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Abstract. Consider the ensemble of real symmetric Toeplitz matrices whose entries are i.i.d.
random variables from a fixed probability distribution p of mean 0, variance 1, and finite
moments of all order. The limiting spectral measure (the density of normalized eigenvalues)
converges weakly to a new universal distribution with unbounded support, independent of
p. This distribution’s moments are almost those of the Gaussian’s, and the deficit may be
interpreted in terms of obstructions to Diophantine equations; the unbounded support follows
from a nice application of the Central Limit Theorem. With a little more work, we obtain
almost sure convergence. An investigation of spacings between adjacent normalized eigenval-
ues looks Poissonian, and not GOE. A related ensemble (real symmetric palindromic Toeplitz
matrices) appears to have no Diophantine obstructions, and the limiting spectral measure’s
first nine moments can be shown to agree with those of the Gaussian; this will be considered
in greater detail in a future paper.

1. Introduction

One of the central problems in Random Matrix Theory is as follows: consider some ensemble of
matrices A with probabilities p(A). As N →∞, what can one say about the density of normalized
eigenvalues? For real symmetric matrices, where the entries are i.i.d.r.v. from suitably restricted
probability distributions, the limiting distribution is the semi-circle (see [Wig, Meh]). Note this
ensemble has N(N+1)

2 independent parameters (aij , i ≤ j). For matrix ensembles with fewer
degrees of freedom, different limiting distributions arise (for example, McKay [McK] proved d-
regular graphs are given by Kesten’s Measure). By examining ensembles with fewer than N2

degrees of freedom, one has the exciting potential of seeing new, universal distributions. In this
paper we study ensembles of real symmetric Toeplitz matrices.

Definition 1.1. A Toeplitz matrix is A is of the form

A =




b0 b1 b2 · · · bN−1

b−1 b0 b1 · · · bN−2

b−2 b−1 b0 · · · bN−3

...
...

...
. . .

...
b1−N b2−N b3−N · · · b0




, aij = bj−i. (1)

We investigate real symmetric Toeplitz matrices whose entries are i.i.d. random variables
from a fixed probability distribution p of mean 0, variance 1, and finite moments of all order.
The probability density at A is p(A) =

∏N−1
i=0 p(bi).

From Trace(A2) =
∑

i λ2
i (A) and the Central Limit Theorem, we see that the eigenvalues of

A are of order
√

N . This suggests the appropriate scale for normalizing the eigenvalues. As the
main diagonal is constant, all b0 does is shift each eigenvalue by b0. Therefore, we only consider
the case where the main diagonal vanishes.
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To each N × N Toeplitz matrix A we attach a spacing measure by placing a point mass of
size 1

N at each normalized eigenvalue λi(A):

µA,N (x)dx =
1
N

N∑

i=1

δ

(
x− λi(A)√

N

)
dx. (2)

Thus, for any Borel set G ⊂ R, if I(x ∈ G) = 1 for x ∈ G and 0 otherwise, then

µA,N (G) =
1
N

N∑

i=1

I

(
λi(A)√

N
∈ G

)
. (3)

The kth moment of µA,N (x) is

Mk(A,N) =
1

N
k
2 +1

N∑

i=1

λk
i (A). (4)

Definition 1.2. Let Mk(N) be the average of Mk(A,N) over the ensemble, with each A weighted
by its distribution. If p is continuous, we weight A by

∏N−1
k=1 p(bk)dbk. Let Mk = limN→∞Mk(N).

Our main result is the following: for each k, Mk(N) converges to the moments of a new uni-
versal distribution, independent of p. This distribution is denoted the limiting spectral measure
(the density of normalized eigenvalues). In Theorem 5.4 we prove the limiting spectral measure
converges weakly to a new distribution of unbounded support; in Theorem 6.1 we show that if
p is an even function, then we have almost sure convergence.

The new distribution looks Gaussian, and numerical simulations and heuristics seemed to
support such a conjecture. A more detailed analysis, however, reveals that while Mk agrees
with the Gaussian moments for odd k and k = 0, 2, the other even moments are less than
the Gaussian’s. We calculate the odd and first few moments in §2; this involves proving some
combinatorial identities and analyzing some Diophantine equations. Using simple combinatorics
we give some upper bounds for the higher moments in §3; using the Central Limit Theorem we
prove strong enough lower bounds in §4 to show the limiting spectral measure has unbounded
support.

We now highlight the proof. By the Eigenvalue Trace Lemma,
N∑

i=1

λk
i (A) = Trace(Ak) =

∑

1≤i1,...,ik≤N

ai1,i2ai2,i3 · · · aik,i1 . (5)

As our Toeplitz matrices are constant along diagonals, depending only on |im − in|, we have

Mk(N) = E[Mk(A,N)] =
1

N
k
2 +1

∑

1≤i1,...,ik≤N

E(b|i1−i2|b|i2−i3| · · · b|ik−i1|), (6)

where by E(· · · ) we mean averaging over the Toeplitz ensemble with each matrix A weighted by
its probability of occurring, and the bj are i.i.d.r.v. drawn from p(x).

We show that as N →∞, the above sums vanish for k odd, and converge independent of p for
k even to numbers Mk bounded by the moments of the Gaussian. By showing E[|Mk(A, N) −
Mk(N)|m] is small for m = 2 (m = 4), we obtain weak (almost sure) convergence.

Remark 1.3. This problem was first posed by Bai [Bai], where he also asked similar questions
about Hankel and Markov matrices. The methods of this paper should be applicable to at least
the Hankel case as well. Bose-Chatterjee-Gangopadhyay [BCG] and Bryc-Dembo-Jiang [BDJ]
have independently observed that the limiting distribution is not Gaussian. Using a more proba-
bilistic formulation, [BDJ] have calculated the moments using uniform variables and interpreting
results as volumes of solids related to Eulerian numbers. We have independently found the same
numbers, but through Diophantine analysis. The novelty of our approach is that we can interpret
the deviations from the Gaussian in terms of obstructions to Diophantine equations, and obtain
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significantly sharper estimates on the growth of the moments. Further, this framework seems
ideally suited for investigating related Toeplitz ensembles (see §7).

2. Determination of the Moments

2.1. k = 0, 2 and k odd.

Theorem 2.1. Assume p has mean zero, variance one and finite higher moments. Then M0 = 1,
M2 = 1 and M2m+1 = 0.

Proof. For all N , M0(A,N) = M0(N) = 1. For k = 2, we have

M2(N) =
1

N2

∑

1≤i1,i2≤N

E(b|i1−i2|b|i2−i1|) =
1

N2

∑

1≤i1,i2≤N

E(b2
|i1−i2|). (7)

As we have drawn the bs from a variance one distribution, the expected value above is 1 if i1 6= i2
and 0 otherwise. Thus M2(N) = N2−N

N2 = 1 − 1
N , so M2 = 1. Note there are two degrees of

freedom. We can choose b|i1−i2| to be on any diagonal. Once we have specified the diagonal, we
can then choose i1 freely, which now determines i2.

For k odd, we must have at least one bj occurring to an odd power. If one occurs to the
first power, as the expected value of a product of independent variables is the product of the
expected values, these terms contribute zero. Thus the only contribution to an odd moment
come when each bj in the expansion occurs at least twice, and at least one occurs three times.
Hence, if k = 2m + 1, we see we have at most m + 1 degrees of freedom, this coming from the
case b3

j1
b2
j2
· · · b2

jm
. There are m different factors of b, and then we can choose any one subscript.

