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ABSTRACT

A number of mathematical methods have been shown to model the zeroes of L-functions

with remarkable success, including the Ratios Conjecture and Random Matrix Theory. In

order to understand the structure of convolutions of families of L-functions, we investi-

gate how well these methods model the zeros of such functions. Our primary focus is

the convolution of the L-function associated to Ramanujan’s tau function with the family

of quadratic Dirichlet L-functions, for which J.B. Conrey and N.C. Snaith computed the

Ratios Conjecture’s prediction. Our main result is performing the number theory calcu-

lations and verifying these predictions for the one-level density for suitably restricted test

functions up to square-root error term. Unlike Random Matrix Theory, which only pre-

dicts the main term, the Ratios Conjecture detects the arithmetic of the family and makes

detailed predictions about their dependence in the lower order terms. Interestingly, while

Random Matrix Theory is frequently used to model behavior of L-functions (or at least the

main terms), there has been little if any work on the analogue of convolving families of

L-functions by convolving random matrix ensembles. We explore one possibility by con-

sidering Kronecker products; unfortunately, it appears that this is not the correct random

matrix analogue to convolving families.
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1. INTRODUCTION

One of the most important areas in modern number theory is the study of the distribution

of the zeroes of L-functions, meromorphic functions on the complex plane that are continu-

ations of infinite series. The simplest is the most well-known L-function, the Riemann-zeta

function. It is defined by

ζ(s) :=
∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1

(1.1)

forRe(s) > 1 and extended to a meromorphic function. The extension satisfies a functional

equation relating its value at s to its value at 1 − s, and trivially vanishes at the negative

even integers (which are called the trivial zeros):

ξ(s) :=
1

2
s(s− 1)Γ

(s
2

)
π−

s
2 ζ(s) = ξ(1− s). (1.2)

The Riemann Hypothesis, often considered the most important open question in mathemat-

ics, is the conjecture that all non-trivial zeros of ξ(s) have real part equal to 1/2. The distri-

bution of the zeros of this and other L-functions encode crucial number theoretic informa-

tion on subjects ranging from the distribution of the primes to properties of class numbers

and even mirror the energy levels of neutrons in quantum mechanics, suggesting a deep

connection between this branch of mathematics and nuclear physics. As proofs of proper-

ties of these zeros are often out of reach of rigorous methods, methods of modeling these

zeros are vital in understanding and formulating appropriate conjectures about L-functions.

A familiarity with the standard properties of L-functions is important in understanding the

content and results of this thesis, though intuitive interpretations will be offered whenever

appropraite. (See [IK, MT-B] for background on L-functions and [FM, Ha] for the history

of the interplay between nuclear physics and zeros of the Riemann zeta function.)

The particular object we will study is the one-level density of the low lying zeros of

a family of L-functions, which relates sums of an even Schwartz function φ at the zeros

of the L-function to sums of the Fourier transform φ̂ at the primes. As φ is a Schwartz

function, it vanishes rapidly as |x| → ∞. Intuitively, this will be the window through

which we observe the low-lying zeros. Ideally, we would like to use a delta spike instead

of a Schwartz test function to get a perfect picture at a point; however, the delta spike has

a Fourier transform of infinite support, which makes such a function inapplicable as the

resulting sums of the Fourier transform cannot be evaluated. Following [ILS], we study the
4



one-level density for an L-function f , defined by

D(f, φ) :=
∑
γf

φ

(
γfL

π

)
; (1.3)

here 1/2 + iγf runs over the non-trivial zeros of the L-function (which under the Gener-

alized Riemann Hypothesis all have γ ∈ R) and L
π

is a scaling factor (defined explicitly in

equation 2.31) that measures the spacings between zeros near the central point. As each

L-function only has a bounded number of zeros within this distance of the central point,

it is necessary to average the one-level density over all f in a family F . This allows us

to use results from number theory to determine the behavior on average near the central

point 1/2. The exact nature of just what constitutes a family is still being determined, but

standard examples includeL-functions attached to Dirichlet characters, cuspidal newforms,

and families of elliptic curves.

We assume our family of L-functions F can be ordered by conductor, and denote by

F(Q) all elements of the family whose conductor is at most Q. The quantity of interest

ends up being the limit of
1

|F(Q)|
∑

f∈F(Q)

∑
γ

φ

(
γL

π

)
(1.4)

asQ→∞. Thus we consider the limiting behavior of the average of the one-level densities

as the conductors grow.

For a “nice” family of L-functions, Random Matrix Theory (see [KaSa1, KaSa2]) pre-

dicts that the behavior of the zeros as the conductors tend to infinity agree with theN →∞
scaling limits of a classical compact group of N × N matrices, most often either unitary,

symplectic, or a type of orthogonal (even, odd or mixed). Given two families ofL-functions

F and G, the Rankin-Selberg convolution F × G is a new family of L-functions built from

elements of F and G. This is a natural type of L-function family to study, and is likely to

be accessible in the simplest non-trivial case of convolving a family of size 1 with another

family. An interesting feature of these convolutions was found by Miller and Dueñez in

[DM2], namely that for “nice” families of L-functions F and G, the underlying symmetry

groups of F and G determine the underlying symmetry group of F × G in a simple, mul-

tiplicative way. Specifically, to each family F is associated a symmetry constant cF (0 for

unitary, 1 for symplectic and -1 for orthogonal) and cF×G = cF · cG . Unfortunately this

only leads to predictions for the main term of the one-level density, and it is in the lower

order terms that the arithmetic of the families surface.
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In this thesis we focus on testing the Ratios Conjecture’s power of modeling the convo-

lution a family of size 1 with another family (Sections §2 and §3). This will allow us to see

how the arithmetic of our family enters. Additionally, as Random Matrix Theory has suc-

cessfully predicted numerous properties of L-functions, we try and find the random matrix

analogue of convolving two families. To our knowledge this has yet to be investigated in the

literature. In Section §4 we report on numerical investigations of the Kronecker products

of families of random matrices, which is a natural candidate to model convolutions.

1.1. The Ratios Conjecture. The L-function Ratios Conjecture of Conrey, Farmer and

Zirnbauer [CFZ1, CFZ2] (see also [CS1] for many worked out examples of the conjec-

ture’s prediction) are formulas for the averages over families of L-functions of ratios of

products of shifted L-functions. Their “recipe” for performing these calculations starts by

using the approximate functional equation, where the error term is discarded, to expand the

L-functions in the numerator; the L-functions in the denominator are expanded via the Mo-

bius function. They then average over the family, and retain only the diagonal pieces. These

are restricted sums over integers, but are then completed and extended to sums over all in-

tegers; again the error term introduced is ignored. These methods, far simpler to implement

than rigorous analysis, have easily predicted the answers to many difficult computations,

and have shown remarkable accuracy. The resulting formulas make detailed predictions on

numerous problems, ranging from moments to spacings between adjacent zeros and values

of L-functions.

A standard test of the Ratios Conjecture is to compare the Ratios Conjecture’s predictions

for the one-level density of a family of L-functions with rigorous calculation. Agreement

has been found (for suitably restricted test functions) for families of Dirichlet L-functions

and cuspidal newforms (see [GJMMNPP, Mil3, Mil5, MilMo]). In addition to strengthen-

ing the credibility of the conjecture, these calculations provide insight into the significance

of the terms that arise in the number theoretic calculations whose corresponding terms

in the Ratios Conjecture’s predictions are more clearly understandable. For example, in

[Mil3] the Ratios Conjecture’s prediction allows interpretation of a lower order term in the

behavior of the family of quadratic Dirichlet characters as arising from the non-trivial zeros

of the Riemann zeta function.

Our primary object of study is the collection of quadratic twists of the L-function as-

sociated to Ramanujan’s tau function, a family that can be viewed as the convolution of

the family of quadratic Dirichlet L-functions with the family consisting solely of the tau
6



L-function. The Ratios Conjecture’s prediction for this family was computed by Conrey

and Snaith in [CS1]. We perform the number theoretic calculations of the zero statistics

for the one-level density for this family, and compare our results to the Ratios Conjecture’s

prediction. Our main result is the following.

Theorem 1.1. Consider the family of quadratic twists of the tau L-function with even fun-

damental discriminants d ≤ X; denote the number of such d by X∗ (which is essential a

constant times X). For supp(φ̂) ⊂ (−σ, σ) with σ < 1, the one-level density equals

1

X∗

∑
d≤X

∑
γd

g

(
γd
L

π

)

=
1

2LX∗

∫ ∞
−∞

g(ν)

(∑
d≤X

[
2 log

(
d

2π

)
+

Γ′

Γ

(
6 + i

πν

L

)
+

Γ′

Γ

(
6− iπν

L

)]

+ 2

(
−
∑
p

∞∑
k=1

(α2k
p + α2k

p )) log p

pk(1+ 2πiν
L

)
+
∑
p

log p

(p+ 1)

∞∑
k=1

(α2k
p + α2k

p )

pk(1+ 2πiν
L

)

))
dν

+O(X−(1−σ)/2 log6X) (1.5)

which agrees with the Ratios Conjecture’s prediction up to an error term of sizeO(X−(1−σ)/2+ε)

for any ε > 0 (essentially the error term of the expression).

In addition to being of interest in its own right, understanding this family is useful for

investigations of elliptic curves. These families are of considerable importance, as they are

ideal for viewing effect of multiple zeros on nearby zeros. By work of C. Breuil, B. Conrad,

F. Diamond. R. Taylor and A. Wiles [BCDT, TW, Wi], the L-function of an elliptic curve

agrees with that of a weight 2 cuspidal newform of level N (where the integer N > 1 is the

conductor of the elliptic curve). There are many similarities between these L-functions and

that associated to the Ramanujan tau function, and two major differences. The first is that

the tau function is associated to a weight 12 cusp form, and the second is that the level of

the tau function is 1 and not N . Both of these effects make the tau function more amenable

to analysis and numerical experimentation: the higher weight leads to less discretization in

the value of the L-function at the central point, and the level being 1 means that there are

no bad primes in the explicit formula.

In spite of these differences, the analysis of our family of L-functions is comparable

to that of the family of quadratic twists of the L-function associated to an elliptic curve,

for which the Ratios Conjecture’s predictions have not yet been shown to agree with the

number theory results. Analysis of the family of quadratic twists of the tau L-function
7



provides a useful starting point for the elliptic curve-based family. The first lower order

term of this family is very important in ongoing investigations of the excess repulsion

observed in the first zero above the central point (see [DHKMS1, DHKMS2]. The Ratios

Conjecture’s prediction for these lower order terms have been inputted in some of these

models, but had yet to be verified as of the original writing of this thesis. The verification,

performed in [HMM], is comparable to, and in some cases was guided by, the work in

Sections 2 and 3. The analysis of quadratic twists of the Ramanujan tau function is almost

identical to the analysis needed there, the only difference being the effects of the bad primes

are not present. Thus this work provides the framework that can be applied to study these

elliptic curve families.

1.2. Random Matrix Theory. Random Matrix Theory (see [Co, Dy1, Dy2, KaSa1, KaSa2,

Wig1, Wig2, Wig3, Wig4, Wig5, Wis]) has been extraordinarily successful in modeling

diverse systems ranging from nuclear physics to statistics to number theory. In this the-

sis we are interested in its applications to predicting the behavior of L-functions. The

n-level correlation between the normalized zeros of the Riemann zeta-function and the

normalized eigenvalues of matrices in the Gaussian Unitary Ensemble was first noted in

the early 1970s by Dyson and Montgomery [Mon], and then extended by many others (see

[Hej, Od1, Od2, RS]). While the behavior of zeros far from the central point is universal,

he behavior near the central point depends on the family. This is observed in additional

statistics such as n-level densities (see for example [ILS, KaSa1, KaSa2]) and moments

(see for example [CFKRS]). Following the success of these investigations, Random Matrix

Theory has served as an extremely useful tool for predicting the behavior of L-functions.

In an attempt to model the Rankin-Selberg convolution of families of matrices, we inves-

tigate the eigenvalue statistics of Kronecker products of matrices in the Gaussian Unitary

Ensemble. Inspired by [DM2], we look at lowest eigenangle statistics of combinations of

different types of matrices to see if there seems to be a multiplicative symmetry constant.

