aL(i5,i6) = aL(i6,i1). For each of the four contributing zonewise

cases in the fourth moment structure, there are now two additional possibilities for the third

pair, ai5i6 ∈ Zone 1 and ai6i1 ∈ Zone 2, or ai5i6 ∈ Zone 2 and ai6i1 ∈ Zone 1. These two

possibilities give π(5) ≤ π(0) or π(5) > π(0), which leaves π(5) as a free index. To

compute the contribution to the sixth moment, then, we just integrate over the same region

as in the fourth moment case, with an additional variable:∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dv0dv1dv3dv5 = 1. (2.30)

The word aabccb is handled similarly. The system of equations is:

aL(i1,i2) = aL(i4,i5)

aL(i2,i3) = aL(i3,i4)

aL(i5,i6) = aL(i6,i1).

(2.31)

We “lift” the second matched pair by noticing that for any set of zones, π(1) = π(3). Re-

labeling π(4) and π(5), we are left with the fourth moment structure again. As above, the

case contributes one to the moment. We can now prove the following general lemma:

Lemma 2.3 (Adjacent Lifting.) Let L(i,j) be a bivariate polynomial link function, where

p1(x) = amx
m+am−1x

m−1+...+a0 for somem ∈ R+ and p2(x) = bnx
n+bn−1x

n−1+...+
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b0 for some n ∈ R+, and where all the coefficients in both polynomials are non-negative:

L(i, j) =

p1(i)± p2(j) i ≤ j

±p2(i) + p1(j) i > j.
(2.32)

Then, any Catalan word of length 2k for matrices with such a link function contributes one

to the 2kth moment.

Proof. We begin by counting the number of circuits for the word aabb. Adjacent pairs must

be in opposite zones, by Lemma 2.2. So we calculate four possibilities:

(1) ai1,i2 ∈ Zone 1, ai2,i3 ∈ Zone 2, ai3,i4 ∈ Zone 1, and ai4,i1 ∈ Zone 2:

p1(π(0))±p2(π(1)) = ±p2(π(1))+p1(π(2)) and p1(π(2))±p2(π(3)) = ±p2(π(3))+

p1(π(0)) −→ π(0) = π(2), π(1) > π(0) and π(3) > π(0)

(2) ai1,i2 ∈ Zone 1, ai2,i3 ∈ Zone 2, ai3,i4 ∈ Zone 2, and ai4,i1 ∈ Zone 1:

p1(π(0)) ± p2(π(1)) = ±p2(π(1)) + p1(π(2)) and ± p2(π(2)) + p1(π(3)) =

p1(π(3))± p2(π(0)) −→ π(0) = π(2), π(1) > π(0) and π(3) < π(0)

(3) ai1,i2 ∈ Zone 2, ai2,i3 ∈ Zone 1, ai3,i4 ∈ Zone 1, and ai4,i1 ∈ Zone 2:

±p2(π(0))+p1(π(1)) = p1(π(1))±p2(π(2)) and p1(π(2))±p2(π(3)) = ±p2(π(3))+

p1(π(0)) −→ π(0) = π(2), π(1) < π(0) and π(3) > π(0)

(4) ai1,i2 ∈ Zone 2, ai2,i3 ∈ Zone 1, ai3,i4 ∈ Zone 2, and ai4,i1 ∈ Zone 1:

±p2(π(0)) + p1(π(1)) = p1(π(1)) ± p2(π(2)) and ± p2(π(2)) + p2(π(3)) =

p1(π(3))± p2(π(0)) −→ π(0) = π(2), π(1) < π(0) and π(3) < π(0).

We can follow the same calculation as in the Toeplitz case to show that the word aabb

contributes one to the fourth moment. For higher moments, any non-crossing pair partition

must have at least one adjacent pair of the form ai1i2 = ai2i3 , by the definition of a Catalan

word. Since adjacent pairs must be located in opposite zones, any such adjacent pair must

require π(0) = π(2). Since there are two sets of zones for the pair, the remaining index

is bound either by π(1) ≤ π(0) or π(1) > π(0), leaving π(1) as a free index. “Lift” this

pair by setting π(0) = π(2) and relabeling the remaining indices appropriately. Since there

are now 2k − 2 indices left, the remaining structure is a Catalan word for the (2k − 2)th

moment, and the contribution can be computed with π(1) as an extra degree of freedom.

Using this process, any adjacent matching can be reduced to the fourth moment structure,

and since that structure contributes one, any other Catalan word contributes one. In other

words, the contribution of a configuration remains unchanged if only adjacent pairs are

added to the structure, since the extra degree of freedom from an adjacent pair balances out

the extra factor of 1
N

in the moment formula. �
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Using Lemma 2.3 the words aabbcc, aabccb, and other words isomorphic to them con-

tribute one to the sixth moment.

For the word aabcbc, we can also “lift” the adjacent pair and relabel the remaining

indices so that the fourth moment structure for the word abab remains. Therefore, versions

of this word contribute 0 when α 6= β and 2
3

when α = β. The process of “lifting” is useful

for both Catalan and non-Catalan words.

For the word abacbc, we use an argument similar to that for the fourth moment. Assume

α 6= β. We first reason that by checking for extra linear constraints, the only possible

zonewise cases that might contribute are

απ(0)− βπ(1) = απ(4)− βπ(5)

−βπ(1) + απ(2) = −βπ(3) + απ(4)

απ(2)− βπ(3) = −βπ(5) + απ(0)

(2.33)

and

−βπ(0) + απ(1) = −βπ(4) + απ(5)

απ(1)− βπ(2) = απ(3)− βπ(4)

−βπ(2) + απ(3) = απ(5)− βπ(0).

(2.34)

Nevertheless, summing each of these equations still produces an extra linear constraint;

hence, there is no contribution to the moment.

For α = β, the original Toeplitz matrices, Bose and Hammond and Miller compute the

contribution to be 1
2
.

For the word abcabc, there are two sets of zones that do not produce extra linear con-

straints. The L-value equations for these cases are:

απ(0)− βπ(1) = −βπ(3) + απ(4)

−βπ(1) + απ(2) = απ(4)− βπ(5)

απ(2)− βπ(3) = −βπ(5) + απ(0)

(2.35)

and

−βπ(0) + απ(1) = απ(3)− βπ(4)

απ(1)− βπ(2) = −βπ(4) + απ(5)

−βπ(2) + απ(3) = απ(5)− βπ(0).

(2.36)
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Let’s begin with the first case. We can choose π(0), π(1), π(2), and π(3) freely. Then

π(4) and π(5) are fixed:

π(4) = π(0)− α

β
π(1) +

α

β
π(3)

π(5) = π(3)− β

α
π(2) +

β

α
π(0).

(2.37)

Using the same variable transformation as in the fourth moment, we can rewrite these

constraints as

v4 = v0 −
α

β
v1 +

α

β
v3

v5 = v3 −
β

α
v2 +

β

α
v0.

(2.38)

To count the contribution, we just integrate the indicator function acting on the regions

defined above along with the choices of zones. In the limit of large N , this becomes a

quadruple integral.

For a = β
α

and β > α, or a > 1, the contribution is∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ v0 −
v1

a
+
v3

a
≤ 1 and 0 ≤ av0 − av2 + v3 ≤ 1 and v0 > v1 and

v1 < v2 and v2 > v3 and v3 < v0 −
v1

a
+
v3

a
and v0 −

v1

a
+
v3

a
> av0 − av2 + v3

and av0 − av2 + v3 ≤ v0)dv1dv2dv3dv0.

(2.39)

The contribution from this case is20

1

4(1 + a)
=

α

4(α + β)
.

(2.40)

Now consider the case α > β. The set of L-value equtions we have been using is

−βπ(0) + απ(1) = απ(3)− βπ(4)

απ(1)− βπ(2) = −βπ(4) + απ(5)

−βπ(2) + απ(3) = απ(5)− βπ(6).

(2.41)

20See section 7.3 for the full calculation of the integral.
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Perform a symmetric change of the indices, which will not affect the number of solutions:

π(0)←→ π(3)

π(1)←→ π(4)

π(2)←→ π(5).

(2.42)

Under this transformation, we have the rewritten configuration:

απ(0)− βπ(1) = −βπ(3) + απ(4)

−βπ(1) + απ(2) = απ(4)− βπ(5)

απ(2)− βπ(3) = −βπ(5) + απ(6).

(2.43)

Following the same steps above, and switching the relevant inequalities to conform to the

transformation, these equations lead to another quadruple integral:∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ v0 −
β

α
v1 +

β

α
v3 ≤ 1 and 0 ≤ −α

β
v2 + v3 +

α

β
v0 ≤ 1 and v0 ≤ v1

and v1 > v2 and v2 ≤ v3 and v3 > v0 −
β

α
v1 +

β

α
v3 and v0 −

β

α
v1 +

β

α
v3 ≤

−α
β
v2 + v3

+
α

β
v0 and

−α
β
v2 + v3 +

α

β
v0 > v0)dv1dv2dv3dv0.