Once we have specified a subscript and which diagonals we are on, the remaining subscripts are
determined. As all moments are finite, we find

M2m+1(N) ¿m
1

N
2m+1

2 +1
Nm+1 ¿m

1√
N

, (8)

where f(x) ¿m g(x) means for all x sufficiently large, there is a constant depending only on m
such that |f(x)| ≤ Cmg(x). As N →∞ we see M2m+1(N) → 0, completing the proof. ¤

2.2. Bounds for the Even Moments.

Theorem 2.2. Assume p has mean zero, variance one and finite higher moments. Then

M2m(N) ≤ (2m− 1)!! + Om

(
1
N

)
. (9)

Proof. We proceed in stages in calculating M2m(N). First we bound M2m(N) by 2m · (2m −
1)!! + Om

(
1
N

)
, where (2m − 1)!! is the 2mth moment of the Gaussian. We then show that the

factor of 2m can be removed. Later in Theorem 3.1 we show a strict inequality holds. While it
is possible to give a more concise proof, the arguments below are useful in bounding the size of
the moments and in studying generalized Toeplitz ensembles (see §7 and [MS]).

By (6),

M2m(N) =
1

Nm+1

∑

1≤i1,··· ,i2m≤N

E(b|i1−i2|b|i2−i3| · · · b|i2m−i1|). (10)

If any bj occurs to the first power, its expected value is zero and there is no contribution. Thus the
bjs must be matched at least in pairs. If any bj occurs to the third or higher power, there are less
than m+1 degrees of freedom, and there will be no contribution in the limit. In the main term the
bjs are therefore matched in pairs, say b|im−im+1| = b|in−in+1|. Let xm = |im−im+1| = |in−in+1|.
There are two possibilities:

im − im+1 = in − in+1 or im − im+1 = −(in − in+1). (11)

Let x1, . . . , xm be the values of the |ij − ij+1|s, and let ε1, . . . , εm be the choices of sign in (11).
Define x̃1 = i1− i2, x̃2 = i2− i3, . . . , x̃2m = i2m− i1. Note for each j exactly one x̃m is ηjxj and
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exactly one x̃m is εjηjxj , where ηj = ±1. We have

i2 = i1 − x̃1

i3 = i1 − x̃1 − x̃2

...
i1 = i1 − x̃1 − · · · − x̃2m. (12)

By the final relation for i1, we find

x̃1 + · · ·+ x̃2m =
m∑

j=1

(1 + εj)ηjxj = 0. (13)

If any εj = 1, then the xj are not linearly independent, and we have fewer than m + 1 degrees
of freedom; these terms contribute Om

(
1
N

)
in the limit. Therefore the only valid assignment

is to have all εj = −1. There are now 2m possible choices (from the ηj), and m + 1 degrees of
freedom. Hence M2m(N) ≤ 2m ·Nm+1 +Om

(
1
N

)
as the bjs are matched in pairs and the second

moment of p is 1; the error term is from the matchings that aren’t all pairs. We eliminate 2m

by changing our viewpoint.
We have m + 1 degrees of freedom. We match our differences in m pairs. Choose i1 and i2.

We now look at the freedom to choose the remaining indices ij . Once i1 and i2 are specified, we
have i1− i2, and a later difference must be the negative of that. If i2− i3 is matched with i1− i2,
then i3 is uniquely determined (because it must give the opposite of the earlier difference). If
not, i3 is a new variable and there are N choices for i3. Now we look at i4. If i3− i4 is matched
with an earlier difference, then the sign of its difference is known, and i4 is uniquely determined;
if this difference belongs to a new pair not previously encountered, then i4 is a new variable
and free. Proceeding in this way, we note that if we encounter in such that in−1 − in is paired
with a previous difference, the sign of its difference is specified and in is uniquely determined;
otherwise, if this is a difference of a new pair, in is a free variable with at most N choices. Thus
we see there are at most Nm+1 choices (note that it is possible that not all choices work, as
for example the final difference i2m − i1 is determined before we get there because of earlier
choices). ¤
Remark 2.3. Having m + 1 degrees of freedom does not imply each term contributes fully –
we will see there are Diophantine obstructions which bound the moments away from the Gauss-
ian’s. However, each matching contributes at most 1, and there are (2m − 1)!! matchings. It
is often convenient to switch viewpoints from having m + 1 indices to having the m positive
subscript differences and one index (say id) as our degrees of freedom; note once we specify the
positive differences and any index, which difference in a pair is positive and which is negative is
determined.

2.3. The Fourth Moment. The fourth moment calculation highlights the Diophantine ob-
structions encountered, which bound the moments away from the Gaussian (whose fourth mo-
ment is 3). Let p4 be the fourth moment of p.

Theorem 2.4 (Fourth Moment).

M4(N) =
8
3

+ O

(
1
N

)
. (14)

Proof. By (6),

M4(N) =
1

N3

∑

1≤i1,i2,i3,i4≤N

E(b|i1−i2|b|i2−i3|b|i3−i4|b|i4−i1|) (15)

Let xj = |ij − ij+1|. If any bxj occurs to the first power, its expected value is zero. Thus
either the xj are matched in pairs (with different values), or all four are equal (in which case
they are still matched in pairs). From Theorem 2.2, the signs εj are all negative in the pairings.
There are three possible matchings, and each matching contributes at most 1; if each matching
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contributed 1 then the fourth moment would be 3, the same as the Gaussian’s. By symmetry
(simply relabel), we see the contribution from x1 = x2, x3 = x4 is the same as the contribution
from x1 = x4, x2 = x3. The reason is both of these cases are adjacent pairings; the neighbors of
x1 are x2 and x4, and in each case everything is matched with a neighbor.

If x1 = x2, x3 = x4, by Theorem 2.2 we have

i1 − i2 = −(i2 − i3) and i3 − i4 = −(i4 − i1). (16)

Thus i1 = i3 and i2 and i4 are arbitrary. Using these three variables as our independent degrees
of freedom, we see there are N3 such quadruples. Almost all of these will have x1 6= x3 and
contribute E(b2

x1
b2
x3

) = 1. Given i1 and i2, N − 1 choices of i4 yield x1 6= x3, and one choice
yields the two equal. Letting p4 denote the fourth moment of p, we see this case contributes

1
N3

(
N2(N − 1) · 1 + N2 · p4

)
= 1− 1

N
+

p4

N
= 1 + O

(
1
N

)
. (17)

The third possibility is for x1 = x3 and x2 = x4. Non-adjacent pairing leads to Diophantine
obstructions, which decrease the contribution to the moment. Again by Theorem 2.2 we have

i1 − i2 = −(i3 − i4) and i2 − i3 = −(i4 − i1). (18)

This yields

i1 = i2 + i4 − i3, i1, i2, i3, i4 ∈ {1, . . . , N}. (19)

The fact that each ij ∈ {1, . . . , N} is what leads to the Diophantine obstructions. When x1 = x2

and x3 = x4, we saw we had three independent variables, and N3 + O(N2) choices that were
mutually consistent. Now it is possible for choices of i2, i3 and i4 to lead to impossible values for
i1. For example, if i2, i4 ≥ 2N

3 and i3 < N
3 , we see i1 > N . Thus, there are at most (1− 1

27 )N3

valid choices; we have lost a positive percent of triples. This is enough to show the Gaussian
moment is strictly greater; later in Theorem 3.1 we will see that if there is one moment less than
the Gaussian, all larger even moments are also smaller.