Qualitative attributes of our computed distributions indicate that this is not the appropri-

ate model for convolving families of L-functions. For instance, orthogonal combined with

orthogonal looks symplectic on the number theory side; but the distribution of lowest eige-

nangles for the orthogonal/orthogonal matrix combination features repulsion from zero,

while that for symplectic matrices does not. However, the similarities and differences be-

tween various combinations suggest that there is a great deal of structure in the eigenangle

statistics of these Kronecker products that warrants further investigation.
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2. QUADRATIC TWISTS OF THE TAU L-FUNCTION

The first family of L-functions used in our main convolution is

G = {L(s, χd) | d > 0 is an even fundamental discriminant},

where χd is the quadratic Dirichlet character modulo d. A Dirichlet character (modulo d),

denoted χ, is a type completely multiplicative function on the units of Z with period d, and

χd denotes the unique quadratic Dirichlet character mod d. We let d be a fundamental

discriminant, meaning that either d ≡ 1 mod 4 is square-free or d/4 ≡ 2, 3 mod 4 is

square-free. We further restrict to d even. If χd is the quadratic character associated to the

fundamental discriminant d with d > 0, we have χd(−1) = 1.

The second family, which consists of one element, arises from Ramanujan’s tau function.

The Ramanujan tau function τ : N → Z is defined by the coefficients of the Fourier

expansion of η(τ)24, where η is the Dedekind eta function. That is,

η(z)24 =
∞∑
n=1

τ(n)qn (2.1)

with q = e2πiz. Note that η(z)24 is a scalar multiple of the discriminant modular function,

a holomorphic cusp form of weight 12 and level 1. In 1917 Mordell proved that τ(mn) =

τ(m)τ(n) if gcd(m,n) = 1 (that is, τ is a multiplicative function) and that

τ(pr+1) = τ(p)τ(p)r − p11τ(pr−1) (2.2)

for p prime and r a positive integer. In 1974 Deligne proved that |τ(p)| ≤ 2p11/2 for all p

prime. (For more on the tau function see [Se].) Defining τ ∗(n) = τ(n)/n11/2 , we have

|τ ∗(p)| ≤ 2 for all p prime. Using equation (2.2), we have

τ ∗(pr+1) =
τ(pr+1)

p(r+1)(11/2)

=
τ(p)τ(p)r

p(r+1)(11/2)
− p11τ(pr−1)

p(r+1)(11/2)

=
τ(p)

p11/2

τ(p)r

pr(11/2)
+

τ(pr−1)

p(r−1)(11/2)

= τ ∗(p)τ ∗(pr)− τ ∗(pr−1) (2.3)
9



for p prime and r a positive integer. Since τ ∗ is a multiplicative function, we may consider

the L-function

L(s, τ ∗) =
∞∑
n=1

τ ∗(n)

ns
=

∏
p prime

(
1− τ ∗(p)

ps
+

1

p2s

)−1

(2.4)

for Re(s) > 1.

We consider the L-function families G = {L(s, χd) |χd is a quadratic character } and

H = {L(s, τ ∗)} (noting thatH has only one element). Convolving these families, we have

(by the work of Dueñez-Miller [DM2]) the orthogonal family F = G × H of quadratic

twists of the L-function L(s, τ ∗), denoted by L∆(s, χd). The Ratios Conjecture’s calcu-

lations for this family of L-functions were performed by Conrey and Snaith in [CS1]. To

test the power of the Ratios Conjecture as it applies to the convolution F , we perform the

number theory computations and determine the one-level density of the zeros for suitably

restricted test functions. This comprises the remainder of Section §2. We then compare

this to the Ratios Conjecture’s predictions in Section §3, and see that they agree up to

O(X−(1−σ)/2+ε), where the support of the transform of our test function is contained in

(−σ, σ), where σ < 1 (i.e., supp(φ̂) ⊂ (−σ, σ)).

2.1. The Explicit Formula. In this subsection we derive the explicit formula, which con-

nects sums of our test function evaluated at the zeros of our family to sums of the Fourier

transform of our test function evaluated at the logarithms of the primes; the one-level den-

sity is just a scaled version of this. We follow the arguments in [RS].

Let L∆(s, χd) ∈ F . The essence of our strategy is to consider a contour integral of the

logarithmic derivative L∆(s, χd) and then shift this integral, picking up contributions from

the zeros of L∆(s, χd). As L∆(s, χd) appears in the denominator of this logarithmic deriv-

ative, the contour shift of this integral picks up those zeros as poles, giving us information

about their distribution. We analyze the resulting expression for a fixed d and then take

the limit of the average over all d ≤ X (as we cannot average over an infinite number).

For the purposes of averaging, we define X∗ =
∑

d≤X 1 where d is an even fundamental

discriminant. By Lemma A.1 we have

X∗ =
3

π2
X +O(X1/2), (2.5)

and thus X∗ is of the same order of magnitude as X . For all subsequent sums over d, this

will be the range of d (i.e., we always assume d to be an even fundamental discriminant at

most X).
10



First we establish some key formulas. Written as an Euler sum and an Euler product, we

have

L∆(s, χd) =
∞∑
n=1

χd(n)τ ∗(n)

ns
=
∏
p

(
1− τ ∗(p)χd(p)

ps
+
χd(p

2)

p2s

)−1

=
∏
p

(
1− αpχd(p)

ps

)−1(
1− αpχd(p)

ps

)−1

(2.6)

where αp, αp are the roots of the quadratic (in 1/ps) equation 1−τ ∗(p)χd(p)/ps+χd(p2)/p2s,

meaning they are
(
τ ∗(p)χd(p)±

√
(τ ∗(p)χd(p))2 − 4χd(p2)

)
/χd(p

2). Given that

τ ∗(p)χd(p))
2 − 4χd(p

2) ≤ 0,

these roots are either the same (and real) or are distinct and complex conjugates of one

another. In both cases, we have that they are complex conjugates (justifying our notation),

and that they satisfy αp · αp = 1 and αp + αp = τ ∗(p). Since both have multiplicative

inverse equal to complex conjugate, they are both of norm 1. We now wish to extend our

function to the entire complex plane. For d > 0, our L-function has the functional equation

ξ∆(s, χd) :=

(
d

2π

)s
Γ(s+ 11/2)L∆(s, χd) = ξ∆(1− s, χd) (2.7)

(see, for instance, [CS1, IK]).

We integrate the logarithmic derivative of ξ∆(s, χd) weighted by a Schwartz function to

ensure sufficient decay rate. We assume the Generalized Riemann Hypothesis (GRH), so

that if 1
2

+ iγ is a zero of ξ(s, χd) then γ ∈ R. Let φ be an even Schwartz function where

its Fourier transform

φ̂(ω) =

∫ ∞
−∞

φ(x)e2πixωdx (2.8)

has finite support; that is, supp(φ̂) ⊂ (−σ, σ) for some finite σ. Extend φ(x) to the whole

complex plane via

H(s) = φ

(
s− 1

2

i

)
. (2.9)

Note that H(s) is scaled so that if s = 1
2

+ iγd is a zero of ξ(s, χd), H(s) = φ(γd). Set

I =
1

2πi

∫
Re(s)=3/2

ξ′∆(s, χd)

ξ∆(s, χd)
H(s)ds (2.10)

Shifting the contour to Re(s) = −1
2
, we have that the only contribution is from the zeros

of ξ∆(s, χd) (which are the poles of the integrand), giving us
11



I =
∑
γd

φ(γd) +
1

2πi

∫
Re(s)=−1/2

ξ′∆(s, χd)

ξ∆(s, χd)
H(s)ds (2.11)

where γd is the imaginary part of a non-trivial zero, and the sum is over all such values.

Recall from equation (2.7) that ξ∆(s, χd) = ξ∆(1 − s, χd); it follows that ξ′∆(s, χd) =

−ξ′∆(1− s, χd). Combined with equation (2.11), this gives us

I =
∑
γd

φ(γd)−
1

2πi

∫
Re(s)=−1/2

ξ′∆(1− s, χd)
ξ∆(1− s, χd)

H(s)ds. (2.12)

Performing the change of variables s→ 1− s, we obtain

I =
∑
γd

φ(γd)−
1

2πi

∫
Re(s)=3/2

ξ′∆(s, χd)

ξ∆(s, χd)
H(1− s)ds. (2.13)

Subtracting equation (2.13) from (2.10) proves

Theorem 2.1.∑
γd

φ(γd) =
1

2πi

∫
Re(s)=3/2

ξ′∆(s, χd)

ξ∆(s, χd)
[H(s) +H(1− s)]ds. (2.14)

This result, when properly averaged over a finite subset of the family F , will give us the

one-level density.

2.2. Analyzing the Sum Over Zeros. Having found an expression for
∑

γ φ(γ) for a fixed

d, we wish to manipulate it into a more informative form before averaging over d to obtain

the one-level density for our family. First we find more a more useful way to express the

logarithmic derivative of ξ∆(s, χd). Taking the logarithmic derivative of equation (2.7), we

have

ξ′∆(s, χd)

ξ∆(s, χd)
= log

(
d

2π

)
+

Γ′(s+ 11/2)

Γ(s+ 11/2)
+
L′∆(s, χd)

L∆(s, χd)
. (2.15)

It will also be useful to have the logarithmic derivative of equation (2.6), which is

L′∆(s, χd)

L∆(s, χd)
= −

∑
p

log p

(
αpχd(p)

ps

1− αpχd(p)

ps

+

αpχd(p)

ps

1− αpχd(p)

ps

)

= −
∞∑
k=1

∑
p

log p
(αkp + αkp)χ

k
d(p)

psk
. (2.16)
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Using equation (2.15) we expand the logarithmic derivative in (2.14) and shift the con-

tours of all terms except the L′∆(s,χd)

L∆(s,χd)
term to Re(s) = 1

2
. This gives us

∑
γd

φ(γd) = I1 + I2 (2.17)

where

I1 =
1

2πi

∫
Re(s)=1/2

[
log

(
d

2π

)
+

Γ′

Γ
(s+ 11/2)

]
[H(s) +H(1− s)]ds (2.18)

and

I2 =
1

2πi

∫
Re(s)=3/2

L′∆(s, χd)

L∆(s, χd)
[H(s) +H(1− s)]ds. (2.19)

The integral in (2.18) with s = 1
2

+ iy is

I1 =
1

2πi

∫ ∞
−∞

[
log

(
d

2π

)
+

Γ′

Γ

(
1

2
+ iy +

11

2

)]
2φ(y)idy

=
1

2π

∫ ∞
−∞

[
2 log

(
d

2π

)
+ 2

Γ′

Γ
(6 + iy)

]
φ(y)dy

=
1

2π

∫ ∞
−∞

[
2 log

(
d

2π

)
+

Γ′

Γ
(6 + iy) +

Γ′

Γ
(6− iy)

]
φ(y)dy. (2.20)

We now analyze I2. Combining equations 2.16 and 2.19, we have

I2 = − 1

2πi

∫
Re(s)=3/2

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

pks
[H(s) +H(1− s)]ds. (2.21)

We wish to switch the order of integration and summation (over k and p). To justify this,

we will prove

Lemma 2.2.

