A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF
DECOMPOSITIONS

IDDO BEN-ARI AND STEVEN J. MILLER

ABSTRACT. Generalized Zeckendorf decompositions are expansiomnseders as sums of ele-
ments of solutions to recurrence relations. The simplestsare baskexpansions, and the stan-
dard Zeckendorf decomposition uses the Fibonacci sequ&heexpansions are finite sequences of
nonnegative integer coefficients (satisfying certain mécdd conditions to guarantee uniqueness of
the decomposition) and which can be viewed as analogs oéseqs of variable-length words made
from some fixed alphabet. In this paper we present a new apip@ad construction for uniform
measures on expansions, identifying them as the distoibwti a Markov chain conditioned not to
hit a set. This gives a unified approach that allows us toyeastover results on the expansions
from analogous results for Markov chains, and in this paperfocus on laws of large numbers,
central limit theorems for sums of digits, and statementgags (zeros) in expansions. We expect

the approach to prove useful in other similar contexts.

1. INTRODUCTION

1.1. Background. A representation of the set of integers in terms of a sequeddigits is known

in the literature as a numeration system. The most commoreration systems are decimal (aka
radix) expansions, yet many other numeration systems appéaeory and applications, and the
study of numeration systems has been an active researcimana@hematics and theoretical com-

puter science. Many of these arise from a greedy algoritle® {ar example [Fra]), though there
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are systems arising from recurrence relations where tredgralgorithm fails a positive percent-
age of the time (seé [CEHMNZ2, CFHMIN3]). While our focus wi# bn recurrence relations and
greedy algorithms, other choices are possible and oftelyloelated. These include starting from
a rational language and, using an ordering inherited frorordering of the digits, representing
n as then™ element of the language (sée [LRY]), or (seel[Du, DUTh1]}tistguwith a substitution
o on a finite alphabet and encodingoy then letter prefix of a fixed point of (represented by
concatenating iterates efapplied to certain letters, which are the digits), or hawiagable rules

for which summands are available at which points in a decaitipa (see thef-decompositions

of [DDKMMU]).

As many closely related systems are studied in differergiplises, often the same result is
proved again and again, though from different vantagedaSky [Sto] (see also [CHZ]) wrote:
Whatever its mathematical virtues, the literature on sufrdigital sums reflects a lack of commu-
nication between researcherg/e agree, and in fact this lack of communication was the iogpet
for the present paper. While many of our results are alreayvk, we adopt a perspective used
fruitfully in related problems and give a unified treatmesiing Markov methods (see for example
[DuTh2,[GR/Ma MW1]) of many results previously done thrbumpmbinatorial approaches. In
particular, we apply these techniques to some problemsaghztar not to have been studied by

other researchers using these methods, such as propéggssabetween summands.

We focus on the case where the numeration system is obtaioedthe greedy algorithm.
Unfortunately there are several different notational @mions in the subject, depending on the
perspective one adopts. We use a simple one below to motha@feoblem, and discuss the small
changes later.

Fix a sequence of integeiis= uy < u; < --- (also known as the basis). Then aNye N
can be represented uniquely as a combination of elememtstfre sequence as follows. Let be
the largest element in the sequence whick i%/, and setl,, = | N/u,]. Continue inductively by
letting dy—1 = [(N — >, 5p; djuj)/ug—1], for k = n, ..., 1. Clearly, the digitsiy, ..., dy are
uniquely determined, and it is easy to see tNat Eosm d;u;. We refer the reader to [Fra] for

more details and results. The sequence of di§jits . d;, is the word representiny relative to the



basis(u,,). A numeration system is called regular if it can be given aswput of a finite automa-
ton, or, equivalently, the set of words is a regular langu#tge known that for the greedy algorithm
to be regular(u,,) must satisfy a linear recurrence relation with integer ficiehts [Sha]. A partial
converse also holds [Hol]. As a result, the numeration systassociated to linear recurrence are
of outmost importance for theory and applications. The $stexamples are when, = 0" for
some integeb > 2, and the resulting numeration system is the badeeimal system (ob-radix
system). The corresponding language is simply set of altvirmm the alphabef0,...,b — 1}.
Whenu; = 1, us = 2 and forn > 1 we takeu,,, = u, + u,_1, we obtain the Fibonacci
numeration system, also commonly and henceforth refeaed the Zeckendorf decomposition.
In this system each natural number is uniquely expressedsasmaof non-adjacent elements of
the Fibonacci sequences (for us the Fibonacci sequentg Istar3, 5, 8, . . ., as otherwise we do
not have unique decompositions), and the correspondirgyege is all binary sequences starting
with 1 and with no adjacent’s, formally expressed as{0, 01}* wherex is the Kleene star. For
example forN = 11 =8 4+ 3 = F5 + F3, sothatds = 1,dy = 0,d3 = 1,d>, = dy = 0, and the

decomposition could be viewed as the binary sequente0.

1.2. The Generalized Zeckendorf DecompositionWe now introduce the generalized Zeck-
endorf decomposition and present some related resultss discussion is mostly a motivation

and preparation for our probabilistic construction. Thessilts have been extensively studied in
the past both for the Zeckendorf and generalized Zeckeradatfalso for other numeration sys-

tems, and we will discuss this in Section]1.3 below.

Recall that if we define the Fibonacci numbérfs, } by F} = 1, Fy = 2andF,.o = F,.1 + F,,
then every integer can be written uniquely as a sum of noaeadj Fibonacci numbers. This is
known as Zeckendorf's Theorem |Ze]. For integersc [F),, F},+1), using a continued fraction
approach Lekkerkerker [Lek] proved that the average nurabsummands is/(¢* + 1), with
= 1+—2\/5 the golden mean. The precise probabilistic meaning of ‘ayel is the expectation
with respect to the uniform measure on the decompositioriatefers in[F,,, F,,.1), and then
Zeckendorf's theorem provides an asymptotic statementaartain statistic under the sequence
of uniform probability measures on decompositions of langtasn — oc. Analogues hold for

more general recurrences, such as linear recurrences avithegative coefficients [Al, BCCSW,
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Day,[GT,[Ha[ Hoyl, Ke, Len, MW 1, MW?2], generalizations whedelitionally the summands are
allowed to be signed [DDKMWU, MW1], and-decompositions (given a functigh: N — N, if a,,

is in the decomposition then we do not haye,, . . ., a,—s(,) in the decomposition) [DDKMMU].
The notion of a legal decomposition below generalizes threadjacency condition.

Definition 1.1. Given alength . € N and coefficientscy,...,c;, € Z, with ¢;c;, > 0, the

correspondingpositive linear recursions a sequenceé = G, Gs, . .. € N satisfying

Gn+1 = ClGn+CQGn_1+"'+CnG1+1, nzl,...,L—l,

L
Gui1 = Y _¢;Grajyn=LL+1,.. .. (1.1)

j=1

Definition 1.2. Given a positive linear recursion with coefficients. . ., c;, an integerN has a

legaldecomposition of length € N if there existu; € N, as, ..., a, € Z,, such that
N = Z a;Gny1-i (1.2)
=1
and

e n< Landag, =c¢ forl <i<n;or

e there exists somee {1,..., L} such that
a = €, Qg = Cg, ..., Ag_1 = Cg_1, andas < Cg,
Usi1s .., a5 = 0 for somel > 0, (1.3)

{b; ?:‘f‘f with b; = a4, is either legal or empty.