(2.44)

Let a = α
β

. By a similar calculation, we get a symmetric result:

1

4(1 + a)
=

1

4(1 + α
β
)

=
β

4(α + β)
. (2.45)

It is simple to calculate the contribution from Eq. 2.36. Notice that we just calculated the

contribution for the set of L-value equations in Eq. 2.43. This is exactly the same set of

equations in Eq. 2.36. Therefore, both cases contribute equally.

Since there are two versions of the configuration corresponding to the word aabbcc and

three versions of the configuration corresponding to the word aabccb, the Catalan words

contribute a total of 5 to the moment. Including the extra factor from the word abcabc, we

have

M6(α, β) =



5 + α
2

1
α+β

α < β

5 + β
2

1
α+β

α > β

11 α = β.

(2.46)
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FIGURE 8. A 3D Mathematica listplot of the generalized Toeplitz sixth mo-

ment, M6(α, β), for integer values of α and β with α 6= β up to 20.

Using Mathematica we computed the relevant integrals for low fixed values of α and β and

had agreement with the above formula:

α β M6(α, β)

1 2 31
6

= 5 + 1
6

1 3 41
8

= 5 + 1
8

2 1 31
6

= 5 + 1
6

2 3 41
8

= 5 + 1
8

(2.47)

We collect the full results on the moments:

Moment Gaussian Toeplitz Generalized Toeplitz Semicircle

M4 3 22
3

2 α 6= β

22
3

α = β
2

M6 15 11

5 + α
2

1
α+β

β > α

5 + β
2

1
α+β

α > β
5

M8 105 64 4
16

14

(2.48)

2.1.5. Existence of Higher Moments. Unfortunately, all higher moments for this link func-

tion become increasingly computationally intensive. Although we cannot find a closed-

form expression for higher moments, we can show that all higher moments exist and are

finite.

Lemma 2.4 (Existence of Higher Moments.) If the probability distribution p(x) has mean
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zero and variance one, then for all non-negative integers k, Mk = limN→∞Mk(N) exists

and is finite.

Proof. Since odd moments are zero, it suffices to check the limiting behavior of the even

moments. As exemplified in the fourth and sixth moment calculations, for any word w of

length 2k, we obtain a system of linear equations relating the variables π(0), ..., π(2k −
1) ∈ {1, ..., N}. These variables together have at most k + 1 degrees of freedom. Letting

vx = π(x)
N
∈ { 1

N
, 2
N
, ..., 1

N
}, the system of equations then determines a nice region in the

(k + 1)-dimensional unit cube. As N → ∞, we obtain the finite volume of this region.

This volume, which we denote M2k(w), is the coefficient of the leading order term in the

number of solutions to the original system of equations. Transforming back to the variables

π(x), then, we obtain the contribution of this word to the 2kth moment, before dividing by

Nk+1, to be M2k(w)Nk+1 +Ok

(
Nk
)
. Summing over all pair-matched words of length 2k

gives M2kN
k+1 + Ok

(
Nk
)
. We extract the finite limiting moment, M2k, by dividing by

Nk+1 for N large. �

2.1.6. Bounds on the Moments. It is easy to argue the following bounds for the moments.

Lemma 2.5 (Bounds on the Moments.) Let C2k be the 2kth moment of the semicir-

cle distribution, M2k(T ) the 2kth moment of the Toeplitz ensemble limiting distribution,

and M2k (α, β) the 2kth moment of the generalized Toeplitz ensemble limiting distribution.

Then, C2k ≤M2k (α, β) < M2k(T ) for all non-negative integers k.

Proof. Since each Catalan word contributes one, the moments are at least as large as the

semicircle moments, and the lower bound holds. For a non-Catalan word, either the α

and β in the link function prevent contributions that otherwise occur when α = β, or they

decrease these contributions. Let g = gcd(α, β). Then for a given matrix entry, there are

at most
⌈

N
max(α,β)/g

⌉
L-matches in the upper triangle of the matrix. There are always fewer

matchings than the Toeplitz case, for which α = β, which means there are always fewer

solutions to the relevant Diophantine equations, and hence the upper bound holds. �

2.1.7. Convergence. Now that we have calculated low moments of the limiting spectral

distribution and proved that all higher moments exist and are finite, we can show that the

empirical measures for generalized Toeplitz matrices converge in probability and almost

surely to a unique limiting spectral distribution that is universal, or independent of p(x).

By the arguments in section 1.2.4 and the fact that these matrices satisfy Property B, the

limiting moments determine a unique limiting spectral distribution. By the arguments in
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section 1.2.5, Var[Mk(AN)]→ 0 and the empirical spectral distributions converge in prob-

ability to the limiting spectral distribution. By the arguments in section 1.2.6, the empirical

distributions converge almost surely to the limiting distribution. All of the above arguments

only depend on p(x) having mean zero, variance one, and uniformly bounded moments of

all order. Hence, the convergence is universal. 21

2.1.8. Limiting Behavior. We can also show that in the limit as either α or β becomes

very large, the moments of the limiting distribution for the generalized Toeplitz ensemble

approach those of the semicircle measure. This is clear for the sixth moment, for example,

which approaches the sixth Catalan number in either limit:

For fixed α, limβ→∞ M6(α, β) = limβ→∞ 5 +
α

2

1

α + β
= 5.

For fixed β, limα→∞ M6(α, β) = limα→∞ 5 +
β

2

1

α + β
= 5.

(2.49)

In general, we assert the following:

Lemma 2.6 (Limiting Behavior for Generalized Toeplitz Matrices.) For fixed α,

limβ→∞ M2k(α, β) = C2k, and for fixed β, limα→∞ M2k(α, β) = C2k for generalized

Toeplitz matrices when the limits are taken appropriately.

Proof. Consider the limit as β → ∞. To prove that the limiting spectral measure is a

semicircle, it suffices to show that all non-Catalan words contribute zero. Specifically, we

will show that the contribution of a word that is fully crossed, or a word that has no adjacent

pairs, is zero. This shows that all non-Catalan words contribute zero, since the contribution

of any non-Catalan word with adjacent pairs is calculated by “lifting” the adjacent pairs,

and any loss in degrees of freedom in lower moments will propagate through these adjacent

pairs. We will let β grow to infinity as a function of N , such that limN→∞f(N) =∞:

L(i, j) =

αi− f(N)j i ≤ j

−f(N)i+ αj i > j.
(2.50)

Any fully crossed matching will have non-adjacent pairs of the form aL(i1,i2) = aL(i3,i4).

For any such pair there are four possible sets of zones for the matching, each of which

will result in one index with coefficient α on both sides of the equation and one index with

coefficient β on both sides of the L-value equation. Without loss of generality, then, we

21See Bose for proof of the fact that the limiting distribution is universal for all matrix ensembles that

satisfy Property B.
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will assume that ai1i2 ∈ Zone 1 and ai3i4 ∈ Zone 1. The corresponding L-value equation

has the form

απ(0)− f(N)π(1) = απ(2)− f(N)π(3). (2.51)

In the following argument, we also want to choose entries ai1i2 and ai3i4 to be specific letters

in the fully crossed word. We will pick this matched pair such that all letters between the

letters that correspond to these entries are distinct. Pick a matched pair, then check if there

are any duplicated letters between these matched letters. If there are duplicated letters,

then choose the entries corresponding to those letters to be the matched pair. Continue this

process until all the intermediate letters are distinct. There must be at least one distinct

letter between the matched letters remaining; otherwise, the word would have an adjacent

pair. For the resulting pair, choose the first vertex to be the generating vertex π(0). Then

the next vertex, π(1), is also a generating vertex, as it now corresponds to the first letter in

the word. Although we cannot know in general the location of the other vertices, we will

just name them π(2) and π(3). Since intermediate letters are distinct and the word began

with generating vertex π(0), π(2) must correspond to the first occurrence of a letter in the

word, making π(2) another generating vertex. Therefore, there are at least three generating

vertices in this pair. Let’s say that there are x degrees of freedom in choosing all four

vertices in this matching. There were initially k + 1 generating vertices, but now there are

at most k − 2 generating vertices remaining and at most x + k − 2 degrees of freedom in

total. If we can show that x < 3, then any non-Catalan word of length 2k contributes zero

to the 2kth moment, since there must be k + 1 degrees of freedom for a contribution.