∫
Re(s)=3/2

∞∑
k=1

∑
p

∣∣∣∣∣(αkp + αkp)χ
k
d(p) log p

pks
[H(s) +H(1− s)]

∣∣∣∣∣ ds <∞. (2.22)

13



Proof. Note that
∞∑
k=1

∑
p

∣∣∣∣∣(αkp + αkp)χ
k
d(p) log p

pks

∣∣∣∣∣ ≤
∞∑
k=1

∑
p

log p · |αkp + αkp| · |χkd(p)|
|pk(3/2+iy)|

≤
∞∑
k=1

∑
p

2 · 1 · log p

p3k/2 · |eiyk log p|

≤
∞∑
k=1

∑
p

2 log p

(pk)3/2

≤
∞∑
n=1

2 log n

n3/2

= − 2ζ ′(3/2), (2.23)

a constant independent of s and d. Thus we have∫
Re(s)=3/2

∞∑
k=1

∑
p

∣∣∣∣∣(αkp + αkp)χ
k
d(p) log p

pks
[H(s) +H(1− s)]

∣∣∣∣∣ ds
=

∫
Re(s)=3/2

|H(s) +H(1− s)|
∞∑
k=1

∑
p

∣∣∣∣∣(αkp + αkp)χ
k
d(p) log p

pks

∣∣∣∣∣ ds
≤ C

∫
Re(s)=3/2

|H(s) +H(1− s)|ds

≤ C
(∫

Re(s)=3/2

|H(s)|ds+

∫
Re(s)=3/2

|H(1− s)|ds
)
. (2.24)

To see that both integrals in equation (2.24) are convergent, note that

φ(x) =

∫ ∞
−∞

φ̂(ω)e2πixωdω

φ(x+ iy) =

∫ ∞
−∞

φ̂(ω)e2πi(x+iy)ωdω

H(x+ iy) =

∫ ∞
−∞

(
φ̂(ω)e2π(x− 1

2
)ω
)
· e2πiyωdω. (2.25)

For fixed x,H(x+iy) is the Fourier transform of a Schwartz function (namely φ̂(ω)e2π(x− 1
2

)),

meaning that it itself is Schwartz. This means that it decays faster than 1/yk for any k ∈ N,

implying that both integrals converge. The claim (equation (2.22)) follows. �

By the Fubini-Tonelli Theorem, we may switch summation and integration in (2.22) as

the absolute value leads to a finite integral in the product measure. Doing so, pulling out
14



terms constant with respect to s, and noting that 1/pks = e−ks log p, we may rewrite equation

(2.21) as

I2 = − 1

2πi

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

∫
Re(s)=3/2

[H(s) +H(1− s)]e−ks log pds.

(2.26)

We wish to shift our contour to Re(s) = 1
2
. Consider the integral∫

C

[H(s) +H(1− s)]e−ks log pds (2.27)

where C is the rectangle defined by the points 3
2

+ iM , 3
2
− iM , 1

2
+ iM , and 1

2
− iM , where

M > 0. As there are no poles of our integrand, this integral equals 0. (Note the original

integrand did have poles from the zeros of the L-function; however, by switching the order

of summation and integration and considering the integral for a fixed prime, we need only

consider integrals of analytic functions.) As M → ∞, the horizontal components of the

rectangle become negligible (since H(x+ iy) decays rapidly as y increases), meaning that

in the limit the two vertical components must cancel each other. It follows that∫
Re(s)=3/2

[H(s) +H(1− s)]e−ks log pds =

∫
Re(s)=1/2

[H(s) +H(1− s)]e−ks log pds.

(2.28)

Shifting contours as described above and changing variables by s = 1
2

+ iy, we have

I2 = − 1

2πi

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

∫ ∞
−∞

2φ(y)e−k(1/2+iy) log pidy

= − 2

2π

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

pk/2

∫ ∞
−∞

φ(y)e−2πiy log pk

2π dy

= − 2

2π

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

pk/2
φ̂

(
log pk

2π

)
. (2.29)

Combining equations (2.20) and (2.29), we have∑
γd

φ(γd) =
1

2π

∫ ∞
−∞

[
2 log

(
d

2π

)
+

Γ′

Γ
(6 + iy) +

Γ′

Γ
(6− iy)

]
φ(y)dy

− 2

2πi

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

pk/2
φ̂

(
log pk

2π

)
. (2.30)
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To rewrite equation (2.30), we sum over twists d and scale the zeros by the mean density

of zeros arising from even fundamental discriminants at most X . One could instead con-

sider the related quantities where each L-function’s zeros are scaled by the logarithm of its

conductor, a local instead of a global rescaling. Similar behavior is seen; see for example

[GM, Mil1] for such investigations.

We set

L = log

(
X

2π

)
(2.31)

(which is essentially the average log-conductor) and replace φ(y) with

g(ν) = φ (y) (2.32)

where ν = y · L
π

. It is a straightforward calculation that if F (x) = G(cx) (where c 6= 0)

and F̂ (ω) is the Fourier transform of F (x), then 1
c
F̂
(
ω
c

)
is the Fourier transform of G(cx).

It follows that ϕ̂(ω) = π
L
ĝ
(
π
L
ω
)
. Summing over quadratic twists with even fundamen-

tal discriminant d ≤ X and dividing by X∗, the number of terms in the sum (which is

proportional to X), we have proven a tractable explicit formula for the one-level density.

Theorem 2.3 (Expansion for the one-level density). The one-level density for the family of

twists of the Ramanujan tau function by even fundamental discriminants at mostX satisfies

1

X∗

∑
d≤X

∑
γd

g

(
γd
L

π

)

=
1

2LX∗

∫ ∞
−∞

g(ν)
∑
d≤X

[
2 log

(
d

2π

)
+

Γ′

Γ

(
6 + i

πν

L

)
+

Γ′

Γ

(
6− iπν

L

)]
dν

− 2

2LX∗

∑
d≤X

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

pk/2
ĝ

(
log pk

2L

)
, (2.33)

where φ is an even Schwartz function such that supp(φ̂) is contained in a bounded interval.

2.3. Analyzing the One-Level Density. We analyze the term

S = − 2

2LX∗

∑
d≤X

∞∑
k=1

∑
p

(αkp + αkp)χ
k
d(p) log p

pk/2
ĝ

(
log pk

2L

)
. (2.34)

by splitting it into two sums:

S = Seven + Sodd (2.35)
16



Specifically,

Seven = − 1

X∗

∑
d≤X

∞∑
k=1

∑
p

(α2k
p + α2k

p )χ2
d(p) log p

pkL
ĝ

(
log pk

L

)
(2.36)

and

Sodd = − 1

X∗

∑
d≤X

∞∑
k=0

∑
p

(α2k+1
p + α2k+1

p )χd(p) log p

p(2k+1)/2L
ĝ

(
log p2k+1

L

)
. (2.37)

No higher powers of χd(p) appear because χd is a quadratic character, implying that

χ2k
d (p) = χ2

d(p) and χ2k+1
d (p) = χd(p) for any positive integer k.

Note that

χ2
d(p) =

1 if p - d,

0 if p|d.
(2.38)

This allows us to split Seven into

Seven = Seven,1 + Seven,2 (2.39)

where

Seven,1 = − 1

L

∑
p

∞∑
k=1

(α2k
p + α2k

p ) log p

pk
ĝ

(
log pk

L

)
(2.40)

and

Seven,2 =
1

X∗

∑
d≤X

∞∑
k=1

∑
p|d

(α2k
p + α2k

p ) log p

pkL
ĝ

(
log pk

L

)
(2.41)

(there is no 1/X∗ in Seven,1 as that was canceled by the X∗ from the d-sum). We will

analyze these two terms separately.

Consider Seven,1. By means of standard techniques as seen in [Mil3] and [HMM], we

obtain

Seven;1 =
g(0)

2
+

1

L

∫ ∞
−∞

g(ν)

(
L′

L

(
1 +

2πiν

L
, sym2∆

)
− ζ ′

ζ

(
1 +

2πiν

L

))
dν

(2.42)

(A detailed proof of this can be found Appendix A.)
17



Consider Seven,2. Changing the order of summation, we may write

Seven,2 =
1

X∗

∑
d≤X

∞∑
k=1

∑
p|d

(α2k
p + α2k

p ) log p

pkL
ĝ

(
log pk

L

)

=
1

LX∗

∑
p

∞∑
k=1

(α2k
p + α2k

p ) log p

pk
ĝ

(
log pk

L

)∑
d≤X
p|d

1. (2.43)

By Lemma A.1 (proven in Appendix A), we have∑
d≤X
p|d

1 =
X∗

p+ 1
+O(X1/2). (2.44)

Plugging (2.44) into (2.43) yields

Seven,2 =
1

L

∑
p

∞∑
k=1

(α2k
p + α2k

p ) log p

pk(p+ 1)
ĝ

(
log pk

L

)
+O(X−1/2), (2.45)

where we used Lemma A.1 to note that X∗ = 3X/π2 +O(X1/2). To see that the error term

is P (X−1/2), note the error term is bounded by

O(X1/2)

LX∗

∑
p

∞∑
k=1

∣∣α2k
p + α2k

p

∣∣ log p

pk
ĝ

(
log pk

L

)
. (2.46)

As remarked, by Lemma A.1 we have O(X1/2/X∗) = O(X−1/2). We next note that

the sum over k ≥ 2 is trivially seen to be O(1), and by Mertens’ theorem (which states∑
p≤Xσ log p/p = logXσ + O(1)), the contribution from k = 1 divided by L (which is of

size logX) is also O(1). This completes the proof of the size of the error term in (2.45) for

Seven,2.

We now turn to the analysis of the main term of Seven,2 in (2.45). Note that

ĝ

(
log pk

L

)
=

∫ ∞
−∞

g(ν)e−2πi log pk

L dν =

∫ ∞
−∞

g(ν)p
−2πiν
L

kdν. (2.47)

Combining (2.45) and (2.47), we have

Seven,2 =
1

L

∑
p

∞∑
k=1

(α2k
p + α2k

p ) log p

pk(p+ 1)

∫ ∞
−∞

g(ν)p−
2πiν
L

kdν +O(X−1/2)

=
1

L

∑
p

∞∑
k=1

(α2k
p + α2k

p ) log p

pk(p+ 1)

∫ ∞
−∞

g(ν)p−
2πiν
L

kdν +O(X−1/2)

=
1

L

∫ ∞
−∞

g(ν)
∑
p

log p

(p+ 1)

∞∑
k=1

(α2k
p + α2k

p )

pk(1+ 2πiν
L

)
dν +O(X−1/2). (2.48)
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We will now bound Sodd. The following lemma and the proof thereof were modified

with permission from [Mil3].

Lemma 2.4. For supp(ĝ) ⊂ (−σ, σ), we have Sodd = O(X−
1−σ

2 log6X).

Proof. Jutila’s bound (see equation (3.4) of [Ju3]) is

∑
1<n≤N

n non−square

∣∣∣∣∣∣
∑

0<d≤X
d fund. disc.

χd(n)

∣∣∣∣∣∣
2

� NX log10N (2.49)

where the d-sum, per usual, is over even fundamental discriminants at mostX . As 2k+1 is

odd, p2k+1 is never a square. The bound above is of non-negative numbers summed over all

non-squares; as our sum is over a subset, Jutila’s bound holds for us as well. Thus Jutila’s

bound gives  ∞∑
`=0

∑
p(2`+1)/2≤Xσ

∣∣∣∣∣∑
d≤X

χd(p)

∣∣∣∣∣
2
1/2

� X
1+σ

2 log5X. (2.50)

Recall

Sodd = − 1

X∗

∞∑
k=0

∑
p

(α2k+1
p + α2k+1

p ) log p

p(2k+1)/2L
ĝ

(
log p2k+1

L

)∑
d≤X

χd(p), (2.51)

with |α2k+1
p + α2k+1

p | ≤ 2. Applying the Cauchy-Schwartz inequality and pulling out 2 for

|α2k+1
p + α2k+1

p |, we have

|Sodd| ≤
2

X∗

 ∞∑
k=0

∑
p2k+1≤Xσ

∣∣∣∣ log p

p(2k+1)/2L
ĝ

(
log p2k+1

L

)∣∣∣∣2
1/2

·

 ∞∑
k=0

∑
p2k+1≤Xσ

∣∣∣∣∣∑
d≤X

χd(p)

∣∣∣∣∣
2
1/2

� 2

X∗

(∑
n≤Xσ

1

n

)1/2

·X
1+σ

2 log5X

� X−
1−σ

2 log6X. (2.52)

�

As σ > 0, this is a larger error term than the O(X−1/2) we have from Seven, and thus

absorbs that error term. Taking all these pieces together, we find that the number theoretic
19



calculations of the one-level density give us

1

X∗

∑
d≤X

∑
γd

g

(
γd
L

π

)

=
1

2LX∗

∫ ∞
−∞

g(ν)
∑
d≤X

[
2 log

(
d

2π

)
+

Γ′

Γ

(
6 + i

πν

L

)
+

Γ′

Γ

(
6− iπν

L

)]
dν

+
g(0)

2
+

1

L

∫ ∞
−∞

g(ν)

(
L′

L

(
1 +

2πiν

L
, sym2∆

)
− ζ ′

ζ

(
1 +

2πiν

L

))
dν

+
1

L

∫ ∞
−∞

g(ν)
∑
p

log p

(p+ 1)

∞∑
k=1

(α2k
p + α2k

p )

pk(1+ 2πiν
L

)
dν +O(X−

1−σ
2 log6X)

=
g(0)

2
+

1

2LX∗

∫ ∞
−∞

g(ν)

(∑
d≤X

[
2 log

(
d

2π

)
+

Γ′

Γ

(
6 + i

πν

L

)
+

Γ′

Γ

(
6− iπν

L

)]

+ 2

(
L′

L

(
1 +

2πiν

L
, sym2∆

)
− ζ ′

ζ

(
1 +

2πiν

L

)
+
∑
p

log p

(p+ 1)

∞∑
k=1

(α2k
p + α2k

p )

pk(1+ 2πiν
L

)

))
dν

+O(X−
1−σ

2 log6X). (2.53)

To have a power savings in the error term, we require σ < 1. Thus we have proven the

first part of Theorem 1.1, namely that equation (2.53) is the one-level density for the family

of quadratic twists of the tau L-function for suitably restricted test functions.