We remark that the notation above differs slightly from tepresentation a%s_ ; dju;; because
of our use of the recurrence relation for our analysis it isenconvenient to index this way.
To emphasize this we now usg for the digits and(,, for our sequence. It is important that
cicr, > 0, as when this fails there are some sequences where decaimp®still exist but are no
longer unique, and others where the decompositions ateistijue; see [CFHMN1, CFHMN2,
[CEHMN3,[DFFHMPP]. The following theorem has been proved yntames (see for example
[MW1]), and is the starting point for our investigations.

Theorem 1.3 (Generalized Zeckendorf Decompositiolgonsider a positive linear recurrence

with coefficients, ..., ¢, andcicL > 0. Then everyV € N has a unique legal decomposition.
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The main idea in the theorem is to identify the notion of ledg@tomposition from(1]12) with
the representation obtained from the greedy algorithm. chHagacteristic polynomial for the re-
currence relation is given by Lemrha®R.4 and is equal(to = z* — Zle c;xl =7 Its Perron
(aka dominant) eigenvalug- > 1, and satisfied = Zle chgj, and it then follows from[[Hoal,
Theorem 8.1] that the generalized Zeckendorf decompaosiioegular. Here is a corresponding
finite automaton. The states are labeféd ), wherei = 1,..., L andj € {0,...,¢} fori < L
and{0,...,¢; — 1} if ¢ = L. If L > 1, the initial states arél,0),...,(1,¢;). The transitions are
as follows. From(i, j) wherej < ¢;, there an edge to all states of the fofin;’), and if j = ¢;
(only possible when < L), then there an arrow to all states of the fafim- 1, /). As an example
of how this works, consider the recurrence relation of langt= 3 with ¢; = ¢, = ¢3 = 1. Then
we have(G,),en = (1,2,3,6,11,20,37,...). Consider the word101. Then the corresponding
path for the automaton id, 1) — (2,1) — (1,0) — (1,0), and it is accepted. If, however, we
consider the word 110 then the first two vertices in the path drie 1) — (2, 1). However, since
o =1, L = 3 andcz = 1, it follows that the only allowed transition froif2, 1) is to (3, 0), but as
the third digit is equal td, this sequence is rejected. In fact, the accepted sequareexactly
those beginning with, and having no three consecutive ones, which we can formaitg as the
regular languagél, 11}{0,01,011}*, wherex is the Kleene star, and this is exactly the set of legal

decompositions.

In the sequel we will fix a linear recurrence as in Definifiofl. 1IFrom Theorera 113 it follows
that there’s a one-to-one correspondence between the sgegérs in[G,,, G,,+1) through [(1.2),
where the integeN is mapped to its legal decomposition (N), ..., a,(N)). LetQ,, denote the
uniform distribution on the legal decompositions of intege [G,,, G,.+1), and with this identifi-
cation it is natural to conside¥ anda; (N),. .., a,(NN) as random variables. In what follows, we

denote expectation with respectdy by E%.

ForN € [G,,G,+1), (1.2) can be rewritten as

N = Gil(N) + GiQ(N) +---+G (1.4)

ik(N)’

wherel <i; <--- <) < n. Therandom variable(N) gives the number of summands, in the

generalized Zeckendorf decomposition, or the sum of digitt is,k(N) = >, a;(N). It was
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the main object of previous works. The first result was Lek&gter's theorem on the asymptotic

expectation of:(NV) whenG,, = F,,. Here is its generalization to our setting.

Theorem 1.4(Generalized Lekkerkerker's TheorenThere exist constants;. > 0 andd such
that

E°"k(N) = Cran+d+o(1) asn — oo. (1.5)

Many of the proofs of Theoreim 1.4 are plagued by the need teemesults about roots of the
characteristic polynomials associated to the recurremogdier to show . > 0; recently, though,
a combinatorial approach was developed in [CEFHMN3] whichasses these technicalities.

Once the average number of summands has been determiredaiural to investigate other
and finer properties of the decompositions. Three naturestipns concern the fluctuations in
the number of summands V) about the mean, the distribution of gaps,(N) — i;(N), j =
1,...,k(N)—1 between adjacent summands, and the length of the longeBt galgcomposition.
For positive linear recurrences as in Theofem 1.3, theildigion of the number of summands con-
verges to a Gaussian with computable mean and variancepbotldern. There is an extensive
literature on these results. Sée [DG, FGNPT, GITNR,[LT,|Skerlgn analysis using techniques
from ergodic theory and number theory, and [KKMW, MW1, MWat proofs via a combinatorial
perspective. These results hold true for other numeragistess and are exactly the kind of results
referred to by Stolarsky in the quote given in Secfiod 1.1.bAfore, all these are statements on
the asymptotic behavior of certain statistics of geneealiZeckendorf decompositions of integers

in [G,,, G,,+1) under the uniform measure, as— oo.

Results on the distribution of gaps between adjacent sumsnhave recently been obtained
by Beckwith, Bower, Gaudet, Insoft, Li, Miller and TostesflBBGILMT] BILMT]. They show
that the distribution of gaps larger than the recurrencgtleiconverges to that of a geometric
random variable whose parameter is the largest eigenvalhe characteristic polynomial of the
recurrence relation. For gaps smaller than the recurrexiagan closed forms exist for special re-
currences, though with enough work explicit formulas candéeéved for any given relation. They
also determine the distribution of the longest gap, andetbe behavior is similar to that of the

length of the longest run of heads in a sequence of tossesadsilgty biased coin. Their proofs
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are a mix of combinatorics and a careful analysis of polyradsrassociated with the recurrence re-
lations. The details become involved as some of the asgolguilynomials depend on the interval

|G, G,i1) Under consideration.

1.3. Probabilistic Approach. Most results mentioned in Sectibn 1.2 above are not uniqtigeto
generalized Zeckendorf, and similar and even finer resutie wbtained for other numeration
systems. A recurring subject of study is the sum of digitxfiom, which, as in the case of gener-
alized Zeckendorf, we denote Iy N). The sum of digits has a natural generalization to additive
functions, that is that instead of summing the digits, thesation is over some fixed function
applied to each digit (example: the indicator that the dmgihot zero, and the resulting sum is
the number of nonzero digits. This is the same:@¥) for the standard Zeckendorf and for the
binary system). We note that in many of the works, these m@diinctionals are referred to as
sums of digits functions or additive functions. The recantgy paper[CHZ] presents results on
sum of digits for the bas&-expansion, under the uniform measure[on .., N), and includes a
very rich list of bibliography on the topic, including otheameration systems. Two other works
we would like to highlight are [DuTH2], which provides exps@ons for limiting distributions for
regular languages, based on combinatorial and matrix sisagnd([Ma], which studies the addi-

tive functional through analysis of a corresponding timeemogeneous Markov chains.