Here there are at most N choices for π(0) and N choices for π(1). Then the number of

choices for π(2) and π(3) is equivalent to the number of matchings in the matrix for entry

ai1i2 , given fixed values for π(0) and π(1). In the upper triangle of the matrix, when N is

large enough, there will be at most
⌈

N
f(N)/g

⌉
matchings where g = gcd(α, f(N)). So in

totall, there are at most 2
⌈

N
f(N)/g

⌉
matchings. To see if there are fewer than three degrees

of freedom, we check if limN→∞
#solutions to Eq. 2.51

N3 = 0. Dropping the ceiling notation, we

have

limN→∞
#solutions to Eq. 2.51

N3
∝ limN→∞

2N3

N3f(N)/g
= limN→∞

2g

f(N)
= 0. (2.52)

Since the same argument holds for every set of zones, x < 3. A similar proof holds for

α→∞. �

2.2. Generalized Hankel Matrices. Real symmetric Hankel matrices are matrices that

are constant along the skew diagonals, or lines with slope 1. The link function for Hankel
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FIGURE 9. Histograms of numerical eigenvalues of 100 generalized Hankel

matrices of size 1200 × 1200. Each has α = 1. Clockwise from the upper

left, β is equal to 1, 2, 3, and 4. The red curve is the semicircle distribution

of Eq. 1.3 for an eigenvalue normalization of 2
√
N . See section 7.1 for

details on normalizations for the eigenvalues.

matrices can be written as L(i, j) = i+j. We will generalize the link function to all positive

rational slopes in the upper triangle by introducing parameters α and β for a generalized

Hankel link function.22 For fixed α, β ∈ Q+,

Lα,β(i, j) =


αi+ βj i ≤ j

βi+ αj i > j.

(2.53)

A matrix with α = β reduces to the original Hankel matrix, while a 5 × 5 matrix with

α = 2 and β = 1 would have the structure

A =


a3 a4 a5 a6 a7

a4 a6 a7 a8 a9

a5 a7 a9 a10 a11

a6 a8 a10 a12 a13

a7 a9 a11 a13 a15

 . (2.54)

22As in the generalized Toeplitz case, we restrict the parameters to rational numbers.
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Lower moments of the Hankel matrices are known, and it has been proved that the Han-

kel limiting spectral distribution is not unimodal. The following table compares low mo-

ments for the Gaussian, Toeplitz, Hankel, and semicircular distributions:

Moment Gaussian Toeplitz Hankel Semicircle

M4 3 22
3

2 2

M6 15 11 51
2

5

M8 105 64 4
16

1811
15

14

(2.55)

As in the generalized Toeplitz case, numerics suggest that the generalized Hankel matri-

ces have a near-semicircular limiting spectral distribution. Figure 9 shows simulations of

the limiting spectral distribution for generalized Hankel matrices for α = 1 and several

values of β. The histograms clearly show the bimodal behavior for β = 1, which corre-

sponds to original Hankel matrices. For larger values of β, however, the distribution looks

increasingly semicircular. We now compute low moments for the generalized Hankel en-

semble and prove that low even moments deviate from the Catalan numbers by a factor that

depends on α and β, which is smaller than that of the generalized Toeplitz matrices. We

again prove that as either α or β tends to infinity, the limiting spectral distribution converges

to the semicircle.

2.2.1. Odd Moments. Because the slopes in the upper triangle for matrices with the gener-

alized Hankel link function can never be zero, ∆(L) is at most one. Odd moments are then

zero, because these matrices satisfy Property B.

2.2.2. Zeroth and Second Moments. By the same calculation in the generalized Toeplitz

case, M0 = M2 = 1.

2.2.3. Fourth Moment. Again following the same procedure as in the generalized Toeplitz

case, we first count the number of circuits for the word aabb. Since the generalized Han-

kel link function satisfies the link function properties required for Lemma 2.3, all Catalan

words contribute one. Now consider contributions from the word abab. By the same argu-

ment that applied in the generalized Toeplitz case, there will be an extra constraint in the

L-value equations if α 6= β. For α = β, we are reduced to original Hankel matrices, and

Bose shows that the contribution for this word is zero. Thus, we have

M4(α, β) = 2. (2.56)
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2.2.4. Sixth Moment. By Lemma 2.3, the words aabbcc, aabccb and other words isomor-

phic to them contribute one to the sixth moment. Using the process of “lifting”, the word

aabcbc contributes zero, since the non-contributing structure bcbc is embedded within that

word. Counting linear constraints, the word abacbc contributes zero when α 6= β. It also

contributes zero when α = β, according to calculations in Bose.

For the word abcabc and others isomorphic to it, we follow the generalized Toeplitz

calculation. The two sets of contributing L-value equations are

βπ(0) + απ(1) = απ(3) + βπ(4)

απ(1) + βπ(2) = βπ(4) + απ(5)

βπ(2) + απ(3) = απ(5) + βπ(6)

(2.57)

and

απ(0) + βπ(1) = βπ(3) + απ(4)

βπ(1) + απ(2) = απ(4) + βπ(5)

απ(2) + βπ(3) = βπ(5) + απ(6).

(2.58)

In addition to the zonewise constraints, we have the following constraints for the trans-

formed variables:

v4 = v0 +
β

α
v1 −

β

α
v3

v5 =
α

β
v2 + v3 −

α

β
v0.

(2.59)

For a = α
β

and β > α, we integrate

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ v0 +
v1

a
− v3

a
≤ 1 and 0 ≤ av2 + v3 − av0 ≤ 1 and v0 > v1

and v1 < v2 and v2 > v3 and v3 < v0 +
v1

a
− v3

a
and v0 +

v1

a
− v3

a
> av2 + v3 − av0 and

av2 + v3 − av0 < v0)dv1dv2dv3dv0.

(2.60)
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FIGURE 10. A 3D Mathematica listplot of the sixth moment for generalized

Hankel matrices, M6(α, β), for integer values of α and β with α 6= β up to

20.

This integral can be calculated in a similar manner as the generalized Toeplitz case, and the

same transformation of indices applies for computing the integral for β < α. The result is:

M6(α, β) =



5 + α
2

β
(α+β)2

α < β

5 + α
2

β
(α+β)2

α > β

51
2

α = β.

(2.61)

Using Mathematica we computed the relevant integrals for low fixed values of α and β

and had agreement with the above formula:

α β M6(α, β)

1 2 46
9

= 5 + 1
9

1 3 163
32

= 5 + 3
32

2 1 46
9

= 5 + 1
9

2 3 163
32

= 5 + 3
32

(2.62)
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We collect the calculations for the moments of generalized Toeplitz and generalized

Hankel matrices:

Moment Generalized Toeplitz Generalized Hankel

M4

2 α 6= β

22
3

α = β
2

M6


5 + α

2
1

α+β
α ≤ β

5 + β
2

1
α+β

α > β

11 α = β


5 + α

2
β

(α+β)2
α ≤ β

5 + α
2

β
(α+β)2

α > β

51
2

α = β

(2.63)

2.2.5. Existence of Higher Moments. As in the generalized Toeplitz case, although we

cannot find a closed-form expression for all higher moments, we can show that higher mo-

ments exist and are finite.

Lemma 2.7 (Existence of Higher Moments.) If the probability distribution p(x) has mean

zero and variance one, then for all k, Mk = limN→∞Mk(N) exists and is finite.

Proof. The proof follows as in Lemma 2.4. �

2.2.6. Bounds on the Moments. It is easy to argue the following bounds for the moments.

Lemma 2.8 (Bounds on the Moments.) Let C2k be the 2kth moment of the semicir-

cle distribution, M2k(H) the 2kth moment of the Hankel ensemble limiting distribution,

and M2k (α, β) the 2kth moment of the generalized Hankel ensemble limiting distribution.

Then, C2k ≤M2k (α, β) < M2k(H) for all non-negative integers k.

Proof. The proof follows as in Lemma 2.5 �

2.2.7. Convergence. Now that we have calculated low moments of the limiting spectral

distribution and proved that all higher moments exist and are finite, we can show that

the empirical measures for generalized Hankel matrices converge in probability and al-

most surely to a unique limiting spectral distribution that is universal. By the arguments in

section 1.2.4 and the fact that these matrices satisfy Property B, the limiting moments deter-

mine a unique limiting spectral distribution. By the arguments in section 1.2.5, Var[Mk(AN)]→
0 and the empirical spectral distributions converge in probability to the limiting spectral

distribution. By the arguments in section 1.2.6, the empirical distributions converge almost
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surely to the limiting distribution. All of the above arguments only depend on p(x) hav-

ing mean zero, variance one, and uniformly bounded moments of all order. Hence, the

convergence is universal.