Note the number of tuples with x1 = x2 = x3 = x4 is O(N2), and these contribute O
(

1
N

)
.

As this is a lower order term, in the arguments below we may assume the two pairs do not have
the same difference. The proof is completed by the following lemma, which shows the case when
x1 = x3 and x2 = x4 contributes 2

3 in the limit to the fourth moment; this refines our upper
bound of 26

27 . ¤

Lemma 2.5. Let IN = {1, . . . , N}. Then #{x, y, z ∈ IN : 1 ≤ x + y − z ≤ N} = 2
3N3 + 1

3N .

Proof. Say x + y = S ∈ {2, . . . , 2N}. For 2 ≤ S ≤ N , there are S − 1 choices of z such that
1 ≤ x + y − z ≤ N , and for S ≥ N + 1, there are 2N − S + 1 choices. Similarly, the number of
x, y ∈ IN with x + y = S is S− 1 if S ≤ N + 1 and 2N −S + 1 otherwise. The number of triples
is therefore

N∑

S=2

(S − 1)2 +
2N∑

S=N+1

(2N − S + 1)2 =
2
3
N3 +

1
3
N. (20)

¤

2.4. Sixth and Eight Moments. Any even moment can be explicitly determined by brute-
force calculation, though deriving exact formulas as k → ∞ requires handling involved combi-
natorics. To calculate the 2kth moment, we consider 2k points on the unit circle, and see how
many different shapes we get when we match in pairs. Direct computation gave M6(N) = 11
(compared to the Gaussian’s 15), and M8(N) = 64 4

15 (compared to the Gaussian’s 105). For
the sixth moment, there are five non-isomorphic configurations:
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These occur 2, 6, 3, 3 and 1 time, contributing 1, 2
3 , 1, 1

2 , and 1
2 (respectively); these correspond

to the 15 = (6 − 1)!! pairings. For the eighth moment, the smallest contribution is 1
4 , coming

from the matching x1 = x3, x2 = x4, x5 = x7, x6 = x8. It seems the more crossings (in some
sense), the greater the Diophantine obstructions and the smaller the contribution.

To show the Mk converge to a new limiting distribution, we first must show the Mk are finite.
The following proof was suggested to us by David Farmer.

Theorem 2.6. If p has mean zero and variance one then for all k, Mk = limN→∞Mk(N) exists
and is finite.

Proof. From the arguments in Theorems 2.2 and 2.4, it suffices to investigate the case of even
moments; moreover, the main term is when the bjs are matched in pairs with all signs εj = −1.
There are (2k− 1)!! matchings. For any matching M, we have a system of linear equations with
i1, . . . , i2k ∈ {1, . . . , N} and k + 1 degrees of freedom. Let z` = i`

N ∈ { 1
N , . . . , 1}. The linear

equations now determine a nice region in the (k + 1)-dimensional unit cube. As N → ∞ we
obtain to first order the volume of this region, which is finite. Unfolding back to the i`, we obtain
M2k(M)Nk+1 + Ok

(
Nk

)
, where M2k(M) is the volume associated to this matching. Summing

over all matchings gives M2kNk+1 + Ok

(
Nk

)
. ¤

The above proof it is similar to the proof in [BDJ]. Arguing along these lines, they interpret the
Mk in terms of volumes of Euler solids. We prefer to view the problem in terms of Diophantine
obstructions, which is very useful for determining growth rates (see for instance Theorem 3.2),
as well as in studying related ensembles (see §7).

In §3 and §4 we obtain upper and lower bounds for the moments. Then in §5 and §6 we prove
weak and almost sure convergence.

3. Upper Bounds of High Moments

3.1. Weak Upper Bound of High Moments.

Theorem 3.1. For 2k ≥ 4, limN→∞M2k(N) < (2k − 1)!!.

Proof. We first show that if a matching contributes less than 1 for some moment, it lifts to
matchings for higher moments that also contribute less than 1. Say we have such a matching on
b|i1−i2| · · · b|i2k0−i1| giving less than 1. We extend this to a pairing on 2k > 2k0 as follows. We
now have

b|i1−i2| · · · b|i2k0−1−i2k0 |b|i2k0−i2k0+1|b|i2k0+1−i2k0+2| · · · b|i2k−1−i2k|b|i2k−i1|. (21)

In groups of two, pair adjacent neighbors from b|i2k0+1−i2k0+2| to b|i2k−1−i2k|. This implies
i2k0 = i2k0+2 = · · · = i2k. Looking at the first 2k0 − 1 and the last factor gives

b|i1−i2| · · · b|i2k0−1−i2k0 |b|i2k−ii| = b|i1−i2| · · · b|i2k0−1−i2k0 |b|i2k0−i1|. (22)

Now pair these as in the matching which gave less than 1, and we see this matching contributes
less than 1 as well. By Theorem 2.4 we know there exists a matching from the fourth moment
which contributes 2

3 < 1, which completes the proof. ¤
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3.2. Strong Upper Bound of High Moments. In general, the further away one moment is
from the Gaussian, the more one can say about higher moments. While we do not have exact
asymptotics, we can show

Theorem 3.2. limk→∞ M2k

(2k−1)!! = 0.

Proof. We show that for any positive integer c and k sufficiently large, as N →∞ then M2k(N) ≤
( 2
3 )c(2k − 1)!! + Oc

(
(2k−1)!!

k

)
. There are (2k − 1)!! matchings, and each matching contributes

at most Nk+1 (or 1 after division by Nk+1; we use both phrasings). We have shown (see
Remark 2.3) that we may take as independent variables the k values of the subscripts of the b|j|s
(x1, . . . , xk) and any index (say id). The goal is to show that almost all of the matchings, for k
large, have at least c Diophantine obstructions of the type encountered in the fourth moment.
If there were no obstructions, these terms would contribute N3; the obstructions reduce the
contribution to 2

3N3.
We strategically replace our set of independent variables id, x1, . . . , xk with new variables

which exhibit the obstructions. We give full details for c = 1 (one obstruction), and sketch how
to add more. For notational convenience, instead of referring to i1, i2, . . . , i2k, we use i, j, k, . . .
and p, q, r, . . . . Thus, in the eigenvalue trace expansion we have terms like ai1i2 = b|i1−i2|; we
refer to this term by i1i2 or by ij.