So why another work on this topic? We believe that we have aamwoach, which allows for
a more comprehensive treatment, and is not limited to aeditinctionals. Specifically, what we
provide here is a tractable analytic expression for theaumifdistribution on generalized Zeck-
endorf decompositions of fixed length, that is for random bers in the intervals of the form
|G, Gri1). The reason why we focus on these intervals is because thsris the structure
has the simplest expression (though with additional woekréfsults can be extended[io N), as
shown in Appendix C of [BILMT] and[&4]2). The reason why we sbthe generalized Zeckendorf
is because of the large body of work on the generalized Zeltkéin the setting of fixed-length
decompositions, mentioned above, which was the motivédiotine present work, a natural setting

to our construction and a reference point to examine our m@gpacach to the model.



The main idea concerns the problem of constructing unifoeasuares on words of fixed length
n from some alphabet under certain prescribed constraintse alphabet is the set of digits
{0,...,maxc¢;}, the word is a sequence of lengthfrom the alphabet, and the constraint is that
the word yields a legal decomposition. The uniform measweare interested in is then the uni-
form measure on the set of legal decompositions of lengtin the basé case, the alphabet is
{0,...,b — 1} and there is no constraint, in the Zeckendorf case, the bégitia{0, 1} and the
constraint is to have no consecutiVs. In the generalized Zeckendorf, we will consider a sim-
ilar, yet more complex constraint. We construct the uniforr@asure on legal decompositions
from the uniform measure on the sequence of digits, thathervthe digits are IID, by condition-
ing. The observation is that if the constraints are in someeshift-homogenous and localized —
which is exactly the case for the generalized Zeckendogosition — then they can be realized
through a stopping rule for the IID sequence, which evehtusalreduced to a hitting time of a
time-homogeneous Markov chain, and our uniform measuremcahstraints is then viewed as
a Markov chain conditioned not to hit some set. Through sola@mentary transformations this
conditioned measure coincides with the distribution ohaethomogeneous Markov chain known
in the literature as Doob’s-process, pinned to a point aftersteps. In other words, the analysis
of the uniform measure boils down to the analysis of a cerlated time-homogeneous Markov
chain. We note that all the quantities above depend on thigHeni the sequence only through the
time the Markov chain is pinned, so that regardless of thgtlenf the decomposition, we only
need to consider the evolution of a single Markov chain. Tdestification gives a very simple
expression and characterization of the uniform measuregal becompositions, which allows to
compute many quantities with little effort, as we show irfegections. Furthermore, this approach
gives access to the vast literature on Markov chains, spaltyfiasymptotic results, but not limited

to, as we have a simple formula for the uniform measure ingerhthe Markov chain.

We illustrate our method by studying the classical problemadditive functionals including
mean, law of large numbers and central limit theorem, as agetibtain new results on the distri-

bution of gaps between non-zero digits in decompositions.

1.4. Organization. The paper is organized as follows. In Secfién 2 we describévtarkovian

model, and how to obtain large-time asymptotics for our nhtxden that of the underlying Markov
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chain. In Sectionl3 we present the results on additive fonets in a setting which includes our
particular model, first by introducing the theoretical d&sin Sectiorl 3.1l and then applying them
to the generalized decompositions in Secfiod 3.2. Thessétsemclude the classical results in
this area: sharp estimates on expectation, a law of largéargrand a central limit theorem. In
Section 4 we then apply the results on additive functionadsi{e sum of digits) to the general-
ized Zeckendorf decompositions. In Sectidn 4 we treat thedjstribution as a consequence of
the regenerative structure of the underlying Markov chaing the analogy with Bernoulli trials.

Finally, in the Appendix we explain how to extend our restdtsdecompositions of fixed length,

or numbers in the intervads,,, G,,.1) to numbers in intervals of the forfa, NV).

2. PROBABILISTIC APPROACH

We remind that throughout the discussion we assumd.tiial and the coefficients,, ..., ¢, €
Z.. satisfyc,c;, > 0 as in Definitior L.

The main idea is to show that for a givenc Z,, the uniform distribution on generalized
Zeckendorf decompositions consistingof- 1 digits (that is, thén + 1)-th digit is non-vanishing
and all higher digits are not present) coincides with th&ithstion of a certain conditioned Markov
chain. This provides a unified framework for the model, whichparticular, gives rather easy
access to many asymptotic results. We first define the Markainc Let(X,Y) = ((Xn, Y,) :

n e Z+) be the two-dimensional process wilf), € {0, ..., max; ¢;} andY,, € {1,...,L}. The
idea is thatX,, X, ... will be used to represent the coefficientsn (1.2), whileYy, Y7, ... will
be used to keep track whether the’s satisfy the condition[(1]13). This will be explained beJow
after we finish describing our construction. Letdenote the distribution under which this is an

IID process| X, Yy) being uniformly distributed ovef0, . .., max; ¢;} x {1,..., L}.

Definition 2.1. Suppose. € N ande¢y,...,cp € Z,, cic, > 0 are the coefficients of a linear
recursion. We say that the realizati¢fiXy, Y5), (X1,Y1), ... ) of the proces$X,Y) is legal with
respect to the recursion if

(1) Xo >0andY, =1,
(2) there exists a random variablé € Z, such thatX; > 0, X,, =0 andY,, = 1 forn > J,
(3) Forall n € N, either



(@) X, <c¢y, andY,,; =1or
(b) X,, = ¢y, andY,, =Y, .1 + 1.

Note that condition 3b and the assumption tHat {1, ..., L} for all n implicitly mean that in

alegal realizationX,, = cy, only if Y,, < L.

The main observation is the following. Given a legal redi@aand letting (compare t6 (1.2))
N =Y X;Gnji1, (2.1)
=0

then(Xo, ..., X,,) is the legal decomposition df € |G, 1, G,..2), according to Definition 1]2.
Let

7 = inf{n € Z, : ((Xo,Yo), (X1, Y1),...,(X,,Y,)) does not extend to a legal realizatjon
(2.2)
With a slight abuse of notation, |€1, be the probability measure on thealgebra generated by
(Xo, Y0), ..., (X,,Y,) defined through

Q.(B) = P(B|T > n). (2.3)

SinceP is uniform,@,, is uniform over all finite realization§X,, Yo), . . ., (X,, ;) that extend to
legal realizations. Any such finite realization correspotala unique Zeckendorf decomposition
of lengthn + 1 given in (2.1). Conversely, every integer with Zeckend@tamposition of length
n + 1 corresponds to a unique finite realizati@Xy, Yo), . . ., (X,, Y,) extending to a legal real-
ization. Therefore),, could be identified with the uniform distribution on gen&ratl Zeckendorf

decompositions of length + 1.