2.2.8. Limiting Behavior. We can also show that in the limit as either α or β becomes very

large, the moments of the generalized Hankel ensemble approach those of the semicircle

measure. This is clear for the sixth moment, for example, which approaches the sixth

Catalan number in either limit:

For fixed α, limβ→∞ M6(α, β) = limβ→∞ 5 +
α

2

β

(α + β)2
= 5.

For fixed β, limα→∞ M6(α, β) = limα→∞ 5 +
α

2

β

(α + β)2
= 5.

(2.64)

In general, we assert the following:

Lemma 2.8 (Limiting Behavior for Generalized Hankel Matrices.) For fixed α,

limβ→∞ M2k(α, β) = C2k and for fixed β, limα→∞ M2k(α, β) = C2k for generalized

Hankel matrices when the limits are taken appropriately.

Proof. The proof follows as in Lemma 2.6. �

3. HIGHER ORDER POLYNOMIALS WITH EQUAL POWERS

3.1. Hyperbolic Matrices. We can further generalize the Toeplitz matrices by raising the

variables in the link function to powers higher than one. Here we will raise both indices to

the same power by introducing the parameter, n, giving us a link function for the hyperbolic

matrices. For α, β ∈ Q+ and n > 1, we will define

Lα,β(i, j) =


αin − βjn i ≤ j

−βin + αjn i > j.

(3.1)

We call this the hyperbolic ensemble, since for n = 2, entries share the same L-value in the

upper triangle of the matrix if they lie along the same hyperbola. Although higher moment

calculations become very difficult, we are able to calculate the fourth moment for n = 2

and α = β and show that it deviates from the corresponding semicircle moment.

3.1.1. Odd Moments. Because entries that share L-values lie along hyperbolas, ∆(L) is at

most one. Odd moments are then zero, because these matrices satisfy Property B.
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3.1.2. Zeroth and Second Moments. By the same calculation that applied in the general-

ized Toeplitz case, M0 = M2 = 1.

3.1.3. Fourth Moment. Following the same procedure that applied in generalized Toeplitz

case, we first count the number of circuits for the word aabb. Since the link function

satisfies the required conditions in Lemma 2.3, all Catalan words contribute one.

Now consider the word abab. When α 6= β, obstructions arise that lead to a loss in

degrees of freedom, by the same reasoning as in the Toeplitz case. However, when α = β,

there is the possibility of a nonzero contribution. We calculate this for n = 2. Interestingly,

the contribution is less than the corresponding Toeplitz contribution, 2
3
. Since pairs must be

in opposite zones, we are left with four possibilities for matchings in the word abab, which

we integrate using similar methods as in the generalized Toeplitz case:

(1) ai1i2 ∈ Zone 1, ai3i4 ∈ Zone 2, ai2i3 ∈ Zone 1, and ai4i1 ∈ Zone 2:

π(0)2 − π(1)2 = −π(2)2 + π(3)2 and π(1)2 − π(2)2 = −π(3)2 + π(0)2 −→∫ 1

0

∫ 1

0

∫ 1

0
I(0 ≤

√
v2

0 − v2
1 + v2

2 ≤ 1 and v0 < v1 and v1 < v2 and

v0 <
√
v2

0 − v2
1 + v2

2 and
√
v2

0 − v2
1 + v2

2 < v2)dv0dv1dv2 = 1
6

(2) ai1i2 ∈ Zone 1, ai3i4 ∈ Zone 2, ai2i3 ∈ Zone 2, and ai4i1 ∈ Zone 1:

π(0)2 − π(1)2 = −π(2)2 + π(3)2 and − π(1)2 + π(2)2 = π(3)2 − π(0)2 −→∫ 1

0

∫ 1

0

∫ 1

0
I(0 ≤

√
v2

0 − v2
1 + v2

2 ≤ 1 and v0 < v1 and v1 > v2 and

v0 >
√
v2

0 − v2
1 + v2

2 and
√
v2

0 − v2
1 + v2

2 < v2)dv0dv1dv2 = 4−π
12

(3) ai1i2 ∈ Zone 2, ai3i4 ∈ Zone 1, ai2i3 ∈ Zone 1, and ai4i1 ∈ Zone 2:

−π(0)2 + π(1)2 = π(2)2 − π(3)2 and π(1)2 − π(2)2 = −π(3)2 + π(0)2 −→∫ 1

0

∫ 1

0

∫ 1

0
I(0 ≤

√
v2

0 − v2
1 + v2

2 ≤ 1 and v0 > v1 and v1 < v2 and

v0 <
√
v2

0 − v2
1 + v2

2 and
√
v2

0 − v2
1 + v2

2 > v2)dv0dv1dv2 = Log(2)
3

(4) ai1i2 ∈ Zone 2, ai3i4 ∈ Zone 1, ai2i3 ∈ Zone 2, and ai4i1 ∈ Zone 1:

−π(0)2 + π(1)2 = π(2)2 − π(3)2 and − π(1)2 + π(2)2 = π(3)2 − π(0)2 −→∫ 1

0

∫ 1

0

∫ 1

0
I(0 ≤

√
v2

0 − v2
1 + v2

2 ≤ 1 and v0 > v1 and v1 > v2 and

v0 >
√
v2

0 − v2
1 + v2

2 and
√
v2

0 − v2
1 + v2

2 > v2)dv0dv1dv2 = 1
6
.

Therefore, for α = β and n = 2,

M4 = 2 +
8− π + 2Log(4)

12
<

8

3
(3.2)

and

M4 6= C4. (3.3)
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3.2. Elliptical Matrices. We can further generalize the Hankel matrices by raising the

variables in the link function to powers higher than one. Here we will raise both indices to

the same power by introducing the parameter, n, giving us a link function for the elliptic

matrices. For α, β ∈ Q+ and n > 1,

Lα,β(i, j) =


αin + βjn i ≤ j

βin + αjn i > j.

(3.4)

We call this the elliptical ensemble, since for n = 2, entries share the same L-value in the

upper triangle of the matrix if they lie along the same ellipse. Although higher moment

calculations become very difficult, we are able to calculate the fourth moment for n = 2

and any α and β and show that it is equal to the corresponding semicircle moment.

3.2.1. Odd Moments. Because entries that share L-values lie along ellipses, ∆(L) is at

most one. Odd moments are then zero, because these matrices satisfy Property B.

3.2.2. Zeroth and Second Moments. M0 = M2 = 1 by the same calculation that applied

generalized Toeplitz case.

3.2.3. Fourth Moment. Following the same procedure that applied in the generalized Toeplitz

case, we first count the number of circuits for the word aabb. The link function satisfies

the requirements of Lemma 2.3, so all Catalan words contribute one. Now we consider

versions of the word abab. When α 6= β, obstructions arise that lead to a loss in degrees

of freedom. When α = β, the contribution is zero via previous integration techniques.

Therefore,

M4(α, β) = 2. (3.5)

It would require calculating higher moments to determine if the limiting spectral distribu-

tion is semicircular or non-semicircular.

4. POLYNOMIALS WITH DIFFERENT POWERS

4.1. Parabolic Toeplitz Matrices. We will further generalize the Toeplitz matrices by

expanding the variables in their link function using two polynomials of different order. Let

p1(x) = amx
m + am−1x

m−1 + · · ·+ a0 for some m ∈ R+ and p2(x) = bnx
n + bn−1x

n−1 +

· · ·+ b0 for some n ∈ R+, where all the coefficients in both polynomials are non-negative,
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the leading order coefficients are both non-zero, and m 6= n. The link function for the

parabolic Toeplitz matrices is:

L(i, j) =

p1(i)− p2(j) i ≤ j

−p2(i) + p1(j) i > j.
(4.1)

We call this the parabolic Toeplitz ensemble since, for m = 2 and n = 1, entries share the

same L-value in the upper triangle of the matrix if they lie along the same parabola. In the

following sections, we will prove that matrices with this link function have a semicircular

limiting spectral distribution.

Proposition 4.1 (Limiting Spectral Distribution of Parabolic Toeplitz Matrices.) For ma-

trices with the parabolic Toeplitz link function, M2k = C2k for every positive integer k, and

the limiting spectral distribution of the ensemble is the semicircle.

Before proving most general case, we will first assume that only the coefficients of the

leading order term in each polynomial are non-zero:

Lα,β(i, j) =


αim − βjn i ≤ j

−βin + αjm i > j.

(4.2)

A 5× 5 matrix with α = β, m = 2, and n = 1 would have the structure

A =


a0 a−1 a−2 a−3 a−4

a−1 a2 a1 a0 a−1

a−2 a1 a6 a5 a4

a−3 a0 a5 a12 a11

a−4 a−1 a4 a11 a20

 . (4.3)

We now show that this link function yields a semicircular limiting spectral distribution.