Say we pair b|i−j| with b|q−r|. Let x1 = i − j = −(q − r). If we knew i = j + r − q with j, r

and q independent free variables, then our earlier results show there are only 2
3N3 + O(N2), not

N3 + O(N2), solutions. Unfortunately, j, r and q need not be independent; however, for almost
all of the (2k− 1)!! matchings, they will be. We give a good bound on the number of matchings
where j, r and q may be taken as independent when c = 1; a similar argument works for general
c.
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Create a buffer zone around ij and qr of two vertices on each side, and assume that neither
buffer zone intersects. Given ij, there are (2k − 1) − 8 = 2k − Oc(1) possible choices to place
qr. Now connect the neighbors of ij and qr such that nothing is connected within one vertex of
another. There will be (2k −Oc(1)) · (2k −Oc(1)) · (2k −Oc(1)) · (2k −Oc(1)) such matchings.
Note that, as we start placing some of these connections, some vertices become unavailable. For
example, say there is exactly one vertex between the buffer of ij and the buffer of qr. This vertex
is not available for use, for if we were to place another vertex there, the indices it gives would
not be independent. The same would be true if there were just two vertices between the two
buffers, and so on. In each case, however, we only lose Oc(1) vertices. As all these matchings
are separated, we may label their differences by x2, x3, x4 and x5, independent free variables.

The reason for the buffer zones is that the separation allows us to replace some of the inde-
pendent variables x` with j, r and q. Note that each index appears in exactly two vertices on the
circle, and they are adjacent. Thus, these are the only occurrences of i, j, q and r, and we may
replace x5 as a free parameter with q as a free parameter, x4 with r, and x1 with j. We now
have the desired situation: i = j +r−q, with all three on the right independent free parameters.

There are (2k − 11)!! ways to pair the remaining vertices. For those pairs that have j, q, r
independent, the contribution is at most 2

3N3 ·Nk+1−3; for the others, we bound the contribution
by Nk+1. Hence

M2k(N) ≤ 1
Nk+1

[
(2k)5(2k − 11)!!

2
3
Nk+1 + Oc(k4) · (2k − 11)!! ·Nk+1

]

≤ 2
3
(2k − 1)!! + Oc

(
(2k − 1)!!

k

)
. (23)

Therefore,
M2k(N)
(2k − 1)!!

≤ 2
3

+ Oc

(
1
k

)
. (24)

There are two ways to handle the general case with c Diophantine obstructions. One may
start with enormous buffer zones around the initial pairs. As the construction progresses, we
open up more and more portions of the parts of the buffer zones not immediately near the
vertices. This keeps all but Oc(1) vertices available for use. Alternatively, along the lines of the
first construction, we can just note that by the end of stage c, Oc(1) vertices were unusable. The
correction term is smaller than the main term by a factor of 1

k . ¤

4. Lower Bound of High Moments

4.1. Preliminaries. We know the moments of the limiting spectral measure are bounded by
those of the Gaussian, (2k−1)!!; the limiting value of the 2kth root of the Gaussian (by Stirling’s
Formula) is k

e . By obtaining a sufficiently large lower bound for the even moments, we show the
limiting spectral measure has unbounded support. If it had bounded support, say [−B, B], then
the 2kth moment M2k is at most B2k, and limk→∞ 2k

√
M2k < ∞. We prove

Theorem 4.1. For any ε > 0, for k sufficiently large
2k
√

M2k ≥ k
1
2−ε. (25)

Thus the support of the limiting spectral measure is unbounded.

The construction is as follows: in studying the 2kth moment, we are led to sums of the form

1
Nk+1

E

[
N∑

i1=1

· · ·
N∑

i2k=1

ai1,i2ai2,i3 · · · ai2k,i1

]
=

1
Nk+1

E

[
N∑

i1=1

· · ·
N∑

i2k=1

b|i1−i2|b|i2−i3| · · · b|i2k−i1|

]
.

(26)
If any b|in−in+1| occurs only once, as it is drawn from a mean zero distribution, there is no

contribution to the expected value. Thus the 2k numbers (the bs) are matched in at least pairs,
and to obtain a lower bound it suffices to consider the case where the differences are matched in
k pairs. Let these positive differences (of |in − in+1|) be x1, . . . , xk.
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In Theorem 2.2 we showed the matchings must occur with negative signs. Thus, if |in−in+1| =
|iy − iy+1|, then (in − in+1) = −(iy − iy+1). We let x̃j = ij − ij+1. Thus, for any xj , there is
a unique j1 such that x̃j1 = xj and a unique j2 such that x̃j2 = −xj . We call the first set of
differences positive, and the other set negative; we often denote these by x̃p and x̃n, and note
that we have k of each.

We have k + 1 degrees of freedom. We may take these as the k differences xk, and then any
index, say i1. We have the relations (see (12))

i2 = i1 − x̃1

i3 = i1 − x̃1 − x̃2

...
i2k = i1 − x̃1 − · · · − x̃2k. (27)

Once we specify i1 and the differences x̃1 through x̃2k, all the indices are determined. If
everything is matched in pairs and each ij ∈ {1, . . . , N}, then we have a valid configuration,
which will contribute +1 to the 2kth moment. The reason it contributes +1 is because, as
everything is matched in pairs, we have the expected value of the second moment of p(x), k
times.

We need to show the number of valid configurations is sufficiently large. The problem is
that, in (27), we need each index ij ∈ {1, . . . , N}; however, it is possible that a running sum
i1 − x̃1 − · · · − x̃m is not in this range for some m. Using the Central Limit Theorem, we show
that we can keep all these running sums in the desired range sufficiently often.

4.2. Construction. Let α ∈ ( 1
2 , 1); we need α > 1

2 in order to apply the Central Limit Theorem
later. Let IA = {1, . . . , A}, where A = N

kα . Choose each difference xj from IA; there are Ak

ways to do this. In the end, we want to study k-tuples such that no value is chosen twice. Note
such tuples are lower order, namely there are at most

(
k
2

)
Ak−1 such tuples. This is O(Nk−1).

As i1 takes on at most N values (not all values will in general lead to valid configurations), we
see tuples with repeated values occur at most O(Nk) times; as we divide by Nk+1, these terms
will not contribute for fixed k as N → ∞. Thus, with probability one (as N → ∞), we may
assume the k values xj are distinct.

Let us consider k distinct positive numbers (the xjs) drawn from IA, giving rise to k positive
differences x̃ps and k negative differences x̃ns. Let us make half of the numbers x̃1, . . . , x̃k positive
(arising from the x̃ps), and half of these numbers negative (arising from the x̃ns). Call this the
first block (of differences).

Then, in the differences x̃k+1, . . . , x̃2k (the second block), we have the remaining differences.
Note every positive (negative) difference in x̃1, . . . , x̃k is paired with a negative (positive) differ-
ence in x̃k+1, . . . , x̃2k. Note we have not specified the order of the differences, just how many
positive (negative) are in the first block / second block.

Note two different k-tuples of differences xj cannot give rise to the same configuration (if
we assume the differences are distinct). This trivially follows from the fact that the differences
specify which diagonal of the Toeplitz matrix the aimim+1s are on; if we have different tuples,
there is at least one diagonal with an entry on one but not on the other.

Let us assume we have chosen the order of the differences in the first block, x̃1, . . . , x̃k. We
look at a subset of possible ways to match these with differences in the second block. In the
second block, there are k

2 positive (negative) differences x̃p (x̃n). There are (k
2 )! ways to choose

the relative order of the positive (negative) differences. Note we are not giving a complete
ordering of the differences in the second block. There are k! > (k

2 )!2 ways to completely order.
We are merely specifying the relative order among the positive (negative) elements, and not
specifying how the positive and negative differences are interspersed.