We now define an auxiliary process that allows us to introddeas on conditioned Markov
chains. The reason for doing that is the followingis not a hitting or even stopping time for
(X,Y), as in order to determine whether= n, it is evident from Definitiori_2]1(3b) that on
certain circumstances the value¥gf, ; is needed. Therefore, the probabilistic analysis of Markov
chains through stopping times, and which is key to our apgiro@annot be applied. To fix this, let

Zn = (X0, Y, You1), andletZ = (Z, : n € Z,). Below we will write Z,,(1) for X,,, Z,(2) for
10



Y, andZ,(3) for Y, ;. Itis easy to see thatis a hitting time forZ. Specifically, letting

L = {(x,7,7): (x <c¢jandj’ =1)or(j < Landz = ¢; andj’ = j + 1)};

Lo = LN{(x,1,5") : x> 0}, (2.4)

then

0 if Zo & L
- 0 & Lo 5

inf{n: Z, & L} otherwise.
Under P, Z is a Markov chain. We abuse notation and denote its transitiaction by P
as well. Since the measure is uniform, it immediately follows that the restrictioR, of the
transition functionP to £ x L is an irreducible and aperiodic substochastic matrix. Ftben
Perron-Frobenius theorem we know ti#atpossesses a Perron rogte (0, 1) and corresponding
left and right eigenfunctions;. and .., respectively, whose entries are strictly positive. We- nor
malize them so that,. andv.¢. are probability measures. Létbe a stochastic transition function

on L x L defined as follows:

1
Aetpe(2)

Observe thaf) inherits irreducibility and being aperiodic frof.. As a result() is ergodic, and

Q(Zv z/) = PE(Zv Z/)SDC(Z,)' (26)

we denote its unique stationary distribution4y. Recall that from the definition of a stationary

distribution,7¢Q = 79, if 7¥ is considered as a row vector, and it immediately follows tha

19(2) = ve(2)pe(2)- 2.7)

We also define the marginal of the first coordinﬁﬁeby letting
e(x) = ZWQ(CL’, b,b'). (2.8)
b,

Next we fix some notation. We writ€, for the distribution of the Markov chai@ under P
with initial distribution s, andE}f for the corresponding expectation. Wheiis a point mass.,
we denote this with: as a subscript instead of the notationally correct but marsbersome..
We also define the analogous expressions withstead ofP.

The following result identifies the uniform distributi@pi* with the distribution of the Markov

chainZ underq.
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Theorem 2.2.Let f = f(Zy,...,Z,) be a complex-valued random variable. Then

Q f
Bg. (mm)

Q 1 ’
E¢C (Spc(Zn) )

whereg. is the probability measure given ky. conditioned or’, in (2.4).

E9(f) = (2.9)

The theorem has a nice and simple interpretation in termseoMarkov chain corresponding
to @ pinned at timen. Specifically, if D is a random variable on the same probability spacg,as
independent of and satisfying)(D = z) = ﬁ(z) wherec is a normalizing constant to make the
righthand side a probability mass function, then we carateshe theorem as
EZ (fiz,=p})

Q¢.(Zn=D)
In other words,Q" is simply the distribution ofy starting from¢,, pinned at timen to the

E(f) = (2.10)

randomly selected poird. Note that the dependence o1is only through the time of the pinning,
and this means that in order to study the sequence of prdagabgasures(),,), one only needs to
study 7.

Proof of Theorerh 2120bserve that it € £, andz, ..., 2, € L, then

n n—1
P,([[{% =z} 7 >n) = [[ P(z, 241
=0 =0

n—1
" 2:)Q (25, 2 !
=l edsiet sz
= ez ([[42 = 5D (1 1 (2.11)

=0
and otherwise”,, ([j_,{Z; = z;},7 > n) = 0. In particular, if f = f(Z, ..., Z,) is a complex

valued random variable, then

EP(fir>n) = Y E°(fir>nZo=2) = Y E°(Mz—f(20,.-. Z0), 7 > n)

20€Lo 20€Lo
= > P(Zy=2)EL(f(Zo..... Z0), 7 > )
20€Lo
77)
=\ P(Zy =z (pczE?< . (2.12)
zoezﬁo ( ' 0) ( O) ’ SOC(ZTJ

SinceP is uniform, it follows thatP(Z, = z,) is constant oy, and the result follows. O
12



Next we consider limits. The following provides sufficiemnditions under whicld),, expecta-

tions and expectations with respectare asymptotically equivalent.

Proposition 2.3. Suppose that for € Z, f,.(Zo, ..., Z,) is a complex-valued random variable,
and(j, : n € Zy) is a subsequence @f, such that
(1) min(j,,n — j,) — 00,

) EZ|fu— f5.] — 0.

Then
|E9" £, — E2 fol = o(1) max(|EZ (f,)].1). (2.13)

Proof. Because of condition (2), we have

EQ Lin
E9 (f,) = M +o(1). (2.14)

Then, by the Markov property,

B, (SOJEZ )) = E, (fanzjn (ﬁ)) (2.15)

The ergodicity ofZ under@ and the fact that, — j,, — oo guarantee thaE% (#ﬂﬂ)) =
EWQi +o(1) = ||ve|l1 + o(1). Thus

vell1 + o(1)EZ (f;.
BO(f,) = (I ||||;:||1(j132)(f)6(f )+0(1)

= (L+o(1)EZ(f;,) +o(1) = (1+0(1)EZ (fa) + o(1). (2.16)

For applications, it would be useful to know more abq@ut It turns out that the underlying
structure is determined by the mattiX which we now describe. L&t be thel x L matrix given

by C = (Ci;), Ci1 = ¢; andC; ;41 = 1, and all other entries equal o

cc 1 0
cec 0 1 0
C = 0 (2.17)
cr—1 0 1
c, O 0
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Let \c denote the Perron eigenvalue®f ¢~ a corresponding positive right eigenvector apda

corresponding left eigenvector. A straightforward conagpion gives the following.

Lemma 2.4. LetC be as in(2.17) Then

(1) the characteristic polynomial af' is \* — Ele e\,

(2) up to multiplicative constantsio(b) = A" andpc (V) = A% — Z;’.':—ll NG,

With this lemma we obtain a description Qf

Proposition 2.5. Let C be as in(2.17) and let)\., v, ¢., respectively, be the Perron eigenvalue,
and corresponding left and right eigenvectors 1y, the restriction of the transition functioR to

L, normalized so thap. andv.¢,. are probability distributions. Then:

(1) Ac = A

" (maxc+1)L-"
(2) There exist positive constanks,, K> such thatp.(a,b,0') = Kipc (V') andv,(a, b, V') =
Ksve(b). In particular, 7%(a, b, V') = K1 Kyve(b)pc(V), and K1 Ky = L

Ao St ve(d)ec(b)”

(3) Q((a, b, V'), (a,V/,1")) = 52~ for allowed transitions and i6 otherwise.

Furthermore, allowed transitions satisfy either of thddaling:
(@) v = 1 and then the probability of the transition&éﬂ;

cpc ()

(b) ¥” =¥ + 1 and then the probability of the transition i1s— fccélc)(cg,’).