Having calculated the one-level density on the number theory side, we now compare it

to the Ratios Conjecture’s predictions for the one-level density.
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3. COMPARISON WITH THE RATIOS CONJECTURES’ PREDICTIONS

Using the Ratios Conjecture, Conrey and Snaith [CS1] compute the one-level density for

our family to be∑
d≤X

∑
γd

φ (γd) =
1

2π

∫ ∞
−∞

φ(y)

(∑
d≤X

[
2 log

(
d

2π

)
+

Γ′

Γ
(6 + iy) +

Γ′

Γ
(6− iy)

]

+ 2

(
−ζ
′

ζ
(1 + 2iy) +

L′∆
L∆

(sym2, 1 + 2iy) +B′∆(iy; iy)

−
(
d

2π

)−2iy
Γ(6− iy)

Γ(6 + iy)

ζ(1 + 2iy)L∆(sym2, 1− 2iy)

L∆(sym2, 1)
B∆(−iy, iy)

))
dy

+O(X1/2+ε) (3.1)

where

L∆

(
sym2, s

)
=
∏
p

(
1−

α2
p

ps

)−1(
1− 1

ps

)−1(
1−

α2
p

ps

)−1

, (3.2)

B∆(α; γ) =
∏
p

(
1 +

p

p+ 1

(
∞∑
m=1

τ ∗(p2m)

pm(1+2α)

− τ ∗(p)

p1+α+γ

∞∑
m=0

τ ∗(p2m+1)

pm(1+2α)
+

1

p1+2γ

∞∑
m=0

τ ∗(p2m)

pm(1+2α)

))

×

(
1− τ∗(p2)

p1+2α + τ∗(p2)
p2+4α − 1

p3+6α

)(
1− 1

p1+2γ

)
(

1− τ∗(p2)
p1+α+γ + τ∗(p2)

p2+2α+2γ − 1
p3+3α+3γ

)(
1− 1

p1+α+γ

) , (3.3)

and where the derivative ofB∆ is with respect to α. Again setting φ(y) = g(ν) and dividing

by X∗, this equation becomes

1

X∗

∑
d≤X

∑
γd

g

(
γd
L

π

)
=

1

2LX∗

∫ ∞
−∞

g(ν)

(∑
d≤X

[
2 log

(
d

2π

)
+

Γ′

Γ

(
6 + i

πν

L

)
+

Γ′

Γ

(
6− iπν

L

)]

+ 2

(
−ζ
′

ζ

(
1 + 2i

πν

L

)
+
L′∆
L∆

(
sym2, 1 + 2i

πν

L

)
+B′∆

(
i
πν

L
; i
πν

L

)
−
(
d

2π

)−2iπν
L Γ

(
6− iπν

L

)
Γ
(
6 + iπν

L

) ζ (1 + 2iπν
L

)
L∆

(
sym2, 1− 2iπν

L

)
L∆(sym2, 1)

B∆

(
−iπν

L
, i
πν

L

)))
dν

+ O(X−1/2+ε). (3.4)
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We will show that equations (2.53) and (3.4) agree up O(X−(1−σ)/2+ε), a power sav-

ings error term when σ < 1. As the two expressions agree in their general form, in the

2 log (d/2π)+Γ′

Γ
(6 + iν)+Γ′

Γ
(6− iν) term, and in the− ζ′

ζ

(
1 + 2iπν

L

)
+
L′∆
L∆

(
sym2, 1 + 2iπν

L

)
term, we need only analyze the two remaining terms of equation (3.4), showing the first one

are equal to the remaining term in (2.53) and bounding the second one as our error term

(plus a constant g(0)/2 which balances the corresponding constant of the other equation).

We will frequently use the variable y (equal to πν/L) for notational convenience.

3.1. The Derivative of B∆. We will consider the B′∆(iy; iy) term, and show that it equals

∑
p

log p

p+ 1

∞∑
m=1

α2m
p + α2m

p

pm(1+2iν)
. (3.5)

Recall from [CS1] that B∆(r; r) = 1 (as can be verified by direct substitution). For nota-

tional convenience, we define

f1(α; γ) =1 +
p

p+ 1

(
∞∑
m=1

τ ∗(p2m)

pm(1+2α)
− τ ∗(p)

p1+α+γ

∞∑
m=0

τ ∗(p2m+1)

pm(1+2α)

)
+

1

p1+2γ

∞∑
m=0

τ ∗(p2m)

pm(1+2α)

(3.6)

f2(α; γ) =1− τ ∗(p2)

p1+2α
+
τ ∗(p2)

p2+4α
− 1

p3+6α
(3.7)

f3(α; γ) =1− 1

p1+2γ
(3.8)

f4(α; γ) =1− τ ∗(p2)

p1+α+γ
+

τ ∗(p2)

p2+2α+2γ
− 1

p3+3α+3γ
(3.9)

f5(α; γ) =1− 1

p1+α+γ
, (3.10)

giving us

B∆(α; γ) =
∏
p

f1(α; γ) · f2(α; γ)f3(α; γ)

f4(α; γ)f5(α; γ)
. (3.11)

22



Lemma 3.1.

∂B

∂α
(r; r) =

∑
p

log p

(
1

p+ 1

∞∑
m=1

α2m
p + α2m

p

pm(1+2r)
−
∞∑
m=1

α2m
p + α2m

p

pm(1+2r)

+

τ∗(p2)
p1+2r − 2·τ∗(p2)

p2+4r + 3
p3+6r

1− τ∗(p2)
p1+2r + τ∗(p2)

p2+4r − 1
p3+6r

+
1

1− p1+2r

)
.

(3.12)

Proof. By taking the logarithmic derivative, we reduce the product of our five functions to

a sum, allowing us to more easily compute it piece by piece. Taking the logarithmic partial

derivative of (3.11) with respect to α, we have

∂B
∂α

(α; γ)

B(α, γ)
=
∂

∂α
log

(∏
p

f1(α; γ) · f2(α; γ)f3(α; γ)

f4(α; γ)f5(α; γ)

)

=
∂

∂α

∑
p

log

(
f1(α; γ) · f2(α; γ)f3(α; γ)

f4(α; γ)f5(α; γ)

)
=

∂

∂α

∑
p

(log(f1(α; γ)) + log(f2(α; γ)) + log(f3(α; γ))

− log(f4(α; γ))− log(f5(α; γ)))

=
∑
p

(
f ′1(α; γ)

f1(α; γ)
+
f ′2(α; γ)

f2(α; γ)
+
f ′3(α; γ)

f3(α; γ)
− f ′4(α; γ)

f4(α; γ)
− f ′5(α; γ)

f5(α; γ)

)
, (3.13)

where the derivatives f ′i are with respect to α. Since B(r; r) = 1, we have

∂B

∂α
(r; r) =

∑
p

(
f ′1(r; r)

f1(r; r)
+
f ′2(r; r)

f2(r; r)
+
f ′3(r; r)

f3(r; r)
− f ′4(r; r)

f4(r; r)
− f ′5(r; r)

f5(r; r)

)
. (3.14)

We shall evaluate each of these logarithmic derivatives at α = γ = r.
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Note that f1(r; r) = 1. Taking the derivative of f1(α; γ) with respect to α, we have

f ′1(α; γ) =
p

p+ 1

(
∞∑
m=1

−2m log p · τ ∗(p2m)

pm(1+2α)
−
∞∑
m=0

−(2m+ 1) log p · τ ∗(p2m+1)τ ∗(p)

pm(1+2α)+1+α+γ

+
1

p1+2γ

∞∑
m=0

−2m log p · τ ∗(p2m)

pm(1+2α)

)

= − p log p

p+ 1

(
∞∑
m=1

2mτ ∗(p2m)

pm(1+2α)
−
∞∑
m=0

(2m+ 1)τ ∗(p2m+1)τ ∗(p)

pm(1+2α)+1+α+γ

+
1

p1+2γ

∞∑
m=0

2mτ ∗(p2m)

pm(1+2α)

)
. (3.15)

Plugging in α = γ = r, we have

f ′1(r; r) =− p log p

p+ 1

(
∞∑
m=1

2mτ ∗(p2m)

pm(1+2r)
−
∞∑
m=0

(2m+ 1)τ ∗(p2m+1)τ ∗(p)

p(m+1)(1+2r)
+
∞∑
m=0

2mτ ∗(p2m)

p(m+1)(1+2r)

)

= − p log p

p+ 1

∞∑
m=1

2mτ ∗(p2m) + (2m− 1)τ ∗(p2m−1)τ ∗(p) + (2m− 2)τ ∗(p2m−2)

pm(1+2r)
.

(3.16)

Using the fact that τ ∗(p2m−1)τ ∗(p) = τ ∗(p2m)− τ ∗(p2m−2), this expression becomes

f ′1(r; r) =− p log p

p+ 1

∞∑
m=1

2mτ ∗(p2m) + (2m− 1)(τ ∗(p2m)− τ ∗(p2m−2)) + (2m− 2)τ ∗(p2m−2)

pm(1+2r)

= − p log p

p+ 1

∞∑
m=1

τ ∗(p2m)− τ ∗(p2m−2)

pm(1+2r)

= − p log p

p+ 1

∞∑
m=1

α2m
p + α2m

p

pm(1+2r)
. (3.17)

Finally, noting that − p
p+1

= −1 + 1
p+1

, we have

f ′1(r; r) =
log p

p+ 1

∞∑
m=1

α2m
p + α2m

p

pm(1+2r)
− log p

∞∑
m=1

α2m
p + α2m

p

pm(1+2r)
. (3.18)

We now move on to f2 and f ′2. Plugging in, we have

f2(r; r) = 1− τ ∗(p2)

p1+2r
+
τ ∗(p2)

p2+4r
− 1

p3+6r
. (3.19)

Taking the derivative with respect to α and evaluating at α = γ = r, we have

f ′2(r; r) = log p

(
2 · τ ∗(p2)

p1+2r
− 4 · τ ∗(p2)

p2+4r
+

6

p3+6r

)
(3.20)
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Similar calculations give us

f4(r; r) = f2(r, r) (3.21)

and

f ′4(r; r) = log p

(
τ ∗(p2)

p1+2r
− 2 · τ ∗(p2)

p2+4r
+

3

p3+6r

)
. (3.22)

It follows that

f ′2(r; r)

f2(r : r)
− f ′4(r; r)

f4(r : r)
= log p

τ∗(p2)
p1+2r − 2·τ∗(p2)

p2+4r + 3
p3+6r

1− τ∗(p2)
p1+2r + τ∗(p2)

p2+4r − 1
p3+6r

. (3.23)