4.1.1. Odd Moments. Fix a row and column in the upper triangle of the matrix to the get

L-value αim − βjn. Any other column in that row will produce a change in j and thus a

change in the L-value. ∆(L) is at most one, then, and odd moments are zero because these

matrices satisfy Property B.

4.1.2. Zeroth and Second Moments. By the same calculation that applied in Toeplitz case,

M0 = M2 = 1.
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4.1.3. Catalan Words. Since the link function satisfies the conditions in Lemma 2.3, every

Catalan word of length 2k contributes one to the 2kth moment.

4.1.4. Crossed Words. To prove that the limiting spectral measure is a semicircle, it suf-

fices to show that all non-Catalan words contribute zero. Specifically, we will show that

the contribution of a word that is fully crossed, or a word that has no adjacent pairs, is zero.

This shows that all non-Catalan words contribute zero, since the contribution of any non-

Catalan word with adjacent pairs is calculated by adjacent “lifting”, and any loss in degrees

of freedom in lower moments will propagate through these adjacent pairs. Again, we can

use adjacent “lifting” because all adjacent pairs must be in opposite zones by Lemma 2.2.

Any fully crossed matching will have non-adjacent pairs of the form ai1i2 = ai3i4 . For

any such pair, there are four possible sets of zones for the matching, each of which will

result in one index with coefficient α and power m on each side of the L-value equation

and one index with coefficient −β and power n on each side of the equation. Without loss

of generality, then, we will assume that ai1i2 ∈ Zone 1 and ai3i4 ∈ Zone 1. We will also

assume, without loss of generality, that m > n. The corresponding L-value equation has

the form:

απ(0)m − βπ(1)n = απ(2)m − βπ(3)n. (4.4)

In the following argument, we also want to choose the entries ai1i2 and ai3i4 to be specific

letters in the fully crossed word. This argument follows as in Lemma 2.6. We will pick

this matched pair such that all letters between the letters that correspond to these entries are

distinct. Pick a matched pair, then check if there are any duplicated letters between these

matched letters. If there are duplicated letters, then choose the entries corresponding to

those letters to be the matched pair. Continue this process until all the intermediate letters

are distinct. There must be at least one distinct letter between the matched letters remaining;

otherwise, the word would have an adjacent pair. For the resulting pair, choose the first

index to be the generating vertex π(0). Then the next vertex, π(1), is also a generating

vertex, as it now corresponds to the first letter in the word. Although we cannot know in

general the location of the other vertices, we will just name them π(2) and π(3). Since

intermediate letters are distinct and the word began with generating vertex π(0), π(2) must

correspond to the first occurrence of a letter in the word, making π(2) another generating

vertex. Therefore, there are at least three generating vertices in this pair. Let’s say that there

are x degrees of freedom in choosing all four vertices in this matching. There were initially

k + 1 generating vertices, but now there are at most k − 2 generating vertices remaining

and at most x + k − 2 degrees of freedom in total. If we can show that x < 3, then any
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non-Catalan word contributes zero to its moment, since there must be k + 1 degrees of

freedom for a contribution.

First, rearrange the L-value equation to get:

α (π(0)m − π(2)m) = β (π(1)n − π(3)n) . (4.5)

Although we have chosen the entries to be in specific zones, we will relax these restrictions

and assume that the only constraint is from the L-value equation. First, assume that π(1) ≥
π(3). Since vertices are at least one and at most N , π(0) and π(2) must be chosen so that

0 ≤ π(0)m − π(2)m ≤ β

α
(Nn − 1) . (4.6)

Otherwise, there will be no valid choices for π(1) and π(3). Again, we will relax the upper

bound and simply impose

0 ≤ π(0)m − π(2)m ≤ β

α
Nn. (4.7)

Choose π(1), which must be between 1 and N . Then π(2) is constrained by
(
π(0)m − α

β
Nn
) 1
m ≤ π(2) ≤ π(0) if

(
π(0)m − α

β
Nn
) 1
m
> 1

1 ≤ π(2) ≤ π(0) if
(
π(0)m − α

β
Nn
) 1
m ≤ 1.

(4.8)

Again, we will relax the constraint without artificially restricting degrees of freedom by

choosing the second lower bound above to be zero:
(
π(0)m − α

β
Nn
) 1
m ≤ π(2) ≤ π(0) if

(
π(0)m − α

β
Nn
) 1
m
> 1

0 ≤ π(2) ≤ π(0) if
(
π(0)m − α

β
Nn
) 1
m ≤ 1.

(4.9)

The number of valid choices for π(0) and π(2) is then given by:

N∑
π(0)=1

N∑
π(2)=1

I

(
π(2) ≤ π(0) and π(2) ≥

(
π(0)m − α

β
Nn

) 1
m

)
. (4.10)

For convenience we will split the outer sum at
(
α
β

) 1
m
N

n
m :

(αβ )
1
mN

n
m∑

π(0)=1

π(0)∑
π(2)=0

1 +
N∑

π(0)=(αβ )
1
mN

n
m

π(0)∑
π(2)=(π(0)m−α

β
Nn)

1
m

1. (4.11)
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Since we only care about very large matrices, we will let N → ∞. In this limit, the sums

become integrals:

∫ (αβ )
1
mN

n
m

π(0)=1

∫ π(0)

π(2)=0

dπ(0)dπ(2) +

∫ N

π(0)=(αβ )
1
mN

n
m

∫ π(0)

π(2)=(π(0)m−α
β
Nn)

1
m

dπ(0)dπ(2). (4.12)

From Mathematica, the count is23:(
α
β

) 2
m
N

2n
m

2
− 1

2
+
N2

2
−

(
α
β

) 2
m
N

2n
m

2
+

2
−2
m N

2n
m Γ
(

1
2
− 1

m

)
Γ
(
1 + 1

m

)
2
√
π

− N2

2
2F1

[
− 2

m
,− 1

m
,
m− 2

m
,

α
β

Nm−n

]
,

(4.13)

where 2F1[a, b, c, z] = 1 is the hypergeometric function, defined for |z| < 1 on Wolfram

MathWorld [WMW] by the power series

2F1[a, b, c, z] =
∞∑
n=0

(a)n(b)nz
n

(c)nn!
, (4.14)

with

(q)n =

1 if n = 0

q(q + 1) · · · (q + n− 1) if n > 0.
(4.15)

To check if there are at least two degrees of freedom, we divide by N2 and take the limit

N → ∞. Since 2n
m
< 2, the first, second, fourth, and fifth terms vanish in the limit. From

the power series expansion, we see that for any a ∈ C, b ∈ C, and c ∈ {C\(Z− ∪ {0})},
2F1[a, b, c, 0] = 1. Since 1

Nm−n → 0, we are left with 1
2
− 1

2
= 0.

Therefore, there are fewer than two degrees of freedom when choosing π(0) and π(2).

Choose π(1), then π(3) is fixed by the L-value equation. There are fewer than three degrees

of freedom here. Assuming π(1) < π(3) gives the same number of solutions, as do all other

sets of zones for the pairs. Letting n > m would lead to a similar calculation and the same

results. Therefore, x < 3 and the limiting spectral distribution is semicircular.

The general proof is motivated by the idea that the leading order terms in the polynomials

dominate. We proceed in a similar manner.

23We could apply a binomial approximation here and prove the result by hand. We will do this for the

general case.
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4.1.5. Odd Moments. Fix a row and column in the upper triangle of the matrix to get the

L-value p1(i)− p2(j). Any other column in that row will produce a change in the L-value,

because p2(j) is a monotonically increasing function for non-negative arguments. ∆(L) is

at most one, then, and odd moments are zero because these matrices satisfy Property B.

4.1.6. Zeroth and Second Moments. By the same calculation that applied in the general-

ized Toeplitz case, M0 = M2 = 1.

4.1.7. Catalan Words. Since the link function satisfies conditions in Lemma 2.3, every

Catalan word of length 2k contributes one to the 2kth moment.

4.1.8. Crossed Words. To prove that the limiting spectral measure is a semicircle, it suf-

fices to show that all non-Catalan words contribute zero. Following the argument above, we

pick matched entries appropriately and count the number of solutions to show that x < 3.

Without loss of generality, we assume that ai1i2 ∈ Zone 1, ai3i4 ∈ Zone 1, and m > n.