Example 2.6. For the standard Zeckendorf decomposition, we have:
1 1 _
1) C = . In particular,
10

(a) The characteristic polynomial i5> — X\ — 1, and )\ = ¢, where¢ is the golden ratio

_ 1+v5
¢ =57

(b) l/c(b) = ¢_b, andgpc(b’) = ¢2_b/.
(2) £L=1{(0,1,1),(0,2,1),(1,1,2)}. Identifying these states as2 and3 in the order written,

then
o1
@Q=1|[3501-45 [
01 0
(b) 7(0,1,1) = 55, 79(0,2,1) = 5-79(1,1,2) = 7L, and
i’ (0) = %, (1) = ﬁ



(C) SOC = ﬁ ((b? (b? 1)t’ and
d) ve =75 20+ 1,6+ 1,20+ 1)".
Proof of Propositioh 2J5.

1. The first part is a straightforward calculation.

2. Observe that for the row aP corresponding to transition froru, b, b'), we have exactly
|S1] x |Sa] = (max;¢; + 1)L allowed sites to transition to, and due to the choice of umifo
distribution, all are of equal probability. AB is stochastic, its nonzero entries are equal te
m We first study the restrictio®, of P to £ x L. Recall that the elements df are of
the form(z, k, 1), wherex < ¢ or (¢, k, k + 1) wherek = 1,..., L — 1. For each(a,b,V') € L,
P, has a corresponding row, listing all transitions frdmb, b'). We will count the number of
such non-zero entries according to the valué'ofif v’ € {1,...,L — 1} then there aré + ¢,
transitions: one to the site,, v, b’ + 1) andcy to (x, 0, 1) wherex € {0,...,cpy — 1}. If b/ = L
then there are only; allowed transitions, all of which are of the second kind.

We define a functiop on £ by lettingp(a, b, b') = (V). Fix (a,b,b") € A. If V/ < L, then

according to the allowed transitions listed above, we have

Pro(a,b,b') = v(pc(V +1) + cypo(l)) = v(Cpo)(t') = vAcp(a,bb). (2.18)

Similarly, if ¥ = L, then P;p(a,b, L) = ~verpo(l) = vAcp(a, b, L). Thusyde = A, the
Perron root forP;, andy is a corresponding positive eigenvector. Next we want to tiredcorre-
sponding left-eigenvector faP.. To do that, letD be the transpose @f, and letv- be a Perron
eigenvector. Define.(a,b,b') := va(b). If b € {2,..., L}, then there is exactly one allowed
transition to it, that is from(c,_1,b — 1,0). As a resulty,Pz(a,b, V) = yv.(cp_1,b — 1,b) =
v(Dve)(b) = yAcve(a,b,b'). Next, if b = 1, then the allowed transitions are frofm, &, 1)
wherek = 1,...,Landz € {0,...,¢, — 1}. We obtainu.P(a,1,V) = v> 1, crve(k) =
Y(Dve)(1) = yAcve(a, 1, V).

15



The formula forz? follows directly from [2.7) and the preceding identitiesile the formula

for K, K, follows from the calculation below.

Z 7 (a,b,V) = ZWQ(a, b, 1) + ZWQ(a, b,b+1)
a,b a,b

abb

= KK, <Z apve(b)pe(l) + i ve(b)po(b+ 1))

b=1 b=1

= KK, Z vo (D) (copc(l) +pc(b+ 1))

L
= K1K2A02V0(5)<P0(b)- (2.19)
b=1

3. This follows from [[2.6) and parts 1. and 2. O

3. ADDITIVE FUNCTIONALS

3.1. General Theory. In this section we will study some theoretical aspects gfdaime behavior
of additive functionals of an ergodic finite-state Markowath under a change of measure which

generalizes the wa§,, was obtained frond). The assumptions in this section are the following:

Definition 3.1. LetZ = (Z,, : n € Z,) be anirreducible and aperiodic Markov chain on the finite
state spac& with transition functior(). Lety : £ — (0, o) be a positive function, and lgtbe a

probability distribution onl. For everyn € Z., let@,, be a probability measure an( 7, . .., Z,)

o 1
2 (mfn))
Q 1
Ly («:(zw)

We will consider the behavior of additive functionals of tleem S, = Z;.L:Og(Zj) where

given by

On(A) = L A€ a(Zo .. Z). (3.1)

g : L — Cunder@, asn — oo. In the context of generalized Zeckendorf decompositians,
example for an additive functional is the number of, say,zeoa digits in the decomposition. In
the next section, we show that gaps in the decomposition eamelved as additive functionals of

some Markov chain, so we can treat them with the same tools.

We need to fix some notation. Functions©will interchangeably be viewed as column vectors.

As an example, iy is such a function thefYq is to be identified as the function or, equivalently
16



the columnf vector given byf(z) = >, .. Q(z,2')g(z"). We will write hg for the product of
such two functions, namelyg is the function given byhg)(z) = h(z)g(z), z € L. In addition,

h(Qg) means the product of the functiéanand the functiorf)g, not their scalar product.

Let 7@ denote the stationary distribution for. Recall thatl — () is invertible on the)-invariant
subspace of/, whereV = {g : E,eg(z) = 0}. We denote this inverse h9#, and extend it to
all functions by letting)#1 = 0. This is the only choice that guarantees thandQ# commute,

andQ7 is known as the group inverse Ot It is well-known that
Z E2(g Enag) = (Q%9)(2). (32)
Our first result is the foIIowmg.

Theorem 3.2.Letg: £ — C. Letj = g — E,og,andS, = Y7 §(Z;). Then

~ E 0§ #1
E®S, = EM(Q#QH%H(I) (3.3)
™
B9S2 = (n+1)Ee (3(2Q% —1)g)) +o(1) and B9 S? = (1+0(1))E%,S2. (3.4)

Proof. We will first prove [3:3). From Theoref 2.2 with = S,,, and the Markov property, we

have that
po_ L peg, ZEQ !
" o(Zn) SO(Zn—j)
1 1
=N E9(Z <EQ_ —EﬂQ—)
j;o o ( ]) Z; @(Zn—]) ©
(1)
+ E.o— ZEQ Z;). (3.5)
0
;,_/
(1)
By B2),(II) — E,.(Q¥g) = E,Q"g, becaus&)” maps constant function ta In order to esti-

mate(/), we recall that from the exponential ergodicity of irrechleifinite state Markov chains,

there existg € (0,1) andc; > 0, such that for every functioh andk € Z, ,

sup |EZh(Z),) — Exah| < c1l|B]lscp”. (3.6)
17



Letting h(z) = 7 — Exey, We have thatt,ch = 0. This allows us to rewritg/) as

> im0 Eud(Z5)Ez;h(Z, ;). In order to estimate this sum, we break it into two partsstrir

J

ln/2] [n/2]
> B2 Z)Egh(Zn-g)| < llillee Y sup|E-A(Znj)] < erllglloollBllocp™?n/2 — 0,
j=0 j=0 *
(3.7)
where the last inequality follows frorh (3.6). Next, fet(z) = §(z)E.h(Zx). Then
n B 1 n
> E24(Z;)Ey, 7y = > E2hai(Z)). (3.8)
o TL—])

j=|n/2]+1 j=n/2]+1

Applying (3.6) to each of the function's,, and observing thatii|l. < ||Gllooll?|lo, it follows
that forj > [n/2] + 1,

|EZh(Z5) = Exahi| < c1]|glloclBllocp™. (3.9)

Also, sincer? is the stationary distribution fof), we have thatZ, o h;, = Ethk(Zj), and as a

result

n

> <E§hn—j(zj) - Ethn_j(Zj)> < c1lgllsollllocp™*n/2 = 0. (3.10)
j=|n/2]+1

In addition, E%, h,,—;(Z;) = Ere§(Zo)Ez,h(Za-;), and therefore

n n—|n/2]—-1
Y ELhai(Z) = Y B%i(Zo)Ezh(Z). (3.11)
j=|n/2]+1 k=0

Since by our choicé .o h = 0, it follows from (3.2) that the righthand side is equaFp, g(Q*h)+
o(1). As aresult(l) = E.eg(Q* ) + o(1), completing the proof of(33).