Thus the number of matchings, each of which contribute 1, obtainable by this method is at
most

N · (Ak −O(Ak−1)) · (k/2)!2, (28)
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where N is from the possible values for i1, Ak − O(Ak−1) is the number of k-tuples of distinct
differences xj ∈ IA, and (k/2)!2 is the number of relative arrangements of the positive and
negative differences in the second block (each of which is matched with an opposite difference
in the first block).

Not all of the above will yield a +1 contribution to the 2kth moment. Remember, each index
im must be in {1, . . . , N}. We now show that for a large number of the above configurations, we
do have all indices appropriately restricted. We call such a configuration valid.

4.3. Number of Valid Configurations. Most of the time, the sum of the positive differences
x̃p in the first block will be close to the negative of the sum of the negative differences x̃n in the
first block.

Explicitly, we may regard the x̃ps (x̃ns) as independent random variables taken from the
uniform distribution on IA (−IA) with mean approximately 1

2A (− 1
2A) and standard deviation

approximately 1
2
√

3
A. By the Central Limit Theorem, for k large the sum of the k

2 positive (neg-
ative) x̃ps (x̃ns) in the first block converges to a normal distribution with mean approximately
kA
4 (−kA

4 ) and standard deviation approximately
√

k
2 · A

2
√

3
.

For N and k sufficiently large, the probability that the sum of the positive differences in the
first block is in [kA

4 −
√

kA
2
√

6
, kA

4 +
√

kA
2
√

6
] is at least 1

2 (and a similar statement for the negatives).
By the Central Limit Theorem, at least 1

4Ak of the Ak tuples will have the sum of the positive
(negative) differences lying in this interval (in the negative of this interval). We call such choices
good.

Remember, in the arguments leading up to (28), we only specified two items. First, the
absolute values of the k differences (all distinct); second, that half the positive differences are
in the first block, and the relative orderings of the positive (negative) differences in the second
block is given.

We therefore have freedom to choose how to intersperse the positives and negatives in the
first and second blocks. Consider a good choice of xks. We place these differences in the first
block of length k as follows. Choose the first positive difference from our good list, and make
the first difference positive. Keep assigning (in order) the positive differences from our good list
until the running sum of the differences assigned to the first block exceeds A. Then assign the
negative differences from our good list until the running sum of differences in the first block is
less than −A. We then assign positive differences again until the running sum exceeds A, and
so on. If we run out of differences of one sign, we then assign the remaining differences. Note
we assigned half of the positive (negative) differences to the first block.

Throughout the process, the largest the running sum can be in absolute value is max(2A, 2 ·√
kA

2
√

6
). This is because the k

2 positive (negative) differences yield sums whose negatives are very
close to each other, and each added difference can change the running sum by at most ±A.

We now assign the differences in the second block. We have already chosen the positive and
negative differences. There are (k

2 )! orderings of the positive (negative) differences. Fix a choice
for the relative ordering. We intersperse these in a similar manner as in the first block. We
put down the differences, again making sure the running sum never exceeds in absolute value
max(2A, 2 ·

√
kA

2
√

6
).

Let i1 = 0. From (27), we now see that each index is at most 2max(2A, 2 ·
√

kA
2
√

6
). Therefore,

each index is in
[
− 2√

6
N

kα− 1
2
, 2√

6
N

kα− 1
2

]
. If we shift i1 so that i1 ∈

[
7
8

N

kα− 1
2
, N

kα− 1
2

]
, as α > 1

2 for k

large all indices will now be in {1, . . . , N}. Thus, this is a valid assignment of indices. We now
count the number of valid assignments. We see this is at least

(
1
8

N

kα− 1
2

)
·
(

1
4
Ak −

(
k

2

)
Ak−1

)
· (k/2)!2. (29)

To calculate the contribution to the 2kth moment from this matching, we divide by Nk+1. If
any of the differences are the same, there is a slight complication; however, as N is large relative
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to k, we may remove the small number of cases (at most
(
k
2

)
Ak) when we have repeat differences

among the x̃ps and x̃ns. We divide by Nk+1, and by Stirling’s Formula the main term is

1
Nk+1

1
32

Nk+1

k(k+1)α− 1
2

(
e

k
2 log k

2− k
2
√

2π(k/2)
)2

=
πk

3
2−α

32e(1+log 2)k
· e(1−α)k log k. (30)

The 2kth root is asymptotic to e(1−α) log k

e1+log 2 > O(k1−α), proving the support is unbounded.

5. Weak Convergence

Definition 5.1 (Weak Convergence). A family of probability distributions µn weakly converges
to µ if and only if for any bounded, continuous function f we have

lim
n→∞

∫ ∞

−∞
f(x)µn(dx) =

∫ ∞

−∞
f(x)µ(dx). (31)

By Theorem 2.6, we know the moments Mk exist and are finite. To prove we have weak
convergence to the limiting spectral measure we need to show that the variances tend to 0. We
must show

lim
N→∞

(
E[Mm(A,N)2]− E[Mm(A, N)]2

)
= 0. (32)

By (6) we have

E[Mm(A,N)2] =
1

Nm+2

∑

1≤i1,...,im≤N

∑

1≤j1,...,jm≤N

E[b|i1−i2| · · · b|im−i1|b|j1−j2| · · · b|jm−j1|]

E[Mm(A,N)]2 =
1

Nm+2

∑

1≤i1,...,im≤N

E[b|i1−i2| · · · b|im−i1|]
∑

1≤j1,...,jm≤N

E[b|j1−j2| · · · b|jm−j1|].

(33)

There are two possibilities: if the absolute values of the differences from the is are completely
disjoint from those of the js, then these contribute equally to E[Mm(A,N)2] and E[Mm(A,N)]2.
We are left with estimating the difference for the crossover cases, when the value of an iα−iα+1 =
±(jβ − jβ+1). We assume m = 2k; a similar proof works for odd m. Note Nm+2 = N2k+2, so
there are 2k + 2 degrees of freedom. The following two lemmas imply the variance tends to 0.

Lemma 5.2. The contribution from crossovers in E[M2k(A,N)]2 is Ok( 1
N ).

Proof. For E[M2k(A, N)], the expected value vanishes if anything is unpaired. Thus, in E[M2k(A,N)]2,
in the is and js everything is at least paired, and there is at least one common value from a
crossover. The maximum number of such possibilities occurs when everything is paired on each
side, and just one set of pairs crosses over; for this crossover there are 2 ways to choose sign.
In this case, there are k + 1 degrees of freedom in the is, and k + 1 − 1 degrees of freedom in
the js (we lost one degree of freedom from the crossover). Thus, these terms give Ok(N2k+1).
Considering now matchings on each side with triple or higher pairings, more crossovers, and
the two possible assignments of sign to the crossovers, we find that is and js with a crossover
contribute Ok( 1

N ) to E[Mm(A,N)]2. ¤

Lemma 5.3. The contribution from crossovers in E[Mm(A,N)2] is Ok( 1
N ).

Proof. If neither the i differences nor the j differences have anything unpaired (i.e., everything
is either paired or higher), and there is at least one crossover, it is easy to see these terms are
Ok( 1

N ). The difficulty occurs when we have unmatched singletons on either side. Assume there
are unmatched differences among the is. We only increase the number of degrees of freedom by
replacing triple pairings and higher among the is with pairs and singletons (note we may lose
these degrees of freedom as these must be crossed and matched with the js, but we can always
cross these over to the js with no net loss of degrees of freedom). Similarly, we can remove triple
and higher pairings among the js.
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Assume there are si > 0 singletons and k − si

2 pairs on the i side, sj ≥ 0 singletons on the j
side, and C ≥ max(si, sj) crossings. Note sj equals 0 if we send the singletons on the i side to
matched pairs among the js, but C cannot be less than si and sj . Note si, sj are even.