Noting that f3(r; r) is a constant with respect to α, we have f ′3(r; r) = 0. Finally, we

have
f ′5(r; r)

f5(r; r)
=

log p · 1
p1+2r

1− 1
p1+2r

=
log p

p1+2r − 1
. (3.24)

Combining all these expressions, we have

∂B

∂α
(r; r) =

∑
p

log p

(
1

p+ 1

∞∑
m=1

α2m
p + α2m

p

pm(1+2r)
−
∞∑
m=1

α2m
p + α2m

p

pm(1+2r)

+

τ∗(p2)
p1+2r

2·τ∗(p2)
p2+4r + 3

p3+6r

1− τ∗(p2)
p1+2r + τ∗(p2)

p2+4r − 1
p3+6r

+
1

1− p1+2r

)
(3.25)

as claimed. �

Evaluating this derivative at r = iy, we have

B′(iy; iy) =
∑
p

log p

(
1

p+ 1

∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)
−
∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)

+

τ∗(p2)
p1+2iy − 2·τ∗(p2)

p2+4iy + 3
p3+6iy

1− τ∗(p2)
p1+2iy + τ∗(p2)

p2+4iy − 1
p3+6iy

+
1

1− p1+2iy

)
. (3.26)

Equation (3.26) contains a term present in the number theory calculations, as well as an

algebraically messy term after it. The following vital lemma eliminates the extra term,

greatly simplifying our expression and giving us perfect equality between B′(iy; iy) and

equation 3.5. Without it, our correspondence of terms between 2.53 and 3.4 would not

work out as desired.
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Lemma 3.2. We have

−
∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)
+

τ∗(p2)
p1+2iy − 2·τ∗(p2)

p2+4iy + 3
p3+6iy

1− τ∗(p2)
p1+2iy + τ∗(p2)

p2+4iy − 1
p3+6iy

+
1

1− p1+2iy
= 0. (3.27)

Proof. Set

M = −
∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)
+

τ∗(p2)
p1+2iy − 2·τ∗(p2)

p2+4iy + 3
p3+6iy

1− τ∗(p2)
p1+2iy + τ∗(p2)

p2+4iy − 1
p3+6iy

+
1

1− p1+2iy
. (3.28)

We rewrite the series that is the first term of M . Setting A1 =
α2
p

pm(1+2iy) and A2 =
α2
p

pm(1+2iy)

and noting that both have absolute value less than 1, we have

∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)
=

∞∑
m=1

α2m
p

pm(1+2iy)
+
∞∑
m=1

α2m
p

pm(1+2iy)

=
∞∑
m=1

Am1 +
∞∑
m=1

Am2

=
A1

1− A1

+
A1

1− A2

=
A1 + A2 − 2A1A2

1− A1 − A2 + A1A2

=

α2
p+α2

p

p1+2iy − 2
p2+4iy

1− α2
p+α2

p

p1+2iy + 1
p2+4iy

. (3.29)

Using the fact that α2
p + α2

p = τ ∗(p2)− 1, we have

∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)
=

τ∗(p2)−1
p1+2iy − 2

p2+4iy

1− τ∗(p2)−1
p1+2iy + 1

p2+4iy

. (3.30)

Note that

1

1− p1+2iy
=− 1/p1+2iy

1− (1/p1+2iy)
(3.31)

Letting t denote τ ∗(p) and q denote 1/p1+2iy, we have
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M = −
∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)
+

τ∗(p2)
p1+2iy − 2·τ∗(p2)

p2+4iy + 3
p3+6iy

1− τ∗(p2)
p1+2iy + τ∗(p2)

p2+4iy − 1
p3+6iy

+
1

1− p1+2iy

= −
τ∗(p2)−1
p1+2iy − 2

p2+4iy

1− τ∗(p2)−1
p1+2iy + 1

p2+4iy

+

τ∗(p2)
p1+2iy − 2·τ∗(p2)

p2+4iy + 3
p3+6iy

1− τ∗(p2)
p1+2iy + τ∗(p2)

p2+4iy − 1
p3+6iy

− 1/p1+2iy

1− (1/p1+2iy)

=
(1− t)q + 2q2

1− (t− 1)q + q2
+

tq − 2tq2 + 3q3

1− tq + tq2 − q3
− q

1− q
. (3.32)

Noting that 1− tq + tq2 − q3 = (1− (t− 1)q + q2)(1− q), we have

M =
(1− q)((1− t)q + 2q2) + tq − 2tq2 + 3q3 − (1− (t− 1)q + q2)q

1− tq + tq2 − q3

=
q − qt+ 2q2 − q2 + tq2 − 2q3 + tq − 2tq2 + 3q3 − q + tq2 − q2 − q3

1− tq + tq2 − q3

=
(1− t+ t− 1)q + (2− 1 + t− 2t+ t− 1)q2 + (−2 + 3− 1)q3

1− tq + tq2 − q3

= 0. (3.33)

�

Combined with equation (3.26), this lemma immediately implies

Corollary 3.3.

B′(iy; iy) =
∑
p

log p

p+ 1

∞∑
m=1

α2m
p + α2m

p

pm(1+2iy)
. (3.34)

This gives us our second correspondence of terms.

3.2. The Error Term. From Proposition 3.3, we have that equations (2.53) and (3.4) are

in agreement save for the constant g(0)
2

and for the term

R(g;X) = − 1

LX∗

∫ ∞
−∞

g(ν)
∑
d≤X

(
d

2π

)−2iπν
L Γ

(
6− iπν

L

)
Γ
(
6 + iπν

L

)
×
ζ
(
1 + 2iπν

L

)
L∆

(
sym2, 1− 2iπν

L

)
L∆(sym2, 1)

B∆

(
−iπν

L
, i
πν

L

)
dν.

(3.35)

Our general technique will be to perform a contour shift and bound all the terms from Γ

onward in the expression above by a polynomial in ν, then use the rapid decay of g(ν) to

show the integral over ν converges so that we need only worry about X terms (as well as
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a constant contribution from a pole that is balanced by the equal constant g(0)/2 in the

explicit formula).

First we will show that B∆(−iy; iy) converges and will continue to do so for contour

shifts of y up to a cut-off point.

Proposition 3.4. Let −1
2

+ ε′ ≤ w ≤ 1
4
− ε′. If we shift from y to y− iw, then we have that

B∆ (−i(y − iw); i(y − iw)) is Ow(1).

Proof. We have

B∆(−iy; iy) =
∏
p

(
1 +

p

p+ 1

(
∞∑
m=1

τ ∗(p2m)

pm(1−2iy)
− τ ∗(p)

p

∞∑
m=0

τ ∗(p2m+1)

pm(1−2iy)
+

1

p1+2iy

∞∑
m=0

τ ∗(p2m)

pm(1−2iy)

))

×

(
1− τ∗(p2)

p1−2iy + τ∗(p2)
p2−4iy − 1

p3−6iy

)(
1− 1

p1+2iy

)
(

1− τ∗(p2)
p

+ τ∗(p2)
p2 − 1

p3

)(
1− 1

p

) . (3.36)

Letting y′ = y − iw (our shift), we will show that

Θ(p) =

(
1 +

p

p+ 1

(
∞∑
m=1

τ ∗(p2m)

pm(1−2iy′)
− τ ∗(p)

p

∞∑
m=0

τ ∗(p2m+1)

pm(1−2iy′)
+

1

p1+2iy′

∞∑
m=0

τ ∗(p2m)

pm(1−2iy′)

))

×

(
1− τ∗(p2)

p1−2iy′ + τ∗(p2)

p2−4iy′ − 1
p3−6iy′

)(
1− 1

p1+2iy′

)
(

1− τ∗(p2)
p

+ τ∗(p2)
p2 − 1

p3

)(
1− 1

p

)
= 1 +O

(
1

p2−4w−ε

)
+O

(
1

p2+2w−ε

)
, (3.37)

implying that the product converges as the error isO(1/p1+ε′′). Noting that
∣∣∣ τ∗(p2)

p
− τ∗(p2)

p2 + 1
p3

∣∣∣ <
1 and

∣∣∣1p ∣∣∣ < 1, we may rewrite Θ(p) as

Θ(p) =

(
1 +

p

p+ 1

(
∞∑
m=1

τ ∗(p2m)

pm(1−2iy′)
− τ ∗(p)

p

∞∑
m=0

τ ∗(p2m+1)

pm(1−2iy′)
+

1

p1+2iy′

∞∑
m=0

τ ∗(p2m)

pm(1−2iy′)

))

×
(

1− τ ∗(p2)

p1−2iy′
+
τ ∗(p2)

p2−4iy′
− 1

p3−6iy′

)(
1− 1

p1+2iy′

)
×

(
∞∑
n=0

(
τ ∗(p2)

p
− τ ∗(p2)

p2
+

1

p3

)n)( ∞∑
n=0

1

pn

)
. (3.38)

We now rewrite some of the infinite sums of (3.38) as a main term plus an error term. By

Lemma A.4 in the appendix, for any ε > 0 we may truncate the terms of (3.38) as follows,
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preserving multiple error terms depending on the direction in which y has been shifted:

Θ(p) =

(
1 +

p

p+ 1

(
τ ∗(p2)

p1−2iy′
+
τ ∗(p)2

p2
+

1

p1+2iy′
+O

(
1

p2−4w−ε

)
+O

(
1

p2−ε

)))
×
(

1− τ ∗(p2)

p1−2iy′
+O(

1

p2−4w
)

)(
1− 1

p1+2iy′

)
×
(

1 +
τ ∗(p2)

p
+O

(
1

p2

))(
1 +

1

p
+O

(
1

p2

))
=

(
1 +

(
τ ∗(p2)

p1−2iy′
− τ ∗(p2) + 1

p
+

1

p1+2iy′

)
− 1

p+ 1

(
τ ∗(p2)

p1−2iy′
− τ ∗(p2) + 1

p
+

1

p1+2iy′

)
+O

(
1

p2−4w−ε

)
+O

(
1

p2−ε

))
×
(

1− τ ∗(p2)

p1−2iy′
− 1

p1+2iy′
+
τ ∗(p2) + 1

p
+O

(
1

p2−4w

))
=

(
1 +

τ ∗(p2)

p1−2iy′
− τ ∗(p2) + 1

p
+

1

p1+2iy′
+O

(
1

p2−4w−ε

)
+O

(
1

p2+2w−ε

)
+O

(
1

p2−ε

))
×
(

1− τ ∗(p2)

p1−2iy′
− 1

p1+2iy′
+
τ ∗(p2) + 1

p
+O

(
1

p2−4w

))
= 1− τ ∗(p2)

p1−2iy′
− 1

p1+2iy′
+
τ ∗(p2) + 1

p
+
τ ∗(p2)

p1−2iy′
− τ ∗(p2) + 1

p
+

1

p1+2iy′

+O

(
1

p2−4w−ε

)
+O

(
1

p2+2w−ε

)
= 1 +O

(
1

p2−4w−ε

)
+O

(
1

p2+2w−ε

)
. (3.39)

If we have shifted in the positive direction, the larger error term is O (1/p2−4w−ε), meaning

we may shift 2ε close to 1/4 and haveO(1/p1+δ) where δ > 0. Similarly, if we have shifted

in the negative direction, the larger error term is O (1/p2+2w−ε), meaning we may shift 2ε

close to −1/2 and have O(p1+δ) where δ > 0. In both cases we have convergence with the

product Ow(1). �

Thus the B∆ term is Ow(1) for fixed w and any y (as the bound is independent of the

imaginary part of our variable). To bound ζ and L∆, we use the standard fact (see for

example [IK]) that both grow polynomially in y as |y| → ∞ (where y is our imaginary

part).