18



We turn to proving[(314). We first prove the first equality.

B2, (%) = Y E%P(Z) +2 Y Bued(X)a(Xs)

0<j<k<n

= (n+DELF+2 > EL5(X0)EL 3(Xi—))

0<j<k<n

= —(n+1)Ei®+2) Y E%§(Xo)E §(Xi—))

7=0 k=j

n n—j
= —(n+ )i +2Y B%G(Xo) (Z Eﬁ(}g()@)
k=0

j=0

= —(n+ 1B’ +2)  E0jQ¥j—2> ES, <§<Xo> > E;%g(Xk))
j=0 j=0 k>n—j

(+)
= (n4+1)Eg(2Q% — 1§ + (). (3.12)

J

Observe that by exponential ergodicify, {3./823(X%)| < ¢1]|g]|«p", uniformly overz, and so

Ly N p I |
(%) < cngHooZ < 01||9||oo(1_p)2 = O(1). (3.13)
7=0

I—p
This completes the proof of the first equality [n(3.4). It @@ns to the asymptotic equivalence of

E&SEL and EES’EL. This, again, follows from the exponential ergodicity, as mow explain. We
have

S2 = 82 +25,(Sh — Sm) + (Su — S)?. (3.14)
From the Markov property and exponential ergodidity |(3ifpllows that

1Eu(Sn — Sin)? — EreSE_,| < allglleon?s™ (3.15)

Choosem = clnn for ¢ = 4/In(1/p). It follows that righthand side tends tbasn — oo. In
particular,E, (S, — S,)? < con. Next, observe thak,S?, < ||g||2.m?, and by Cauchy-Schwarz,
|E,Sm (S — Sin)| < \/EMS%\/EM(SH — Sp)? < esma/n. In summary, for alk large enough,

B, (an +28,,(8, — ém)) | < ellnn)®vVn < e, (3.16)

In particular,

|ESy— ES,S) | < e, (3.17)
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so that
E,S; = (1+0(1))nEei(2Q" — 1), (3.18)
and the claim is proved. O
We turn to laws of large numbers and central limit theoremsélitive functionals.

Theorem 3.3. Under the same assumptions of Theorerh 3.2 we have:

(1) Weak Law of Large Numbers: Fer> 0, lim,,_, Q,, <|ns——:1| > e) = 0.
(2) Central Limit Theorem1(,, (\/% < x) = P(Y < z) whereY ~ N(0,0?), ando? =

Proof of Theorerh 3]3The Weak Law of Large Numbers follows from Chebychev’s iredijyand
the asymptotic estimate fd&% S? given in Theoreri 3]2:

— 0, asn — oo. (3.19)

S, E 52 Erg(2Q* —1)g
< TR
@ <‘ > 6) ~ (n+1)2 (n+1)e

We now prove the Central Limit Theorem. To do this we applyp@sition[Z.8 withj, =

n— |lnn] and

0 -
Jn = exp ( \/n—HSn). (3.20)

Observe that the choice ¢f guarantees that condition 1. in the proposition holds. Next

< max <|1 — E¥ cos (3%) | 4+ | E¥ sin <\9/i"7%> |> . (3.21)

Since|S,_;,| = O(Inn), it follows from bounded convergence thatp, E9|f, — f;.

E?|fn - fjn < E9|1 — E%7L6\/n_ﬂsn7]7L

— 0, and

so condition 2. holds. Finally, we recall from the Centrahiiti Theorem for additive functionals
of finite state Markov chains (e.d. [MWDQ],[BANL2, Theoreijp that

o2

EZ(fa) e 7, (3.22)

wheres? = lim,,_,o HLHEEQ (Sﬁ) The result now follows from Theorem 3.2. O
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3.2. Application to Zeckendorf Decompositions. In this section we show how the results ob-
tained in Sectiof 3]1 apply to generalized Zeckendorf dgamitions. In particular we will show
that the generalized Lekkerkerker’s theorem (Thedrerh dndl)the corresponding Central Limit
Theorem are specials cases to Thedrem 3.2-1 and Théore?n 8v8-will also carry out explicit
computations for the standard Zeckendorf decompositidreres all quantities are easily com-
putable.

In order to apply the results in the context of generalizeckéadorf decomposition, in Defini-
tion[3.1 we identifyZ, Z and( in the definition as the same quantities defined in Setliom@, a
also setp = ., andu = ., wherep, andg,. are as in Section 2. With these choices, the measure
Q,, of Definition[3.1 coincides witl),, of Sectior{ 2.

Recallk(N), the number of nonzero summands in the generalized ZecKethelcomposition
of N, defined in[(14). Ley : £ — {0, 1} be defined ag(x, j, ;') = 1 ifand only ifx > 0. Then
if N € [Gi1,Gnyio), from (2.1) we have that that V) = S,,, whereS,, is the additive functional
Sn=2_7_09(Z;). Observe that’,cg = 1 — 7 (0), and sqj = g — 1 + m,(0). Furthermore, since
719 (2) = p.(2)v(2), it follows thatEin = ||¢|l1. The following therefore follow immediately
from Theoreni:3]2 and TheordmB.3.

Corollary 3.4. For generalized Zeckendorf decomposition:

(1) Generalized Lekkerkerker's Theorem (Theorerh 1.4):
E9k(N) = Cra(n+1)+d (3.23)

where
EWQ<1 - 5)(Q#i)

Crax = 1—m(0), d = E;Q%(1-6) + AR : (3.24)
(2) Variance:
E9(k(N) = Crex(n +1))? = (1+0(1))(n+ 1)o? (3.25)
where
0® = E.g((2Q" - I)9). (3.26)
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Corollary 3.5. For generalized Zeckendorf decompositions we have

(1) Law of Large Numbers:
Qn ([k(N) = Crac(n +1)| > ne) — 0; (3.27)

(2) Central Limit Theorem:

E(N) — Cre(n +1) 2
Qn< N c ) — N(0,0%) (3.28)

whereo? is as in Corollary 3.4

In the remainder of the section we compute all constantsalmvthe standard Zeckendorf

decomposition. First we need to compalé.