The relevant L-value equation is then

p1 (π(0))− p2 (π(1)) = p1 (π(2))− p2 (π(3)) . (4.16)

Rearranging the equation, we have

p1 (π(0))− p1 (π(2)) = p2 (π(1))− p2 (π(3)) . (4.17)

Although we have chosen the entries to be in specific zones, we will relax these restrictions

and assume that the only constraint is from the L-value equation. First, assume that π(1) ≥
π(3), and let b = max(bi) for i ∈ {0, n}. Since indices are at least one and at most N , π(0)

and π(2) must be chosen so that

0 ≤ p1 (π(0))− p1 (π(2)) ≤ b(n+ 1)Nn −
n∑
i=0

bi. (4.18)

Otherwise, there will be no valid choices for π(1) and π(3). Again, we relax the upper

bound and simply impose

0 ≤ p1 (π(0))− p1 (π(2)) ≤ b(n+ 1)Nn. (4.19)

Choose π(1), which must be between 1 and N . Then π(2) is constrained byp1 (π(0))− b(n+ 1)Nn ≤ p1 (π(2)) ≤ π(0) if p1 (π(0))− b(n+ 1)Nn > 1

1 ≤ p1 (π(2)) ≤ π(0) if p1 (π(0))− b(n+ 1)Nn ≤ 1.

(4.20)
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Once again, we will relax the constraints without artificially restricting degrees of freedom

by choosing the second lower bound to be zero:p1 (π(0))− b(n+ 1)Nn ≤ p1 (π(2)) ≤ π(0) if p1 (π(0))− b(n+ 1)Nn > 1

0 ≤ p1 (π(2)) ≤ π(0) if p1 (π(0))− b(n+ 1)Nn ≤ 1.

(4.21)

For large N , the number of valid choices for π(0) and π(2) becomes an integral:∫ N

1

∫ N

1

I (π(2) ≤ π(0) and p1 (π(2)) ≥ p1 (π(0))− b(n+ 1)Nn) dπ(2)dπ(0). (4.22)

Let Π be a placeholder for the integrand and let C be a constant independent ofN . We then

have∫ N

1

∫ N

1

Πdπ(2)dπ(0) =

∫ C

1

∫ N

1

Πdπ(2)dπ(0) +

∫ N

C

∫ N

1

Πdπ(2)dπ(0)

≤
∫ C

1

∫ N

0

Πdπ(2)dπ(0) +

∫ N

C

∫ C

0

Πdπ(2)dπ(0) +

∫ N

C

∫ N

C

Πdπ(2)dπ(0)

≤ N(C − 1) + C(N − C) +

∫ N

C

∫ N

C

Πdπ(2)dπ(0).

(4.23)

Since we are dividing by N2 and taking the limit of large N , we can ignore the first two

terms. For the third term, if p′1(x) = p1(x)
am∫ N

1

∫ N

1

Πdπ(2)dπ(0)

≈
∫ N

C

∫ N

C

I (π(2) ≤ π(0) and p1 (π(2)) ≥ p1 (π(0))− b(n+ 1)Nn) dπ(2)dπ(0)

≈
∫ N

C

∫ π(0)

C

I (p1 (π(2)) ≥ p1 (π(0))− b(n+ 1)Nn) dπ(2)dπ(0)

≈
∫ N

C

∫ π(0)

C

I
(
p′1 (π(2)) ≥ p′1 (π(0))− b(n+ 1)

am
Nn

)
dπ(2)dπ(0).

(4.24)

We prove the following lemma.

Lemma 4.1 (Polynomials Dominated by Leading Term.) Let p(x) = xk + ak−1x
k−1 +

· · ·+ a0. We can choose x large enough such that (1− ε)xk < p(x) < (1 + ε)xk.

Proof. Let q(x) = ak−1x
k−1 + · · · + a0. Then p(x)−xk

xk
= q(x)

xk
. Since xk dominates the

leading order terms of q(x) in the limit of large x, we can choose x large enough such that
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for any ε′ > 0, p(x)−xk
xk

= ε′. This gives us p(x) = (1 + ε′)xk. If we let ε = 2ε′, we have

(1− ε)xk < p(x) < (1 + ε)xk. �

We now expand the region of integration; by Lemma 4.1, for any ε there exists a C large

enough such that

∫ N

1

∫ N

1

Πdπ(2)dπ(0) ≤
∫ N

C

∫ π(0)

C

I
(

(1 + ε)π(2)m ≥ (1− ε)π(0)m − b(n+ 1)

am
Nn

)
dπ(2)dπ(0)

≤
∫ N

C

∫ π(0)

C

I

(
π(2) ≥

(
(1− ε)
(1 + ε)

π(0)m − b(n+ 1)

am(1 + ε)
Nn

) 1
m

)
dπ(2)dπ(0)

≤
∫ N

C

∫ π(0)

C

I

(
π(2) ≥

(
(1− 2ε+O(ε2))π(0)m − b(n+ 1)

am(1 + ε)
Nn

) 1
m

)
dπ(2)dπ(0)

≤
∫ (

3b(n+1)Nn

am(1+ε)

) 1
m

C

∫ π(0)

C

dπ(2)dπ(0)+∫ N

( 3b(n+1)Nn

am(1+ε) )
1
m

∫ π(0)

C

I

(
π(2) ≥

(
(1− 2ε+O

(
ε2
)
)π(0)m − b(n+ 1)

am(1 + ε)
Nn

) 1
m

)
dπ(2)dπ(0).

(4.25)

The first term becomes negligible when we divide by N2 and take the limit

∫ (
3b(n+1)Nn

am(1+ε)

) 1
m

C

∫ π(0)

C

dπ(2)dπ(0)

=
(3b)

2
m (n+ 1)

2
m

2(am)
2
m (1 + ε)

1
m

N
2n
m − C (3b(n+ 1))

1
m

(am(1 + ε))
1
m

N
n
m − 3C2

2
,

(4.26)

since 2n
m
< 2. For the second term, we use the indicator function to define a lower bound for

the inner integral, integrate that integral, and pull out a factor of π(0)m from the resulting

second term:

∫ N

( 3b(n+1)Nn

am(1+ε) )
1
m
π(0)− π(0)

(
(1− 2ε+O

(
ε2
)
)− b(n+ 1)

am(1 + ε)π(0)m
Nn

) 1
m

dπ(2)dπ(0).

(4.27)
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From the lower bound of π(0), the term raised to power 1
m

is at most 1− 1
3
− 2ε + O (ε2).

We can therefore apply a binomial expansion and just keep the leading order term:∫ N

( 3b(n+1)Nn

am(1+ε) )
1
m
π(0)− π(0)

(
1− 2ε

m
+
O (ε2)

m
− b(n+ 1)

mam(1 + ε)π(0)m
Nn

)
dπ(2)dπ(0).

(4.28)

Since m > n the only resulting terms that appear to depend on N2 are

N2ε

m
− N2O (ε2)

2m
, (4.29)

but we can choose C large enough that ε→ 0. So,

limN→∞
1

N2

∫ N

1

∫ N

1

Πdπ(2)dπ(0) = 0. (4.30)

Choose π(0) and π(2) with fewer than two degrees of freedom. Choose π(1), then π(3) is

fixed by the L-value equation, and there are fewer than three degrees of freedom. Letting

π(1) < π(3) yields the same results. Choosing any other set of zones for the matched pair

will also yield the same results, as will allowing n > m. Therefore x < 3, and the limiting

spectral distribution is semicircular.

4.1.9. Convergence. By the arguments in section 1.2.5, Var[Mk(AN)] → 0 and the em-

pirical spectral distributions converge in probability to the semicircle. By the arguments in

section 1.2.6, the empirical distributions converge almost surely to the semicircle. All of

the above arguments only depend on p(x) having mean zero, variance one, and uniformly

bounded moments of all order. Hence, the convergence is universal.

4.2. Parabolic Hankel Matrices. We can likewise generalize the Hankel matrices by ex-

panding the variables in their link function with polynomials of different order. Let p1(x) =

amx
m+am−1x

m−1 + · · ·+a0 for somem ∈ R+ and p2(x) = bnx
n+bn−1x

n−1 + · · ·+b0 for

some n ∈ R+, where all the coefficients in both polynomials are non-negative, the lead-

ing order coefficients are both non-zero, and m 6= n. The link function for the parabolic

Hankel matrices is given by

L(i, j) =

p1(i) + p2(j) i ≤ j

p2(i) + p1(j) i > j.
(4.31)

We call this the parabolic Hankel ensemble since, for m = 2 and n = 1, entries share the

same L-value in the upper triangle of the matrix if they lie along the same parabola. In

the following sections, we prove that matrices with this link function have a semicircular

limiting spectral distribution.
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Proposition 4.2(Limiting Spectral Distribution of Parabolic Hankel Matrices.) For ma-

trices with the parabolic Hankel link function, M2k = C2k for every positive integer k, and

the limiting spectral distribution of the ensemble is the semicircle.

4.2.1. Odd Moments. Fix a row and column in the upper triangle of the matrix to get the

L-value p1(i) + p2(j). Any other column in that row will produce a change in the L-value

because p2(j) is a monotonically increasing function for non-negative arguments. ∆(L) is

at most one, then, and odd moments are zero because these matrices satisfy Property B.