We now consider Γ(6−iy)
Γ(6+iy)

. Our shifting restrictions from B∆ allow us to only consider w

with −1/2 < w < 1/4, and thus we will not shift far enough to reach a pole or zero for
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either the numerator or the denominator. If we shift from y to y − iw, this term becomes

Γ(6− i(y − iw))

Γ(6 + i(y − iw))
=

Γ(6− w − iy)

Γ(6 + w + iy)
. (3.40)

From the definition of the Beta function we know

Γ(x)Γ(z)

Γ(x+ z)
=

∫ 1

0

tx−1(1− t)z−1dt. (3.41)

Taking x = 6− w − iy and z = 2(w + iy), we have

Γ(6− w − iy)Γ(2(w + iy))

Γ(6 + w + iy)
=

∫ 1

0

t5−w−iy(1− t)2(w+iy)−1dt = Ow,y(1). (3.42)

Thus

Γ(6− w − iy)

Γ(6 + w + iy)
=

Ov,w(1)

Γ(−2(w + iy))
, (3.43)

giving us a polynomial bound on Γ(6−w−iy)
Γ(6+w+iy)

in y due to the properties of the Γ function.

The last detail to attend to before attacking (3.35) is to bound g
(
ν − iwL

π

)
.

Proposition 3.5. For anyw, we have g
(
ν − iw log(X/2π)

π

)
� X2σ|w|

(
ν2 + (w log(X/2π)

2π
)2
)−B

for any B ≥ 0.

Proof. Since g(ν) =
∫∞
ω=−∞ ĝ(ω)e2πiωνdω, integrating by parts 2n times (and noting the

boundary terms vanish as ĝ is supported in (−σ, σ)), we find

g(ν − iy) =

∫ ∞
ω=−∞

ĝ(ω)e2πiω(ν−iy)dω

=

∫ ∞
ω=−∞

ĝ(2n)(ω)(2πi(ν − iy))−2ne2πi(ν−iy)ωdω

≤
∫ ∞
ω=−∞

∣∣ĝ(2n)(ω)
∣∣ · |2πi(ν − iy)|−2n · e2π|yω|dω

� e2π|y|σ|ν − iy|−2n (3.44)

for any n ∈ Z+. Our claim follows by taking y = w log(X/2π)
π

. �
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We are now ready to analyze (3.35), which we may rewrite as

R(g;X) = − 1

LX∗

∫ ∞
−∞

g(ν)
∑
d≤X

(
d

2π

)−2iπν
L Γ

(
6− iπν

L

)
Γ
(
6 + iπν

L

)
×
ζ
(
1 + 2iπν

L

)
L∆

(
sym2, 1− 2iπν

L

)
L∆(sym2, 1)

B∆

(
−iπν

L
, i
πν

L

)
dν

= − 1

LX∗δ

∫ ∞
−∞

g(ν)
∑
d≤X

e−2iπν
L

log d
2π

Γ
(
6− iπν

L

)
Γ
(
6 + iπν

L

)
× ζ

(
1 + 2i

πν

L

)
L∆

(
sym2, 1− 2i

πν

L

)
B∆

(
−iπν

L
, i
πν

L

)
dν (3.45)

where δ = L∆(sym2, 1), a nonzero constant. By Proposition 3.4, we may shift y to y − iw
where −1

2
< w < 1

4
and still have B∆(−iy, iy) converge. Scaling by L/π, this becomes

a shift to ν − iwL
π

. Replacing ν with ν − iwL
π

where w = 0 (we will shift momentarily),

equation (3.45) becomes

R(g;X) =− 1

LX∗δ

∫ ∞
−∞

g

(
ν − iwL

π

)∑
d≤X

e−2πi(ν−iwLπ ) log (d/2π)
L

Γ
(
6− w − iπν

L

)
Γ
(
6 + w + iπν

L

)
× ζ

(
1 + 2w + 2i

πν

L

)
L∆

(
sym2, 1− 2w − 2i

πν

L

)
B∆

(
−iπν

L
− w, iπν

L
+ w

)
dν.

(3.46)

Shifting the contour to w = 1
4
− ε, the only residue contribution due to our shift comes

from the pole of ζ
(
1 + 2w + 2iπν

L

)
at w = ν = 0. At w = ν = 0 we have that the d-sum

is simply X∗. The pole of ζ(s) is simply 1/(s − 1), and since s = 1 + 2iπν
L

the 1
ν

term

from the zeta function has coefficient L
2πi

. Applying the residue theorem after replacing the

integral from −ε to ε with a semi-circle oriented clockwise, we lose a factor of 1
2πi

, giving

us L which is cancelled by the outside coefficient. The contribution of the pole is therefore

1/2 everything else evaluated at ν = 0, yielding a contribution of g(0)/2 which perfectly

cancels the constant term in the number theory analysis. We also have by Lemma A.2 that

∑
d≤X

e−2πi(ν−iwLπ ) log (d/2π)
L = X∗e−2πi(ν−iwLπ )

(
1−

2πi
(
ν − iwL

π

)
L

)−1

+O(X2ε). (3.47)

With w = 1
4
− ε, this gives us that the sum is O(X∗X−1/2+ε) (possibly modifying our ε,

but still keeping it arbitrarily small). As this term is independent of ν, it will not harm the
31



convergence of our integral. By our previous arguments, we have

Γ
(
6− w − iπν

L

)
Γ
(
6 + w + iπν

L

)ζ (1 + 2w + 2i
πν

L

)
× L∆

(
sym2, 1− 2w − 2i

πν

L

)
B∆

(
−iπν

L
− w, iπν

L
+ w

)
=O(νk) (3.48)

for some positive integer k. Choosing n = k + 1 in Proposition 3.5 now yields

g

(
ν − iw log(X/2π)

π

)
� X2σ|w|

(
ν2 +

(
w

log(X/2π)

2π

)2
)−(k+1)

, (3.49)

allowing us to replace the g-term in the integrand in (3.46) with ν−2k−2. This cancels the

polynomial size of the other terms (which is O(vk)), giving us convergence of the integral

in ν. As we are only interested in the order of magnitude in terms ofX (and not the constant

that arises from integrating with respect to ν), it is enough to note that

R(g;X) = O

(
1

X∗
X2σ|w|X∗X−1/2+ε

)
= O

(
X−

1
2

+2σ|w|+ε
)

= O
(
X−(1−σ)/2+ε

)
(3.50)

as |w| < 1/4 (note that εmay change value, but is still arbitrarily small). ThusR(g,X) con-

tributes an error ermO(X−(1−σ)/2+ε), into which we may absorb the error term of Equation

3.4. Having either matched all other terms or shown they are sufficiently small, we have

proven our main result, namely Theorem 1.1, which asserted that the Ratios Conjecture’s

prediction is correct to the stated accuracy. In other words, in this instance of convolving

an infinite family with a family of size 1, we have verified that the Ratios Conjecture’s pre-

diction is correct up to a power savings error for suitably restricted test functions (requiring

σ < 1).

3.3. Where To Go From Here. Ideally, our result can be improved to decrease the error

term in the Ratios Conjecture prediction. The limiting factor in obtaining this bound is

the limitations on our contour shift imposed by the B∆ term. If this term were more well

understood, it might be possible to extend our shift further to make the error term 3.35

even smaller. Note that in [Mil3], where the family under consideration is just Dirichlet

L-functions arising from even fundamental discriminants, the corresponding term can be

rewritten from the product expansion in [CS1] and identified as a product of zeta functions.
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This allows a much better analysis of the error term; to date we have not been able to

determine a similar simplification here.

In terms of applying these techniques to other L-functions, a natural family is the qua-

dratic twists of an elliptic curve L-functions. The number theory analysis of these families

is very similar to the analysis of the twists of the tau L-function, with the primary differ-

ence in the Seven terms due to a special prime (the conductor of the elliptic curve). With

our understanding of the analysis for the twisted tau family, it will easier to narrow in on

trouble spots in the analyses of these other families.
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4. RANDOM MATRIX THEORY MODELS OF CONVOLUTIONS

We conclude by discussing the possibility of modeling convolutions more generally us-

ing Random Matrix Theory. To do so, we will test whether methods of combining collec-

tions of matrices exhibit the same symmetries and relations found in convolving families

of L-functions.

We begin by defining the symmetry constant for a family F of L-functions.

Definition 4.1. The symmetry constant of a family F , denoted cF , is defined to equal 0

(respectively 1 or−1) if the one-level density of the family agrees with unitary (respectively

symplectic or orthogonal) matrices.

In [DM2], Miller and Dueñez prove that for “nice” families F and G (what they call

NT-good families of unitary automorphic representations of GLn(AQ) and GLm(AQ) with

trivial central character) with symmetry constants cF and cG such that the Rankin-Selberg

convolution F × G is an NT-good family, we have that F × G has symmetry constant

cF×G = cF · cG.

This raises the question of what the corresponding operation is in Random Matrix Theory;

that is, what method of combining matrices gives eigenvalue statistics that can be predicted

based on the groups of matrices being combined. A natural candidate for this operation

is the tensor product (or Kronecker product) of matrices. We use Mathematica to com-

pute eigenvalue statistics for tensor products of unitary, unitary orthogonal, and unitary

symplectic matrices.

4.1. Types of Matrices. The following definitions and facts come from [Co].

Definition 4.2. An N ×N matrix X with complex entries is said to be unitary if XX∗ = I

(where X∗ denotes the conjugate transpose of X); we denote the group of all N × N

unitary matrices by U(N).

A unitary matrix X is said to be orthogonal if XXT = I , where XT denotes the trans-

pose of X; we denote the group of all 2N × 2N orthogonal matrices by SO(2N) and of

all (2N + 1)× (2N + 1) orthogonal matrices by SO(2N + 1).

A unitary matrix X is said to be symplectic if XZXT = Z (where Z =
(

0 IN
−IN 0

)
with

IN the N × N identity matrix); we denote the group of 2N × 2N symplectic matrices by

USp(2N).
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All eigenvalues of unitary matrices have absolute value 1, and so must be of the form eiθ

for some 0 ≤ θ < 2π. The eigenvalues of X ∈ U(N) are

eiθ1 , eiθ2 , . . . , eiθN

where

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θN < 2π.

These eigenangles are distributed uniformly on [0, 2π).

For any eigenvalue of an orthogonal or symplectic matrix, its complex conjugate is also

an eigenvalue. For X ∈ SO(2N), we have eigenvalues

e±iθ1 , e±iθ2 , . . . , e±iθN

where

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θN ≤ π.

These eigenangles are distributed according to the probability distribution

2(N−1)2

πNN !

∏
1≤j<k≤M

(cos θk − cos θj)
2.

For X ∈ SO(2N + 1), we have eigenvalues

1, e±iθ1 , e±iθ2 , . . . , e±iθN

where

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θN ≤ π.

These eigenangles are distributed according to the probability distribution

2N
2

πNN !

∏
1≤j<k≤M

(cos θk − cos θj)
2

N∏
h=1

sin2 θh
2
.

For X ∈ USp(2N), we have eigenvalues

e±iθ1 , e±iθ2 , . . . , e±iθN

where

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θN ≤ π.

These eigenangles are distributed according to the probability distribution

2(N−1)2

πNN !

∏
1≤j<k≤M

(cos θk − cos θj)
2

N∏
h=1

sin2 θh.
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These are the groups of matrices on which we will be performing our numerical in-

vestigations. The quantities of interest are the eigenvalues of the tensor products of these

matrices. Since the eigenvalues of a tensor product are simply all possible products of an

eigenvalue from the first matrix with an eigenvalue from the second matrix, we have that

the eigenangles simply add under tensor product. It will therefore suffice to generate eige-

nangles from each grou’s eigenangle distribution and add them. The statistic we focus on

is the lowest eigenangle statistic (modulo 2π).

4.2. Sampling from Distributions. Sampling from unitary matrices is simple, as the eige-

nangles are uniformly distributed on [0, 2π). To randomly sample from the orthogonal and

symplectic distributions, we utilize the Accept-Reject method (from the notes of Carston

Botts):

To generate a random variable X that is distributed according to fX(x), find another

density g(x) such that

S = sup
x

[
fX(x)

g(x)

]
<∞.