On the i side, there are 1+(k− si

2 )+ (si−1) degrees of freedom; the 1 is from the freedom of
assigning any value to one index, then we have k − si

2 from pairs, and then the last singleton’s
value is determined, so we have just si − 1 additional degrees of freedom from singletons.

Assume sj > 0. On the j side, there could have been 1+(k− sj

2 )+(sj−1) degrees of freedom,
but we know we have C crossings. This loses at least C − 1 degrees of freedom (it’s possible the
last, forced j difference already equalled an i difference). Thus the number of degrees of freedom
is
[
1 +

(
k − si

2

)
+ (si − 1)

]
+

[
1 +

(
k − sj

2

)
+ (sj − 1)− (C − 1)

]
= 2k + 1− 1

2
(2C − si − sj).

(34)
This is at most 2k + 1, which is less than 2k + 2. Therefore there has been a loss of at least one
degree of freedom, and these terms contribute Ok

(
1
N

)
.

If sj = 0, then there are 1+k−C degrees of freedom on the j side, and we get 2k+1−(C− si

2 )
degrees of freedom, again losing at least one degree of freedom.

Thus there are at most 2k +1 degrees of freedom. Doing the combinatorics for choices of sign
and number of triples and higher shows these terms also contribute Ok( 1

N ). ¤

Theorem 5.4. Let p have mean zero, variance one and finite higher moments. The measures
µA,N (x) weakly converge to a universal measure of unbounded support, independent of p.

Proof. By Theorem 2.6 the moments Mk exist and are finite. As E[Mk(A,N)] → Mk and
the variances tend to zero, standard arguments give weak convergence. As Mk is less than
the Gaussian’s moments, the Mks uniquely determine a probability measure, which by §4 has
unbounded support. ¤

6. Almost Sure Convergence

For convenience in presentation, we assume p(x) is even (i.e., the odd moments vanish); we
remark later on the modifications to handle the additional book-keeping for general p(x). In
Theorem 6.3 we show for all m that

lim
N→∞

E
[|Mm(A,N)− E[Mm(A,N)]|4] = Om

(
1

N2

)
. (35)

We first show how (35) (plus Chebychev and Borel-Cantelli) yields almost sure convergence, and
then prove Theorem 6.3.

6.1. Almost Sure Convergence.

Theorem 6.1. Let p have mean zero, variance one and finite higher moments. If p is even, as
N →∞ we have almost sure convergence to the limiting spectral distribution determined by the
Mms.

We first introduce some notation. Fix p(x) as before. Let ΩN be the outcome space
(TN ,

∏N−1
i=1 p(bi)dbi), where TN is the space of all N × N real symmetric Toeplitz matrices.

Let Ω be the outcome space (TN,
∏

p), where TN is the set of all N× N real symmetric Toeplitz
matrices and

∏
p is the product measure built from having the entries i.i.d.r.v. from p(x). For

each N we have projection maps from Ω to ΩN . Thus, if A ∈ TN is a real symmetric Toeplitz
matrices, then AN is the restriction obtained by looking at the upper left N ×N block of A.
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We slightly adjust some notation from before. Let µAN
(x)dx be the probability measure

associated to the Toeplitz N ×N matrix AN . Then

µAN
(x)dx =

1
N

N∑

i=1

δ

(
x− λi(AN )√

N

)

Mm(AN ) =
∫

R
xmµAN (x)dx

Mm(N) = E[Mm(AN )]
Mm = lim

N→∞
Mm(N). (36)

As N →∞, we have shown Mm(N) converges to Mm, and the convergence for each m is at the
rate of 1

N . The expectation above is with respect to the product measure on TN built from p(x).
We want to show that for all m, as N →∞,

Mm(AN ) −→ Mm almost surely. (37)

By the triangle inequality,

|Mm(AN )−Mm| ≤ |Mm(AN )−Mm(N)| + |Mm(N)−Mm|. (38)

As the second term tends to zero, it suffices to show the first tends to zero for almost all A.
Chebychev’s Inequality states that for any random variable X with mean zero and finite `th

moment that

Prob(|X| ≥ ε) ≤ E[|X|`]
ε`

. (39)

Note E[Mm(AN )−Mm(N)] = 0, and in Theorem 6.3 we prove the fourth moment of Mm(AN )−
Mm(N) is Om

(
1

N2

)
. Then Chebychev’s Inequality (with ` = 4) and Theorem 6.3 yield

Prob(|Mm(AN )−Mm(N)| ≥ ε) ≤ E[|Mm(AN )−Mm(N)|4]
ε4

≤ Cm

N2ε4
. (40)

The proof of almost sure convergence (Theorem 6.1) is completed by applying the following:

Lemma 6.2 (Borel-Cantelli). Let Bi be a sequence of events with
∑

i Prob(Bi) < ∞. Let

B =



ω : ω ∈

∞⋂

j=1

∞⋃

k=j

Bi



 . (41)

Then the probability of B is zero.

In other words, an ω is in B if and only if that ω is in infinitely many Bi, and the probability
of events ω which occur infinitely often is zero.

Fix a large k and let

B
(k,m)
N = {A ∈ TN : |Mm(AN )−Mm(N)| ≥ 1

k
.} (42)

We have seen that Prob(B(k,m)
N ) ≤ Cmk4

N2 . Thus, for fixed m and k, the conditions of the
Borel-Cantelli Lemma are met, and we deduce that the probability of A ∈ TN that occur in
infinitely many B

(k,m)
N is zero. Letting k → ∞ we find that for any fixed m, as N → ∞,

Mm(AN ) → Mm with probability one. Let Bi.o.
m be the probability zero sets where we do not

have such convergence.
Let Bi.o. =

⋃∞
m=1 Bi.o.

m . As a countable union of probability zero sets has probability zero,
we see that Prob(Bi.o.) = 0; however, this is precisely the set where for some m we do not have
pointwise convergence. Thus, except for a set of probability zero, we find Mm(AN ) → Mm for
all m. Subject to proving Theorem 6.3, this completes the proof of Theorem 6.1. ¤
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6.2. Proof of Fourth Moment Bounds.