Example 3.6. For the standard Zeckendorf decomposition,

5-¢ ¢—4 —1
Q#zé —¢  o+1 -1 |. (3.29)
1-3¢ 20—2 ¢+1

To prove the identity, recall the expressions f@rand 79 computed in Examplg_2.6. Let
A=1-Q, andlety; = (0,1,-1)", v, = (1,0,—¢)", andvs = (1,1,1)". ThenE,qv; =

E.ovy = 0. Sincev; andwv, are linearly independent, it follows that they span thénvariant

spacel’ = {v : Equv = 0}. In additionAvs = 0. Lettingg = 1 — 5> = 1, a straightforward

g)
calculation shows thatlv; = quy + (1 + ¢)vy, and Avy = vy. Thuswv; = qus + (1 + ¢)Q% vy,

Q7 vy = vy andQ* vy = 0. These determin@?.

Also, from Examplé 26 we have that(0) = 555, ¢. is a point mass, anflv. [, = 227,

In addition, 7¢ = ﬁ((ﬁ,l,l)t, andy, = Tlﬂ(?b’ $,1)t. Since alsog = (0,0,1)!, we have

Qg =1(1-3¢,290—2,6+1), andQ#i = 5(¢—1_1) (—1,—1,¢ + 1)". As aresult, we have the

following.

Example 3.7. For the standard Zeckendorf decomposition:

1 5—+5 3
Crex = = L od = =, 3.30
P T 942 10 5 (3.30)
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We finally computer?. Clearly,g = (0, 0, 1)t—ﬁ(1, 1,1) = ﬁ(—l, —1,1+¢)". It therefore
t
follows thatgQ#g = §gQ#(0,0,1)" = & (ﬁ, s (1= 55) (0 + 1)) , and so the expectation is
equal to
o 21+ ¢+ (1+ ¢)? 2(¢p+ 2)
2 dQ"g 5( 6 12) o (3.31)
Sincej? = (— L Py 1 (11, (1+ ¢)2)!, it follows that
@122 (6+2)7° (9422 5(1+g) \ 7 :
. 1 (p+1)+(p+1) 1
E.of® = —_—— 3.32
“9 T 51+ ) é+2 5 (3-32)

We therefore have

S

Example 3.8. For the standard Zeckendorf decompositiofi:= % = ¥

4. GAPS IN ZECKENDORFDECOMPOSITION

4.1. Gap Distribution. In this section we consider the asymptotic distribution apg between
non-zero terms in the generalized Zeckendorf decompasifitnis will be an application of our
results on additive functionals from the previous sectibve will first prove a statement on an
“average" gap distribution, Theordm 1.1, and we will latesye convergence of empirical gap
measures in probability, TheordmW4.2. Let us first define titon of a gap. We work under the
same assumptions and notation as in Se€fion 2. Suppos¥ thaf admits a legal decomposition
(2.3) with X, > 0. Note thatX; counts the repetitions @, _;.,, and if repeating more thah
times, we can view this a¥; — 1 gaps of length zero. IX; > 0, then we have a gap of length
or larger, the length of the gap equakton{k > 1: X, ., > 0}. Let N,,(k) denote the number of
gaps of lengttk in the firstn digits, and letV,, = >, N,,(k). We define the gap distributiqn, as

a probability measure da, given by

EQnNn<k)
k) = —————2. 4.1
To state the next theorem, let
v(k) = A=) (4.2)

denote the probability density of a geometric random véeialith parameten'. We have
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Theorem 4.1.LetH, = {(0,b,1) € L} andHy = {(0,b+ 1,b+2) € L : ¢, > 0,¢p41 = 0}. For
z=(0,b+1,0+2) € Hywe let

r(b) = max{j : ¢4; = 0},

p(B) = Q((0,b+r(b),b+r(d) +1),(0,b+r(b)+1,1)) = Acwc(fi(izb) yt and
0 k<r)+1
h(b,k) = <1 — p(b) k=r(b)+1 (4.3)
pOAGFTOT (1A k> r(b) 4+ 1.
Then
(1) lim, o LN, = Mo
(2) )
1-m(0) _
lim p, (k) = 1 _Q M”?Q ) o ey (4.4)
n—00 1-m(0)—m (Hl)(l_)‘CJV?;QZzeHQW (2)(1=p(2(2))) L1
(3) Fork > 2, 1
e T
N D em, T(2) (R(2(2) = 1, k) — p(2(2))v(k — 1)) 4.5)

Since) ., v(k—1) = >, h(b k) = 1, it follows that the limitlim,, . /1, (-) is a probability
measure, which we denote hy,,. A simple argument shows that a stronger result holds. For

n € N, define the empirical gap distributigh, as a random measure @n, defined by

fin(A) = % (4.6)

We therefore have the following.

Theorem 4.2.Forany A C Z, ande > 0,

lim Qn (|ftn(A) — poo(A)| > €) = 0. (4.7)

n— o0

We comment that the expression for the limit in Theofenh 4rhush simpler wher,; > 0 for

all j =1,..., L. Inthis casef, = (). For the standard Zeckendorf, we have the following.
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Example 4.3. For the standard Zeckendorf decompositidmﬁ? = 79(1) = ﬁ and Ao = ¢.

Therefore
(1) limy, oo 2E9N, = 1.
_ 0 k=01
(2) limy, o0 pin (k) =
pF k>2.

When some of the coefficients are zero, then some gaps ohlengtare forced by the recur-

rence relation, and taking this into account is the sourd¢hefengthy expression in the theorem.

Example 4.4. Consider the recurrence relationwith= 4, ¢c; = 1,¢c, = ¢3 = 0,¢4 = 2. Then\g
is the largest (real) root oA*(\ — 1) = 2, \¢ ~ 1.5437. We have

0 k<3
h(k) = {1 k=3 (4.8)
D= k>4
and
0 k=0
lim g, (k) = 2 -2 k=1 (4.9)
QemPey(f — 1) + 2e2h(k) k> 2.

In this example,

L= {z'=(0,1,1),2" = (1,1,2),2° = (0,2,3),2* = (0,3,4),2° = (0,4,1),2° = (1,4,1)} .
(4.10)
There are no gaps of lengthas the coefficients immediately show. Gaps of lerigtmly appear

in the form(1, 4, 1) followed by (1, 1, 2). Larger gaps can be formed as follows.

e Gaps of length: > 2 through a sequence of the forh, 4, 1), (0,1, 1), ..., (1, 1, 2), with
(0,1,1) repeated: — 1 times.

e Gaps of lengtht > 3 through a sequence beginning with 1, 2), (0, 2, 3), (0, 3, 4), fol-
lowed by (1,4, 1) if length is 3, or by k£ — 3 repetitions of(0, 1, 1) followed by (1,1, 2)

otherwise.
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The larger gaps of the second type are forced by the rec@wrendhe sense that the con-
dition ¢ = ¢35 = 0 implies Q((1,1,2),(0,2,3)) = Q((0,2,3),(0,3,4)) = 1, and so every
time the sequence hits the stdte 1,2), a gap of minimal lengtt8 occurs. Let us see how
this is reflected in the formulad; = {(0,1,1),(0,4,1)} and H, = {(0,2,3)}. There’s only
one element inf7? and therefore we omit the referencettin the functionsr, p, h. Sor = 2,
p=Q((0,3,4),(0,4,1)) = 5, and the expression férfollows.