Set M ≥ S, and perform the following algorithm:

1. Generate a candidate value of X , which we denote by Xc, from g(x).

2. Generate U distributed according to Unif(0,Mg(Xc))

3. If U ≤ fX(Xc), accept Xc as a draw from fX(x).

Note that for orthogonal and symplectic matrices, we have fX(x) is nonzero on (0, π)N

and 0 elsewhere. We may therefore utilize g(x) = Unif((0, π)N), allowing us to use

M = S = πN supx[fX(x)]. Thus we may generate U according to

Unif(0,Mg(Xc)) = Unif
(

0, πN sup
x

[fX(x)] · 1

πN

)
= Unif(0, sup

x
[fX(x)]).

Numerically estimating supx[fX(x)] and increasing it by a safe margin, we will use the

above algorithm to generate data for orthogonal and symplectic matrices.

4.3. Combinations of Orthogonal and Symplectic Matrices. From the results of Dueñez

and Miller, we expect orthogonal combined with orthogonal to yield symplectic (since

−1 · −1 = 1), and for symplectic combined with symplectic to yield symplectic. To test

these hypotheses, we have used Mathematica to generate data on the lowest eigenangle

statistics of N2 × N2 orthogonal and symplectic matrices and of tensor products of two

N ×N orthogonal matrices, two N ×N symplectic matrices, and one of each. For conve-

nience, we will let “orth” (resp. “symp”) refer to N2 × N2 orthogonal (resp. symplectic)
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matrices, and “orth/orth”, “symp/symp”, and “orth/symp” refer to tensor products of the

corresponding N ×N matrices.

There was little similarity found in comparing the distributions corresponding toN2×N2

matrices with the tensor products of smaller matrices, as illustrated in 1. The differences

between the compared matrices include noticeable qualitative differences (such as symp’s

repulsion from 0), as well as subtler cases involving scale (the tensor products seem to have

tails that spread further). Although we have illustrated only the N = 4 case, qualitative

attributes persist in cases of higher N (for instance, the repulsion of symp), implying that

these differences exist in the limit.

There is a notable similarity between the distributions for orth/orth and symp/symp, as

illustrated in Figures 2 through 4. Although there seems to be a systematic bias that causes

symp/symp to overshoot orth/orth for a time, and then reverse, this phenomenon seems to

diminish as N increases, implying that in the limit these two distributions are equal. This

implies that perhaps the model is salvagable, as the combination of orthogonal with orthog-

onal should look like the combination of symplectic with symplectic (since−1·−1 = 1·1).

To test this, we have looked at orth/orth/orth and symp/symp/symp, which would be dif-

ferent if this multiplicative structure were different. However, these histograms are very

similar as well. Although an interesting phenomenon seems to be causing these distribu-

tions to approach one another, it seems fundamentally different from the multiplication of

symmetry constants.

4.4. What Happens When We Include Unitary. Although the predicted eigenangle sta-

tistics fail to hold for combinations of orthogonal and symplectic matrices, it seems reason-

able that the “0” role of unitary will hold. As its eigenangles are uniformly distributed, it is

not unreasonable to conjecture that a combination of unitary with any other type of matrix

will yield unitary.

If we look at the eignangle statistics for unitary/orth and unitary/symp, we see great

similarity; indeed, considering Figure 5, any difference between the two distributions seems

to be random noise. However, comparing these distributions with unitary/unitary shows a

significant bias in overshooting/undershooting, suggesting that the structure is not as simple

as multiplication by 0; see Figure 6

4.5. Other Methods of Combining Matrices. There are other methods of combining two

matrices that could potentially model the Rankin-Selberg convolution. These include the
37



FIGURE 1. Lowest eigenangle histograms in the case of N = 4. From left

to right then top down, we have the following comparisons: orth/orth vs.

orth, orth/orth vs. symp, symp/symp vs. orth, and symp/symp vs. orth.

(Blue is the first type, red is the second type.)

FIGURE 2. Histogram of smallest eigenangles for orth/orth (blue) vs.

symp/symp (red) when N = 4.

Tracy-Singh and Khatri-Rao products, which act on partitioned matrices. A natural par-

tition of a 2N × 2N matrix being into four equal-sized parts, we have investigated the

behavior of matrices under these operations. In the case of the Tracy-Singh product, we

find that eigenvalues are multiplicative as they are under the tensor product. It follows

that this product will affect eigenangle statistics in precisely the same fashion as the tensor

product, giving us no new information. The Khatri-Rao product behaves differently. In the

case of combining two diagonal matrices, the resulting eigenvalues are a (usually proper)

subset of the products of eigenvalues of the original matrices; this implies that the order-

ing of eigenvalues along the diagonal of a matrix matters, something that is not usually
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FIGURE 3. Same as Figure 2 with N = 8.

FIGURE 4. Same as Figure 2 with N = 12.

FIGURE 5. Lowest eigenangle statistics for unitary/orth and unitary/symp

for N = 8.

considered when looking at entire families of matrices. In addition, when considering non-

diagonal unitary matrices, the resulting eigenvalues do not even necessarily have magnitude

1, rendering eigenangles an unnatural statistic to study.

4.6. Random Matrix Conclusions. Based on both qualitative and quantitative results, it

seems that taking the Kronecker product of matrices (as well as applying Tracy-Singh or

Khatri-Rao) is an inadequate model for convolving families of L-functions. However, these

findings suggest certain interesting patterns in eigenangle statistics of Kronecker products
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FIGURE 6. Lowest eigenangle statistics for unitary/symp and uni-

tary/unitary for N = 8.

of different families, such as orthn and sympn appearing to approach one another. While

not necessarily useful to modeling L-functions, rigorously exploring these patterns may be

interesting in their own right.
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APPENDIX A. KEY LEMMAS

In this appendix we include three key lemmas used in sections 2 and 3. For the first three

lemmas, two on sums over fundamental discriminants and one of Seven,1, the lemmas and

the proofs thereof are taken or modified (with permission) from [Mil3]. For the third, we

write sums from Proposition 3.4 as a main term plus an error term.

Lemma A.1. Let d denote an even fundamental discriminant at most X , and set X∗ =∑
d≤X 1. Then

X∗ =
3

π2
X +O(X1/2) (A.1)

and for p ≤ X1/2 we have ∑
d≤X
p|d

1 =
X∗

p+ 1
+O(X1/2). (A.2)

Proof. We first prove the claim for X∗, and then indicate how to modify the proof when

p|d.

Let µ : N → {−1, 0, 1} be the Mobius function, meaning that µ(n) is 0 if n is not

square-free and is (−1)k if n is square-free with k distinct prime factors. First assume

that d ≡ 1 mod 4, so we are considering even fundamental discriminants {d ≤ X : d ≡
1 mod 4, µ(d)2 = 1}; it is trivial to modify the arguments below for d such that d/4 ≡ 2 or

3 modulo 4 and µ(d/4)2 = 1. Let χ4(n) be the non-trivial character modulo 4: χ4(2m) = 0

and

χ4(n) =

1 if n ≡ 1 mod 4

0 if n ≡ 3 mod 4.
(A.3)

We have

S(X) =
∑
d≤X

µ(d)2=1, d≡1 mod 4

1

=
∑
d≤X
2|rd

µ(d)2 · 1 + χ4(d)

2

=
1

2

∑
d≤X
2|rd

µ(d)2 +
1

2

∑
d≤X

µ(d)2χ4(d) = S1(X) + S2(X). (A.4)
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By Möbius inversion

∑
m2|d

µ(m) =

1 if d is square-free

0 otherwise.
(A.5)

Thus

S1(X) =
1

2

∑
d≤X
2|rd

∑
m2|d

µ(m)

=
1

2

∑
m≤X1/2

2|rm

µ(m) ·
∑

d ≤ X/m2

2|rd

1

=
1

2

∑
m≤X1/2

2|rm

µ(m)

(
X

2m2
+O(1)

)

=
X

4

∞∑
m=1
2|rm

µ(m)

m2
+O(X1/2)

=
1

4

6

ζ(2)
·
(

1− 1

22

)−1

·X +O(X1/2)

=
2

π2
X +O(X1/2) (A.6)

(because we are missing the factor corresponding to 2 in 1/ζ(2) above). Arguing in a

similar manner shows S2(X) = O(X1/2); this is due to the presence of χ4, giving us

S2(X) =
1

2

∑
m≤X1/2

χ4(m2)µ(m)
∑

d≤X/m2

χ4(d) � X1/2 (A.7)

(because we are summing χ4 at consecutive integers, and thus this sum is at most 1). A

similar analysis shows that the number of even fundamental discriminants d ≤ X with

d/4 ≡ 2 or 3 modulo 4 is X/π2 +O(X1/2). Thus∑
d≤X

d an even fund. disc.

1 = X∗ =
3

π2
X +O(X1/2). (A.8)

We may trivially modify the above calculations to determine the number of even funda-

mental discriminants d ≤ X with p|d for a fixed prime p. We first assume p ≡ 1 mod 4.

In (A.4) we replace µ(d)2 with µ(pd)2, d ≤ X with d ≤ X/p, 2 |r d and (2p, d) = 1.

These imply that d ≤ X , p|d and p2 does not divide d. As d and p are relatively prime,
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µ(pd) = µ(p)µ(d) and the main term becomes

S1;p(X) =
1

2

∑
d≤X/p

(2p,d)=1

∑
m2|d

µ(m)

=
1

2

∑
m≤(X/p)1/2

(2p,m)=1

µ(m) ·
∑

d ≤ (X/p)/m2

(2p,d)=1

1

=
1

2

∑
m≤(X/p)1/2

(2p,m)=1

µ(m)

(
X/p

m2
· p− 1

2p
+O(1)

)

=
(p− 1)X

4p2

∞∑
m=1

(2p,m)=1

µ(m)

m2
+O(X1/2)

=
1

4

6

ζ(2)
·
(

1− 1

22

)−1

·
(

1− 1

p2

)−1

· (p− 1)X

p2
+O(X1/2)

=
2X

(p+ 1)π2
+O(X1/2), (A.9)

and the cardinality of this piece is reduced by (p + 1)−1 (note above we used #{n ≤ Y :

(2p, n) = 1} = p−1
2p
Y + O(1)). A similar analysis holds for S2;p(X), as well as the even

fundamental discriminants d with d/4 ≡ 2 or 3 modulo 4).

We need to trivially modify the above arguments if p ≡ 3 mod 4. If for instance we

require d ≡ 1 mod 4 then instead of replacing µ(d)2 with µ(d)2(1 + χ4(d))/2 we replace

it with µ(pd)2(1− χ4(d))/2, and the rest of the proof proceeds similarly.

For p = 2, we have a different situation. Note if d ≡ 1 mod 4 then 2 never divides

d, while if d/4 ≡ 2 or 3 modulo 4 then 2 always divides d. There are 3X/π2 + o(X1/2)

even fundamental discriminants at mostX , and X/π2 +O(x1/2) of these are divisible by 2.