Theorem 6.3. Let p be an even distribution with mean zero, variance one and finite higher
moments. Then

lim
N→∞

E
[|Mm(A,N)− E[Mm(A, N)]|4] = Om

(
1

N2

)
. (43)

We prove Theorem 6.3 for p even; more involved counting arguments would prove the claim
for arbitrary p. We must show

lim
N→∞

E
[|Mm(A,N)− E[Mm(A,N)]|4] = Om

(
1

N2

)
. (44)

We analyze E
[|Mm(A,N)− E[Mm(A,N)]|4], which leads to the proof. Expanding this out, it

suffices to study

E[Mm(A,N)4]−4E[Mm(A, N)3]E[Mm(A,N)]+6E[Mm(A, N)2]E[Mm(A,N)]2−3E[Mm(A,N)]E[Mm(A,N)]3.
(45)

For even moments, we may write the pieces as

E[M2m(A, N)4] =
1

N4m+4

∑

i

∑

j

∑

k

∑

l

E[bisbjsbksbls]

E[M2m(A,N)3]E[M2m(A,N)] =
1

N4m+4

∑

i

∑

j

∑

k

∑

l

E[bisbjsbks]E[bls], (46)

(note we combined the
(

4
3

)
and

(
4
4

)
terms) and so on, where for instance

E1 = E [bisbjsbksbls] = E
[
b|i1−i2| · · · b|j2m−j1|b|k1−k2| · · · b|k2m−k1|b|l1−l2| · · · b|l2m−l1|

]
. (47)

We analyze the even moments first in Theorems 6.4. The odd moments are handled analogously
in Theorem 6.18.

We fix some notation. Denote the expected value sums above by E1, E2, E3 and E4 (which
occur with factors of 1,−4, 6 and −3 respectively). For h ∈ {i, j, k, l}, let bh refer to the
differences in b|h1−h2| · · · b|h2m−h1| If a difference in a bh is matched with another difference in
bh, we say this is an internal matching; otherwise, it is an external matching. By a singleton,
pair, triple, quadruple and so on, we refer to matchings within a bh (i.e., an internal matching).
For example, a triple occurs when exactly three of the differences in a bh are equal.

Let pa denote the ath moment of p(x). Note p1 = 0 and p2 = 1. For example, in
∑
E[bibjbkbl],

if we have all differences occurring twice except for two different differences occurring four times
(two quadruples) and another different one occurring six times (one sextuple), we would have
12m−7p2

4p6.
Note there are at most 4m + 4 degrees of freedom – everything must be matched in at least

pairs (we have 8m total differences, as we are looking at the fourth power of the 2mth moment),
and then each bh has at most one more degree of freedom (we can choose any index). Thus any
terms with a loss of at least two degrees of freedom contribute at most Om( 1

N2 ).

6.2.1. Even Moments.

Theorem 6.4. Let p be an even distribution with mean zero, variance one and finite higher
moments. Then for m even,

lim
N→∞

E
[|Mm(A,N)− E[Mm(A, N)]|4] = Om

(
1

N2

)
. (48)

We first show in Theorem 6.13 that there is negligible contribution if p is even and there is an
internal triple or higher; thus it suffices to consider the case where there are no internal triples
or higher. We then show in Theorem 6.15 that if there are no singletons the contribution is
negligible, and then we complete the proof by showing in Theorem 6.16 that there is a negligible
contribution from singletons.

The following three lemmas are the cornerstone of the later combinatorics:
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Lemma 6.5. If there is a singleton in bh paired with something in bg, then there is a loss of at
least one degree of freedom.

Note if every difference in a bh (all singletons) is paired with a difference in bg (all singletons),
we have a loss of exactly one degree of freedom, so the lemma is sharp. We can choose any index
and 2m− 1 differences in bh; the last difference is now determined. Once we choose one index in
bg, all other indices are determined, for a total of 1+ (2m− 1)+1 (instead of 2m+2) degrees of
freedom. Thus, instead of being able to choose 2m differences freely, we can only choose 2m−1.
Note the above argument holds if, instead of all singletons, we have elements of bg and bh only
matched internally and externally with each other.

Proof. As we can cycle the labels, we may assume that b|h2m−h1| is the singleton. Note that once
any index and the values of the other differences in bh are given, then |h2m − h1| is determined.
We need to conclude we have lost a degree of freedom. It suffices to consider the case where
every difference is be paired with another difference; this is because p has mean zero, and any
unpaired differences thus contribute zero. Thus, to have the maximum number of degrees of
freedom, the difference in each pairing must be free.

We know b|h2m−h1| must equal the difference from another bg (h 6= g ∈ {i, j, k, l}), say
b|ga−ga+1|. We must show the difference |ga− ga+1| = |h2m−h1| is not a free parameter. This is
obvious because if it were free, that would contradict |h2m − h1| being determined by the other
bh differences. ¤

Remark 6.6. In the above, we did not need the matching to be with a singleton – a pair, triple
or higher would also have worked.

Lemma 6.7. If at least three of the bhs have a singleton, there is a loss of at least two degrees
of freedom.

Proof. If there is a matching of singletons from say bi and bj , and another matching from bk

and bl, the lemma is clear from above. Without loss of generality, the remaining case is when a
singleton from bi is matched with one from bj , and another singleton from bi is matched with
one from bl. We then apply the previous lemma to (bj , bi) and (bk, bi). ¤

Lemma 6.8. For even moments, if there are no crossovers, there is no net contribution.

Proof. If there are no crossovers, the expected value of the products are the products of the
expected values. Thus, each term becomes E[M2m(A,N)]4, and 1− 4 + 6− 3 = 0. ¤

Lemma 6.9. If p(x) is even and there are at least two internal triples among all of the bhs, the
contribution is Om

(
1

N2

)
.

Proof. Everything must be matched in at least pairs (or its expected value vanishes). If there
are only two values among six differences, then instead of getting 3 degrees of freedom, we get
2. This is enough to see decay like Om

(
1
N

)
. If we didn’t assume p(x) were even, we would have

more work to do; as the odd moments vanish, however, the two triples must be paired with other
differences, or with each other. In either case, we lose at least one degree of freedom from each,
completing the proof. ¤

Remark 6.10. Similarly, one can show there cannot be a triple and anything higher than a
triple. Further, we cannot have two quadruples or more, as a quadruple or more loses one degree
of freedom (a quadruple is two pairs that are equal – instead of having two degrees of freedom,
we now have one).

Lemma 6.11. If there is an internal quadruple, quintuple, or higher matching within a bh, the
contribution is Om( 1

N2 ).

Proof. There can be no sextuple or higher, as this gives at least three pairs matched, yielding
one degree of freedom (instead of three). If there is a quadruple or quintuple, everything else
must be pairs or singletons or we have lost two degrees of freedom. As the odd moments vanish,
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a quintuple must be matched with at least a singleton, again giving six points matched, but only
one degree of freedom.

We are left with one quadruple (which gives a loss of one degree of freedom) and all else pairs
and singletons. No pairs can be matched to the quadruple or each other, as we would then lose
at least two degrees of freedom. If there are any singletons, by Lemma 6.5 there is a loss of a
degree of freedom. If we have a quintuple or higher, this is enough to lose two degrees of freedom.
Thus, we need only study the case of all pairs and one quadruple, with no external matchings.

As everything is independent, we find a contribution of

1 · p4 − 4 · p4 + 6 · p4 − 3p4 = 0, (49)

where p4 is the fourth moment of p. ¤

Lemma 6.12. If there is only one internal triple (say in bh) and p is even, then the contribution
is Om( 1

N2 ).

Proof. As odd moments vanish, the triple must be paired with a singleton from another bh;
further, there must be at least one singleton in the same bh as the triple (as there are an even
number of terms). We thus lose a degree of freedom from the triple matched with a singleton
(four points, but one instead of two free differences), and we lose a degree of freedom from the
singleton in the same bh as the triple (Lemma 6.5). Thus we have lost two degrees of freedom. ¤

We have proved

Theorem 6.13. The contribution from having an internal triple or higher matching is Om( 1
N2 )

if p is even.