4.2.2. Zeroth and Second Moments. By the same calculation in the Toeplitz case, M0 =

M2 = 1.

4.2.3. Catalan Words. Since the link function satisfies the conditions in Lemma 2.3, every

Catalan word contributes one to its corresponding moment.

4.2.4. Crossed Words. To prove that the limiting spectral measure is a semicircle, it suf-

fices to show that all non-Catalan words contribute zero. Following the same argument as

above, we pick matched entries appropriately and count the number of solutions to show

that x < 3. Without loss of generality, we assume that ai1i2 ∈ Zone 1, ai3i4 ∈ Zone 1, and

m > n. The relevant L-value equation is then

p1 (π(0)) + p2 (π(1)) = p1 (π(2)) + p2 (π(3)) . (4.32)

Rearranging the equation, we have

p1 (π(0))− p1 (π(2)) = p2 (π(3))− p2 (π(1)) . (4.33)

At this point, the methods from the previous section apply directly and the proof follows.

4.2.5. Convergence. By the arguments in section 1.2.5, Var[Mk(AN)] → 0 and the em-

pirical spectral distributions converge in probability to the semicircle. By the arguments in

section 1.2.6, the empirical distributions converge almost surely to the semicircle. All of

the above arguments only depend on p(x) having mean zero, variance one, and uniformly

bounded moments of all order. Hence, the convergence is universal.

5. FUTURE RESEARCH

We have shown that several bivariate polynomial link functions in which the variables

in the link function are raised to the same power have a non-semicircular limiting spectral

distribution. Although computing higher moments became intractable, we were able to

show the dependence of the moments on the link function parameters, α and β. We also
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proved that for any bivariate polynomial link function in which the polynomials in the two

variables are raised to different powers and all coefficients are non-negative, the limiting

spectral distribution is semicircular.

For the generalized Toeplitz, generalized Hankel, and hyperbolic matrices, future work

includes developing a closed-form expression for all higher moments, analyzing rates of

convergence, and developing sharper moment bounds. For the elliptic ensemble, it would

be interesting to directly compute the sixth moment and higher moments to check whether

the limiting distribution is non-semicircular. Since integration over the appropriate regions

becomes difficult, it might be worthwhile to recast the problem as counting solutions to

Diophantine equations or summing over lattice points inside a specified region, instead of

integration. In addition, it would be worthwhile to make Proposition 4.1 as general as pos-

sible. What can be said about the limiting spectral distribution for a link function composed

of different-order polynomials that do not necessarily have all non-negative coefficients?

What can be said in general about link functions composed of polynomials of the same

order? Researching these questions would not only help describe why only certain poly-

nomial link functions have a semicircular limiting spectral distribution, but also illuminate

the general problem of determining to what extent patterned random matrices maintain the

semicircular distribution of the original Wigner matrices.

Many of the desired properties for the link functions studied in this thesis, such as odd

moments being zero and almost sure convergence to the limiting spectral distribution, fol-

low from Property B. An interesting question to ask, then, is what happens to link functions

that do not satisfy Property B? This property requires that as a matrix grows to infinite size,

the maximum number of repetitions of the same random variable in any row or column

is finite. We might consider breaking this requirement in the weakest way possible. For

example, the repetitions of a random variable might grow to infinity much slower than N .

Consider, for example, the first row of a random matrix to be described by the sequence

of random variables,{a1a2a1a2a3a1a2a3a4 · · · }. Pushing the bounds of Property B would

similarly illuminate the general problem of describing bulk eigenvalue distributions for

patterned random matrices.

6. NUMERICAL SIMULATIONS

We performed numerical simulations of limiting spectral distributions in Mathematica.

Random numbers were generated from a standard normal distribution. The code allows

for computing the scaled eigenvalues of any number of matrices of arbitrary size, printing

a historam of these normalized eigenvalues, and printing the average kth moment for the
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FIGURE 11. Sample Mathematica code for limiting spectral distribution

and average kth moment simulations.

matrices. Sample code is shown in Figure 11. The link function appears as b[α×i1+β×j1].

7. APPENDIX

7.1. Scaling of Random Matrix Eigenvalues. We give a heuristic for the eigenvalues of

ourN×N matrix ensembles being roughly of size
√
N . Let a matrix be denotedAN whose

entries aij are randomly and independently chosen from a fixed probability distribution

p(x) with mean 0 and variance 1. For real symmetric matrices, AN = ATN , and

Trace(A2
N ) =

N∑
i=1

N∑
j=1

aijaji =
N∑
i=1

N∑
j=1

a2
ij. (7.1)

From our assumptions on p(x), we expect each a2
ij to be of size 1. Therefore, we expect

that

N∑
i=1

N∑
j=1

a2
ij ≈ N2. (7.2)

Thus by Lemma 1.1, we have

N∑
i=1

λi(A)2 ≈ N2. (7.3)

Taking the expected value, we get

NAve(λ2
i (AN)) ≈ N2 (7.4)

For heuristic purposes we pass the square root through the average to get
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|Ave(λi(AN))| ≈
√
N (7.5)

A more precise argument would show that the scaling factor to normalize the eigenvalues

to size one is 2
√
N . Although we have chosen to keep

√
N as the normalization, it would

be just as effective to scale them by 2
√
N . For a scaling of

√
N , real symmetric matrices

have a semicircular limiting spectral distribution given by

fWigner(x) =


1

2π

√
4− x2 |x| ≤ 2

0 otherwise ,

whose moments are exactly the Catalan numbers. For a scaling of 2
√
N , real symmetric

matrices have a semicircular limiting spectral distribution given by

fWigner(x) =


2
π

√
1− x2 |x| ≤ 1

0 otherwise ,

whose moments are proportional to the Catalan numbers. Either choice of scaling is fine.

7.2. Riesz’s Condition. The moments to which the expected values converge determine

a unique distribution if these limiting moments satisfy a certain conditions. Let {Mk}∞k=1

be the sequence of moments for the limiting spectral distribution F. Then, F is the unique

distribution with these moments if the following holds:

limk→∞inf
1

k
M

1
2k

2k <∞. (7.6)

See Bose for a detailed proof.

7.3. Full Calculation of Eq. 2.39.∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ v0 −
v1

a
+
v3

a
≤ 1 and 0 ≤ av0 − av2 + v3 ≤ 1 and v0 > v1 and

v1 < v2 and v2 > v3 and v3 < v0 −
v1

a
+
v3

a
and v0 −

a1

a
+
v3

a
> av0 − av2 + v3 and

av0 − av2 + v3 ≤ v0)dv1dv2dv3dv0.

(7.7)
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First, choose v0, v2, v3. Then, the above integral reduces to:

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)dv0dv2dv3∫ 1

0

I(v1 ≤ av0 + v3 and v1 ≥ v3 + av0 − a and v1 < v0 and v1 < v2 and

v1 < av0 + v3(1− a) and v1 < v0a(1− a) + v3(1− a) + a2v2

=

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)∫ min(av0+v3,v0,v2,av0+v3(1−a),v0a(1−a)+v3(1−a)+a2v2)

max(v3+av0−a,0)

dv1dv2dv3dv0.

(7.8)

By brute force, this integral can be calculated by splitting it into six regions:
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1. Let v0 < v2 and v0 < v3 and v3 + av0 − a < 0:

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)∫ av0+(1−a)v3

0

dv1dv2dv3dv0

=

∫ 1

0

∫ 1

0

∫ 1

0

I(v2 ≤ v0 +
v3

a
and v2 ≥ v0 +

v3

a
− 1

a
and v2 > v3 and v2 >

v0(1− a)

a

+
v3

a
and av0 + (1− a)v3 ≥ 0 and v2 ≥

v0(1− a)

a
+
v3(a− 1)

a2
and v0 < v2 and v0 < v3

and v3 + av0 − a < 0, av0 + (1− a)v3, 0)dv2dv3dv0

=

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)∫ min(v0+
v3
a
,1)

max(v0+
v3
a
− 1
a
,v3,

(a−1)v0
a

+
v3
a
,
(a−1)v0

a
+

(a−1)v3
a2

,v0,0)

av0 + (1− a)v3dv2dv3dv0

=

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)∫ v0+
v3
a

v3

av0 + (1− a)v3dv2dv3dv0

=

∫ 1

0

∫ 1

0

I(v3 ≤
av0

a− 1
and v3 > v0 and v3 < a− av0, (av0 + (1− a)v3)(v0 +

v3

a
)

− (av0 + (1− a)v3)v3, 0)dv3dv0

=

∫ 1

0

∫ min(
av0
a−1

,a−av0,1)

max(v0,0)

(a(v0 − v3) + v3)2

a

=

∫ a−1
a

0

∫ av0
a−1

v0

(a(v0 − v3) + v3)2

a
+

∫ a
a+1

a−1
a

∫ a−av0

v0

(a(v0 − v3) + v3)2

a
.