Thus, if our family is all even fundamental discriminants, we do get the factor of 1/(p+ 1)

for p = 2, as one-third (which is 1/(2 + 1) of the fundamental discriminants in this family

are divisible by 2. �

Lemma A.2. Let d denote an even fundamental discriminant at mostX andX∗ =
∑

d≤X 1

and let z = ν − iw log(X/2π)
π

with w = 1
4
− ε (ε > 0 small). Then

∑
d≤X

e−2πiz
log(d/2π)
log(X/2π) = X∗e−2πiz

(
1− 2πiz

log(X/2π)

)−1

+O(X2ε). (A.10)
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Proof. We may rewrite our sum as

∑
d≤X

e−2πiz
log(d/2π)

L =
∑
d≤X

e−2πiz
(log d−log 2π)

L

=
∑
d≤X

e−2πiz log d
L e2πiz log 2π

L

= e2πiz log 2π
L

∑
d≤X

d−2πiz/L. (A.11)

Recall the integral version of partial summation, namely that if h(x) is a continuously

differentiable function and A(x) =
∑

n≤x an, then

∑
n≤x

anh(n) = A(x)h(x)−
∫ x

1

A(u)h′(u)du. (A.12)

Considering h(x) = x−2πiz/L and an = 1 for n an even fundamental discriminant and

an = 0 otherwise, by Lemma A.1 we have

A(u) =
∑
d≤u

1 =
3u

π2
+O(u1/2). (A.13)

This allows us to rewrite equation (A.11) as

e2πiz log 2π
L

∑
d≤X

d−2πiz/L

=e2πiz log 2π
L

[(
3X

π2
+O(X1/2)

)
X−2πiz/L −

∫ X

1

(
3u

π2
+O(u1/2)

)
· u−2πiz/Lu−1

(
−2πiz

L

)
du

]
(A.14)

Note that we may rewrite −2πiz
L

= −2πi(ν−iwL/π)
L

= −2w + iδ, where δ ∈ R. As order

of magnitude depends only on the real part of the exponent, we have O(X1/2)X−2πiz/L =

)(X1/2−2w) = O(X2ε) due to our choice ofw. Similarly, we may writeO(u1/2)u−2πiz/Lu−1 =

O(u1/2−2w−1) = O(u−1+2ε), meaning the integral (from 1 to X) of that term ends up as
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O(X2ε). As multiplying these terms by the e2πiz log 2π
L only decreases their order of magni-

tude in X , we have

e2πiz log 2π
L

∑
d≤X

d−2πiz/L

=e2πiz log 2π
L

[
3X

π2
X−2πiz/L −

∫ X

1

3u

π2
· u−2πiz/Lu−1

(
−2πiz

L

)
du

]
+O(X2ε)

= e2πiz log 2π
L

[
3

π2
X1−2πiz/L +

3
π2 · 2πiz

L

∫ X

1

u−2πiz/Ldu

]
+O(X2ε)

= e2πiz log 2π
L

[
3

π2
X1−2πiz/L +

3
π2 · 2πiz

L

X1−2πiz/L

1− 2πiz/L

]
+O(X2ε)

=
3

π2
X1−2πiz/Le2πiz log 2π

L

[
1 +

2πiz

L

∞∑
k=0

(
L

2πiz

)k]
+O(X2ε)

=
3

π2
Xe−2πiz( logX

L
− log 2π

L )
(

1− 2πiz

L

)−1

+O(X2ε)

= X∗e−2πiz

(
1− 2πiz

log(X/2π)

)−1

+O(X2ε). (A.15)

�

Lemma A.3. Notation as in Section 2, we have

Seven;1 =
g(0)

2
+

1

L

∫ ∞
−∞

g(ν)

(
L′

L

(
1 +

2πiν

L
, sym2∆

)
− ζ ′

ζ

(
1 +

2πiν

L

))
dν

(A.16)

Proof. Let

Λ∆(n) =

(α2`
p + α2`

p ) log p if n = p`

0 otherwise.
(A.17)

Note this is the natural generalization of Λ(n) for the tau curve.

We have

Seven;1 = − 1

L

∞∑
n=1

Λ∆(n)

n
ĝ

(
log n

L

)
. (A.18)

We use Perron’s formula to re-write Seven;1 as a contour integral. For any ε > 0 set

I1 =
1

2πi

∫
<(z)=1+ε

g

(
(2z − 2) logA

2πi

) ∞∑
n=1

Λ∆(n)

nz
dz; (A.19)
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we will later take A = X/2π. We write z = 1 + ε+ iy and write g(x+ iy) in terms of the

integral of ĝ(u), giving us

I1 =
∞∑
n=1

Λ∆(n)

n1+ε

1

2πi

∫ ∞
−∞

g

(
y logA

π
− iε logA

π

)
e−iy lognidy

=
∞∑
n=1

Λ∆(n)

n1+ε

1

2π

∫ ∞
−∞

[∫ ∞
−∞

[
ĝ(u)eεu logA

]
e−2πi−y logA

π
udu

]
e−iy logndy. (A.20)

We let hε(u) = ĝ(u)eεu logA. Note that hε is a smooth, compactly supported function and̂̂
hε(w) = hε(−w). Thus

I1 =
∞∑
n=1

Λ∆(n)

n1+ε

1

2π

∫ ∞
−∞

ĥε

(
−y logA

π

)
e−iy logndy

=
∞∑
n=1

Λ∆(n)

n1+ε

1

2π

∫ ∞
−∞

ĥε(y)e−2πi−y logn
logA

πdy

logA

=
∞∑
n=1

Λ∆(n)

n1+ε

1

logA
̂̂
hε

(
− log n

logA

)

=
∞∑
n=1

Λ∆(n)

n1+ε

1

logA
ĝ

(
log n

logA

)
eε logn

=
1

logA

∞∑
n=1

Λ∆(n)

n
ĝ

(
log n

logA

)
. (A.21)

By taking A = X/2π we find

Seven;1 = − 1

L

∞∑
n=1

Λ∆(n)

n
ĝ

(
log n

L

)
= −I1. (A.22)

We now re-write I1 by shifting contours; we will not pass any poles as we shift. For

each δ > 0 we consider the contour made up of three pieces: (1 − i∞, 1 − iδ], Cδ, and

[1− iδ, 1 + i∞), where Cδ = {z : z − 1 = δeiθ, θ ∈ [−π/2, π/2]} is the semi-circle going

counter-clockwise from 1 − iδ to 1 + iδ. By Cauchy’s residue theorem, we may shift the

contour in I1 from <(z) = 1 + ε to the three curves above.

For use in rewriting the integral, we will consider the logarithmic derivative of the sym-

metric square L-function attached to τ ∗. From (3.15) of [ILS] (recall the level N = 1 in

our case) it is

L(s, sym2∆) =
∏
p

(
1−

α2
p

ps

)−1(
1− 1

ps

)−1(
1−

α2
p

ps

)−1

, (A.23)
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as αpαp = 1. Taking the logarithmic derivative yields

L′(s, sym2∆)

L(s, sym2∆)
=

∞∑
`=1

(α2`
p + 1 + α2`

p ) log p

ps`
, (A.24)

so

∞∑
`=1

(α2`
p + α2`

p ) log p

ps`
=

L′(s, sym2∆)

L(s, sym2∆)
−
∞∑
`=1

log p

ps`

=
L′(s, sym2∆)

L(s, sym2∆)
−
∑
n

Λ(n)

ns

=
L′(s, sym2∆)

L(s, sym2∆)
− ζ ′(s)

ζ(s)
. (A.25)

We shall use this in replacing
∑

n Λ∆(n)n−z in the integral definition of I1 in (A.19).

We find

I1 =
1

2πi

[∫ 1−iδ

1−i∞
+

∫
Cδ

+

∫ 1+i∞

1+iδ

g

(
(2z − 2) logA

2πi

)∑
n

−Λ∆(n)

nz
dz

]

=
1

2πi

[∫ 1−iδ

1−i∞
+

∫
Cδ

+

∫ 1+i∞

1+iδ

g

(
(2z − 2) logA

2πi

)(
−L

′

L
(z, sym2∆) +

ζ ′

ζ
(z)

)
dz

]
.

(A.26)

The integral over Cδ is easily evaluated. Shimura [Sh] proved that L(s, sym2∆) is en-

tire, and thus so too is its logarithmic derivative. Thus there is no contribution from the

symmetric square piece in the limit as δ → 0. We now argue that the ζ ′/ζ term contributes

−g(0)/2. As ζ(s) has a pole at s = 1, ζ ′(s)/ζ(s) = −1/(s − 1) + · · · , and thus we must

multiply the contribution from the residue by −1 because of the pole. We get just minus

half the residue of g
(

(2z−2) logA
2πi

)
. Thus the Cδ piece is −g(0)/2.

We now take the limit as δ → 0:

I1 = −g(0)

2
− lim

δ→0

1

2π

[∫ −δ
−∞

+

∫ ∞
δ

g

(
y logA

π

) (
L′

L
(z, sym2∆)− ζ ′

ζ
(z)

)
dy

]
.

(A.27)

As g is an even Schwartz function, the limit of the integral above is well-defined (for

large y this follows from the decay of g, while for small y it follows from the fact that

ζ ′(1 + iy)/ζ(1 + iy) has a simple pole at y = 0 and g is even). We again take A = X/2π,
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and change variables to ν = y logA
π

= yL
π

. Thus

I1 = −g(0)

2
− 1

L

∫ ∞
−∞

g(ν)

(
L′

L

(
1 +

2πiν

L
, sym2∆

)
− ζ ′

ζ

(
1 +

2πiν

L

))
dν

= −Seven,1, (A.28)

which completes the proof of Lemma A.3. �

Lemma A.4. Let y′ = y − iw be as in Proposition 3.4. Then for all ε > 0,

i.)

∞∑
m=1

τ ∗(p2m)

pm(1−2iy′)
=

τ ∗(p2)

p1−2iy′
+O

(
1

p2−4w−ε

)
(A.29)

ii.)

τ ∗(p)

p

∞∑
m=0

τ ∗(p2m+1)

pm(1−2iy′)
=

τ ∗(p)2

p2
+O

(
1

p2−2w−ε

)
(A.30)

iii.)

1

p1+2iy′

∞∑
m=0

τ ∗(p2m)

pm(1−2iy′)
=

1

p1+2iy′
+O

(
1

p2−ε

)
. (A.31)

Proof. Fix ε, and pick C such that |τ ∗(n)| ≤ Cnε for all n (such a C exists by Deligne’s

theorem, which implies τ(n) = O(n11/2+ε) for all ε > 0; see [Se]). Also, recall that for

real numbers a, x, y, we have |ax+iy| = |ax|.

i.) The first claim follows from
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∣∣∣∣∣
∞∑
m=2

τ ∗(p2m)

pm(1−2iy′)

∣∣∣∣∣ ≤
∞∑
m=2

∣∣∣∣C · (p2m)ε

pm(1−2iy′)

∣∣∣∣
= C

∞∑
m=2

1

|p1−2iy′−2ε|m

= C
∞∑
m=2

1

|p1−2w−2iy−2ε|m

= C
∞∑
m=2

(
1

p1−2w−2ε

)m
= C

(
1

p1−2w−2ε

)2 ∞∑
m=0

(
1

p1−2w−2ε

)m
= C

(
1

p1−2w−2ε

)2

· 1

1− 1
p1−2w−1ε

= C ′
1

p2−4w−4ε
= O

(
1

p2−4w−4ε

)
. (A.32)

ii.) The second claim follows from∣∣∣∣∣τ ∗(p)p

∞∑
m=1

τ ∗(p2m+1)

pm(1−2iy′)

∣∣∣∣∣ ≤ |τ ∗(p)|p

∞∑
m=1

∣∣∣∣C · (p2m+1)ε

pm(1−2iy′)

∣∣∣∣
=
C|τ ∗(p)|
p1−ε

∞∑
m=1

1

|p1−2iy′−2ε|m

=
C|τ ∗(p)|
p1−ε

∞∑
m=1

1

|p1−2w−2iy−2ε|m

=
C|τ ∗(p)|
p1−ε

∞∑
m=1

(
1

p1−2w−2ε

)m
=
C|τ ∗(p)|
p1−ε

1

p1−2w−2ε

∞∑
m=0

(
1

p1−2w−2ε

)m
=
C|τ ∗(p)|
p2−2w−3ε

1

1− 1
p1−2w−1ε

≤ C ′ 1

p2−2w−3ε
= O

(
1

p2−2w−3ε

)
. (A.33)
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iii.) The third claim follows from the fact that τ ∗(1) = 1 and from the following bound

(where several steps are omitted due to similarity of the bound for the first claim):∣∣∣∣∣ 1

p1+2iy′

∞∑
m=1

τ ∗(p2m)

pm(1−2iy′)

∣∣∣∣∣ ≤ 1

|p1+2iy′ |

∞∑
m=1

∣∣∣∣C · (p2m)ε

pm(1−2iy′)

∣∣∣∣
=

C

p1+2w

∞∑
m=1

1

|p1−2iy′−2ε|m

=
C

p1+2w

1

p1−2w−2ε

∞∑
m=0

(
1

p1−2w−2ε

)m
=

C

p1+2w

1

p1−2w−2ε
· 1

1− 1
p1−2w−1ε

≤ C ′ 1

p2−4ε
= O

(
1

p2−4ε

)
. (A.34)
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