Remark 6.14. Similar arguments work for general p(x), but become more involved.

We have shown there is no net contribution if there are triples or higher pairings. We now
consider the case of singletons and pairs.

Theorem 6.15. Assume there are no singletons or triples or higher pairings and p is even.
Then the contribution is Om( 1

N2 ).

Proof. If there are no matchings between bhs, then everything is independent and we get 1−4+
6 − 3 = 0. If two pairs are matched, we lose one degree of freedom. There are

(
4
2

)
= 6 ways to

choose two out of i, j, k, l to be paired.
For the four expected value sums, we get the following contributions:

(
4
2

)
p4 from E1;

(
3
2

)
p4 +

(6 − (
3
2

)
) from E2 (three times the two pairs are in the expected value of a product together,

giving p4; the other three times they are separated, giving p2 = 1);
(
2
2

)
p4 + (6 − (

2
2

)
) from E3

(only once are the matched pairs together);
(
4
2

)
from E4. Combining yields

1 · 6p4 − 4(3p4 + 3) + 6(p4 + 5)− 3(6) = 0. (50)

If at least three pairs are matched together, or two sets of two pairs are matched together, we
lose at least 2 degrees of freedom, giving a contribution of size Om( 1

N2 ). ¤

We can now prove

Theorem 6.16. The contribution when there are no triple or higher internal pairings is at most
Om( 1

N2 ) if p is even.

Proof. It is sufficient to show the non-zero contributions all lost at least two degrees of freedom.
We have already handled the case when there are no singletons. If three or four bhs have a
singleton, we are done by Lemma 6.7. If exactly two have singletons, then there is no contribution
in the E1 through E4, except for the cases when they are under the expected value together
(remember the mean of p vanishes).

We have already lost a degree of freedom in this case; if any pair in any bh is matched with
a pair in a bg, we lose another degree of freedom. We may therefore assume that there are no
matches with four or more elements. Thus every difference that occurs, occurs exactly twice.
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There are
(
4
2

)
= 6 ways to choose which two of the four bhs have singletons paired. The

contribution from E1 is 6, from E2 is 3 (3 of the 6 times they are under the expected value
together; the other 3 times they are separated, and the expected value of a difference occurring
once is 0), from E3 is 1 (only 1 of the 6 ways have them under the expected value together), and
from E4 is 0. We thus have a contribution of

1 · 6− 4 · 3 + 6 · 1− 3 · 0 = 0. (51)

We are left with the case when the only singletons are in one bh. As we are assuming there
are no triple or higher internal matchings, these singletons must then be matched with pairs,
giving external triples; as the odd moments of p(x) vanish, there is no net contribution. ¤

Remark 6.17. If we do not assume the odd moments of p vanish, additional book-keeping yields
the contribution is of size 1

N2 . We give an example of the type of argument one needs. If exactly
two of the bhs have singletons, then each has at least two; we’ve already handled the case when
they are matched together. As no difference can be left unmatched, we just need to study the case
when we get four triples or two triples and a pair; each clearly loses two degrees of freedom;

We are left with the case when only one bh has singletons. We are down one degree of freedom
already, so there cannot be another non-forced matching. If there are at least four singletons, we
are done. If there are two singletons, we get two triples (either with the same or different bgs).
Similar arguments as before yield the contributions are

1 · 6p2
3 − 4 · 3p2

3 + 6 · p2
3 − 3 · 0 = 0 (52)

if the two external triples involve matchings from bh to the same bg, and

1 · 4p2
3 − 4 · 3p2

3 + 6 · 0− 3 · 0 = 0. (53)

6.2.2. Odd Moments.

Theorem 6.18. If p is even and has mean zero, variance one and finite higher moments, then

lim
N→∞

E
[|M2m+1(A,N)− E[M2m+1(A,N)]|4] = Om

(
1

N2

)
(54)

Proof. Define E1, E2, E3 and E4 analogously as in (45). In each bh, there is at least one odd
internal matching (or singleton); thus for p even, only E1 can be non-zero. If there are four (or
more) internal triples (or higher), we lose at least two degrees of freedom.

If there are exactly three internal triples, either two are matched together and one is matched
with a singleton, or all three are matched with singletons; in both cases we lose at least two
degrees of freedom.

If there are exactly two internal triples, there must be at least two bhs with singletons. If the
triples are matched with singletons, we lose two degrees of freedom; if the triples are matched
together we lose one degree from that, and one more degree from the singletons (Lemma 6.5).

If there is exactly one triple, at least three bhs have singletons, and similar arguments yield a
loss of at least two degrees.

If there are no triples, then there are four singletons and by Lemma 6.7 there is a loss of at
least two degrees. ¤

7. Future Work

As there are only N − 1 degrees of freedom for the Toeplitz Ensemble, and not O(N2), it is
reasonable to believe the spacings between adjacent normalized eigenvalues

(
λi+1(A)√

N
− λi(A)√

N

)

may differ from those of full real symmetric matrices. For example, band matrices of width 1 are
just diagonal matrices, and there the spacing is Poissonian (e−x); full real symmetric matrices
are conjectured to have their normalized spacing given by the GOE distribution (which is well
approximated by Axe−Bx2

); however, not all ensembles with O(N) degrees of freedom exhibit
Poissonian behavior. For example, there are dN

2 degrees of freedom for d-regular graphs, but it
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has been numerically observed (see [JMRR] among others) that the spacings between adjacent
eigenvalues look GOE.

We chose 1000 Toeplitz matrices (1000×1000), with entries i.i.d.r.v. from the standard normal.
We looked at the spacings between the middle 11 normalized eigenvalues for each matrix, giving
us 10 spacings. A plot of the spacings between normalized eigenvalues looks Poissonian.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

We conjecture that in the limit as N → ∞, the local spacings between adjacent normalized
eigenvalues will be Poissonian. While random d-regular graphs have a comparable number of
degrees of freedom, there is significantly more independence in the aij in their adjacency matrices
– for the Toeplitz ensemble, we have a strict structure, namely aij depends only on |i− j|.

Additional topics for investigation are to obtain sharper bounds for the growth of the moments
M2k. Does

lim
k→∞

2k
√

M2k
2k
√

G2k

= 0, (55)

where G2k is the 2kth moment of the Gaussian? By Theorem 3.2 all we know is that

lim
k→∞

M2k

G2k
= 0, (56)

and our method of proof does not yield sharp enough bounds to investigate the 2kth roots.
Finally, one may investigate Toeplitz matrices with additional symmetry. Consider the en-

semble of real symmetric palindromic Toeplitz matrices, where in addition to bj−i = bi−j we
have bj−i = bN−1−(j−i) (note the first row is a palindrome). Arguing similarly as in Theorem
2.2, we find the only matchings that contribute are those where all signs are negative. The
extra symmetry beautifully fixes the Diophantine obstructions. What happens is we have many
systems of equations which can be pieced together into one system. For example, (19) becomes

i1 = i2 + i4 − i3 + AN , AN ∈ {−(N − 1), 0, N − 1}, (57)

and for each triple (i2, i3, i4) there is a choice of AN such that i1 ∈ {1, . . . , N}. To date the first
nine moments have been shown to agree with the Gaussian moments. For more details see [MS].
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