(7.9)

This reduces to

=
a

12(1 + a)3
. (7.10)
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2. Let v0 < v2 and v0 < v3 and v3 + av0 − a > 0 :

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)

∫ av0+(1−a)v3

v3+av0−a
dv1dv2dv3dv0

=

∫ 1

0

∫ 1

0

∫ 1

0

If(v2 ≤ v0 +
v3

a
and v2 ≥ v0 +

v3

a
− 1

a
and v2 > v3 and v2 >

(a− 1)v0

a
+

v3

a
and av0 + (1− a)v3 ≥ 0 and v2 ≥

(a− 1)v0

a
+

(a− 1)v3

a2
and v0 < v2 and v0 < v3 and

v3 + av0 − a > 0, av0 + (1− a)v3 − (v3 + av0 − a), 0)dv2dv3dv0

=

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)∫ min(v0+
v3
a
,1)

max(v0+
v3
a
− 1
a
,v3,

(a−1)v0
a

+
v3
a
,
(a−1)v0

a
+

(a−1)v3
a2

,v0,0)

a− av3dv3dv0

=

∫ 1

0

∫ 1

0

I(v0 < v3 and v0 ≥
(a− 1)v3

a
and v0 > 1− v3

a
, (a− av3)− (a− av3)v3, 0)dv3dv0

=

∫ 1

0

∫ min(
av0
a−1

,1)

max(v0,a−av0,0)

a(v3 − 1)2dv3dv0

=

∫ a
a+1

a−1
a

]

∫ 1

a−av0
a(v3 − a)2dv3dv0 +

∫ 1

a
a+1

∫ 1

v0

a(v3 − a)2dv3dv0.

(7.11)

This reduces to

=
1

12(1 + a)3
. (7.12)



60

3. Let v0 < v2 and v0 > v3 and v3 = av0 − a < 0:

∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)

∫ v0

0

dv1dv2dv3dv0∫ 1

0

∫ 1

0

∫ 1

0

If(v2 ≤ v0 +
v3

a
and v2 ≥ v0 +

v3

a
− 1

a
and v2 > v3 and v2 >

(a− 1)v0

a

+
v3

a
and av0 + (1− a)v3 ≥ 0 and v2 ≥

(a− 1)v0

a
+

(a− 1)v3

a2
and v0 < v2 and

v0 > v3 and v3 + av0 − a < 0, v0, 0)dv2dv3dv0∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)∫ min(v−0+
v3
a
,1)

max(v0+
v3
a
− 1
a
,v3,

(1−a)v0
a

+
v3
a
,
(a−1)v0

a
+

(a−1)v3
a2

,v0,0)

v0dv2dv3dv0

=

∫ 1

0

∫ 1

0

I(v3 < v0 and v3 ≤
av0

a− 1
and v3 < a− av0,

v0v3

a
, 0)dv3dv0

=

∫ 1

0

∫ min(v0,
av0
a−1

,a−av0,1)

0

v0v3

a
dv3dv0

=

∫ a
a+1

0

∫ v0

0

v0v3

a
+

∫ 1

a
a+1

∫ a−av0

0

v0v3

a

(7.13)

This reduces to

=
a(3a+ 1)

24(a+ 1)3
. (7.14)

4. Let v0 < v2 and v0 > v3 and v3 + av0 − a > 0:
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∫ 1

0

∫ 1

0

∫ 1

0

I(0 ≤ av0 − av2 + v3 ≤ 1 and av0 − av2 + v3 ≤ v0)

∫ v0

v3+av0−a
dv1dv2dv3dv0

=

∫ 1

0

∫ 1

0

∫ 1

0

If(v2 ≤ v0 +
v3

a
and v2 ≥ v0 +

v3

a
− 1

a
and v2 > v3 and v2 >

(a− 1)v0

a

+
v3

a
and av0 + (1− a)v3 ≥ 0 and v2 ≥

(1− a)v0

a
+

(a− 1)v3

a2
and v0 < v2 and v0 > v3

and v3 + av0 − a > 0, v0 − (v3 + av0 − a), 0)dv2dv3dv0∫ 1

0

∫ 1

0

∫ min(v0+
v3
a
,1)

max(v0+
v3
a
− 1
a
,v3,

(a−1)v0
a

+
v3
a
,
(a−1)v0

a
+

(a−1)v3
a2

,v0,0)

(1− a)v0 − v3 + adv3dv0

=

∫ 1

0

∫ 1

0

If(v3 < v0 and v3 ≤
av0

a− 1
and v3 > a− av0,

(1− a)v0 − v3 + a− v0((1− a)v0 − v3 + a), 0)dv3dv0∫ 1

0

∫ min(v0,
av0
a−1

,1)

max(a−av0,0)

(1− a)v0 − v3 + a− v0((1− a)v0 − v3 + a).

(7.15)

This reduces to

=
3a+ 1

24(a+ 1)3
. (7.16)

5. Let v0 > v2 and v0 > v3 and v3 + av0 − a < 0:∫ 1

0

∫ 1

0

∫ 1

0

If(v2 ≤ v0 +
v3

a
and v2 ≥ v0 +

v3

a
− 1

a
and v2 > v3 and v3 >

(a− 1)v0

a
+
v3

a

and av0 + (1− a)v3 ≥ 0 and v2 ≥
(a− 1)v0

a
+

(a− 1)v3

a2
and v0 > v2 and v0 > v3

and v3 + av0 − a < 0,min(v2, a(1− a)v0 + (1− a)v3 + a2v2), 0)dv2dv3dv0.

(7.17)

There are two subcases here.

a) Let v2 < a(1− a)v0 + (1− a)v3 + a2v2:∫ 1

0

∫ 1

0

∫ min(v0+
v3
a
,v0,1)

max(v0+
v3
a
− 1
a
,v3,

(a−1)v0
a

+
v3
a
,
(a−1)v0

a
+

(a−1)v3
a2

,
a(1−a)v0

1−a2
+

(1−a)v3
1−a2

,0)

v2dv2dv3dv0

=

∫ 1

0

∫ 1

0

If(v3 < v0 and v3 ≤
av0

a− 1
and v3 < a− av0,

v2
0

2
−

(a(1−a)v0
1−a2 + (1−a)v3

1−a2 )2

2
, 0).

(7.18)
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This reduces to

=
a(3a+ 1)

24(a+ 1)3
. (7.19)

b) Let v2 > a(1− a)v0 + (1− a)v3 + a2v2:∫ 1

0

∫ 1

0

If(v3 < v0 and v3 ≤
av0

a− 1
and v3 < a− av0,

(v0 − v3)(2v3 + a(v0 + v3))

2a(1 + a)2
, 0)dv3dv0.

(7.20)

This reduces to

=
a

12(1 + a)3
. (7.21)

6. Let v0 > v2 and v0 > v3 and v3 + av0 − a > 0:∫ 1

0

∫ 1

0

∫ 1

0

If(v2 ≤ v0 +
v3

a
and v2 ≥ v0 +

v3

a
− 1

a

and

v 2
> v3 and v2 >

(a− 1)v0

a
+
v3

a

and av0 + (1− a)v3 ≥ 0 and v2 ≥
(a− 1)v0

a
+

(a− 1)v3

a2
and v0 > v2 and v0 > v3 and

v3 + av0 − a > 0,min(v2, a(1− a)v0 + (1− a)v3 + a2v2 − (v3 + av0 − a)), 0)dv2dv3dv0.

(7.22)

This reduces to

=
1

8(a+ 1)2
.

(7.23)

Collecting all the terms, for β > α the contribution from this case is

1

4(1 + a)
=

α

4(α + β)
. (7.24)

7.4. Semicircle Moments. For positive integers k, the semicircle moments are:

M2k+1 = 0

M2k =
1

k + 1

(
2k

k

) (7.25)
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Proof. Since the semicircular distribution is symmetric about zero, integration for the odd

moments gives zero, since an odd function integrated over a symmetric region is zero. Also,

M2k =
1

2π

∫ 2

−2

x2k
√

4− x2dx

=
1

π

∫ 2

0

x2k
√

4− x2dx and set x = 2
√
y

=
22k+1

π

∫ 1

0

yk= 1
2 (1− y)

1
2dy

=
22k+1

π

Γ(k + 1
2
)Γ(3

2
)

Γ(k + 2)
=

1

k + 1

(
2k

k

)
(7.26)

�
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