We now computer®. Letp = 79(z2). SinceQ(z?,2?) = Q(z%,2*) = 1, we have that
p =792 = 79(z"). Next,Q(z*,2°) = Q(z*,25) = 1, and sor?(z°) = 79(z%) = p/2. We

also observe that

(") = 7Y + 79(P)Q(2%, ) + 792 Q(20, 2Y) (4.11)
Therefore,7%(z!) = Acp_l. Now we havel = Acp_l + 4p, so altogetherp = jfc‘_lg, and the

expression for the limit ofi,, follow after some algebra.

Proof of Theorerh 411For a real number, letz, = max(x,0). We begin with gaps of lengtb

—_

n—

E2N,(0) = 3 (2,(1) ~ 1)-. (4.12)

<.
Il
o

The ergodicity ofZ under@) implies that
Q
lim £ Na(0) . (0)

n—oo n

= Y 7E)(@-1)y=Mea—1+77(0) (4.13)
Z:(:B,j,j’)

Before moving to gaps of larger length, we consider the twaahber of jumps. We have

n—1
1 1
_EZQZNn(k) = EEZQZl{Z,-(o)x)}
n k>1 7=0
— 1—72(0), (4.14)
n— oo
and so from[(4.113)[(4.14)
lim lE§9Nn = M. (4.15)
n—oo N, 1

We move to calculation of gaps of length2. We will treat gaps of length last. Letk > 2. Then

n—k k—1

1 1

SEINL (k) = —EF E 0 Liz;1)>03 (J |1 1{Zj+e(1)=0}> L1750 (4.16)
]: =

26



Let B = {(0,b,t") € L}. It therefore follows from the Markov property and ergotlidhat

lim nEQN (k) = OZJQ(ZO)fB(zO) (4.17)
where forD C £ we have
k—1
(2% = > JIeEN N | i A). (4.18)

Letting

By = {(0,1,1)}

B, = {(0,b+1,1)eL:b>1, ¢, >0},

By, = {(0,b+1,04+2)€L:b>1, ¢, >0,c.1 =0}, and

By = {(0,b+1,1)eL:b>1, ¢y =0, > 0}, (4.19)

we can write

PR ZZ 20) fz,, (z°). (4.20)

z20eA m=0z0cA
Note that?,_,B,, = {(0,b,0') € L : ¢,_; # 0 0r ¢y # 0}, and so this union does not necessarily

contain all elementf), b, ') € L. However, it does contain all such elements which are aitiless

from A in one step (and more, whenewgy is not empty).

We now simplify the expression, beginning with the sum averlt is important to observe that
B; is the subset of states ifi accessible in one step only frory In addition, ifz! € B, then
it immediately follows that? = --- = 2*=! = (0,1, 1), and that allowed transitions 10, 1, 1)

always have probability;'. As a result, we have that

Fe(2%) = Q0 AP (1 - Agh, (4.21)
and thus

7 (%) = 7 ¥UBi)w(k —1). (4.22)

20eA4

Next we consider the sum ové, namelyz* = (0,1, 1). Clearly:

> w90 foan () = D w9 foan (") = Y 7920 foa (20). (4.23)
20cA 0¢r 2YeB
27



Since(0, 1, 1) is accessible in one step either frotror from states i € B, U B; U B; and for
all suchz, Q(z, (0,1,1)) = AZ', it follows that

Z (2% foa1(z%) = (79((0,1,1)) — 7%(By U By U By)As') v(k — 1). (4.24)

20€A

Hence,

D 79" fogum (2°) = 72(ByU By U Bs)(1 = A )w(k — 1) — 79(Bs)v(k —1).  (4.25)

20eA

We now consider! € B,. Suppose then that € A andz' € B, andQ(z, z') > 0. Since
2= (0,04 1,b+2), it follows thatz® = (¢, b,b + 1) ande, > 0. Now if ¢, » = 0, then the only
allowed transition from! is to 2% = (0,b + 2,b + 3). Letr = r(b) andp = p(b) as defined in the
statement of the theorem. Theh= (0,b+ j,b+ j + 1) forall j = 1,...r, and we conclude that
Q27,27 = 1for j = 0,...,r. We continue according the the following two cases.

1.7 >k — 1. In this caseQ® (2%, A) = 0.
2.7 <k — 1. Then either
e r =k — 1,in which case*(z°, A) = Q((0,b+r,b+r +1),A) =1— p; or
el < r < k—2,inwhich casez"™! = (0,b+r + 1,1) andz"*" = (0,1,1) for all
2 <1 <k—1—r.Inparticular, sinc€)((0,1,1), A) = Q((0,b+7+1,1),4A) = 1 -\,

we have that
Q"% A) = QUO0,b+7r,b+7+1),(0,b+7r+1, 1))k —7r—1). (4.26)

The only allowed transitions froit), b+, b+r-+1) to (z, b+r—+1,1)aretor = 0,. .., cprri1—1,

all with equal transition probability. Since there are ékac,.,..; — . (b+ r + 1) possible values

for x, exactly one of which is with: = 0, letting p(b) = m we have
0 E<r(z)+1
Q"(°%,A) = S1—pb+7r+1) k=r(z)+1 (4.27)

pb+r+Dvk—r—1) k>r(z)+ 1
Summarizing the two cases, we conclude that
> w9 fe (%) = > h(N(2) - 1k). (4.28)

20€A 21 eBy
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Next, when:? € A, andz' € Bs, thenQ(2°, 2!) = 0. Thus, we have proved

> 79U £, (") = (1= AHn(Hy) — 79(Bs)) v(k—1)+ > 79z h(b—1, k).
20=(0,b4+1,b+2)E B> (4.29)

m=0

Letz’ € Bs. Thenthere exists a uniqué = (0,b+1,b+2) € B, suchthat! = (0,b,b+1), 2* =
(0,6+2,0+3),....27® = (0,04 r(b),b +r(b) + 1) andz"®+! = 2/, SinceQ(z*, 2**!) =1
fork = 1,...,7(b) — 1, it easily follows thatr?(z') = 79(2")p(b) = 72(z" Hp(b) = -+ =
m9(z")p(b). This shows that?(Bs) = 31 g pi150)em, T (21)p(b). Plugging this into the

formula above, and noting thaf; in the theorem i3, U B; U B; and H, in the theorem is3;,

we obtain
lm CEON,() = 3w ()
= (1= 2% H)v(k—1)
+ > 79(2%) (h(b = 1,k) — p(b)v(k —1))). (4.30)

29=(0,b+1,b+2)EH>

We turn to gaps of length:

n—1

1

1
ﬁEgNn(l) - EEEQZ1{Zj(1)>0}1{Zj+1(1)>0}
5=0
1 n—1 o 0
R Z 12 1{Zj(1)>0}Ezj1{Zl(1)>0}, (4.31)
5=0

where in the second line we applied the Markov property. Let
A = {(z,b,V)) e L:z >0} (4.32)

Ergodicity of Z under( then gives

Tlim %E?Nnm = Y 792)Q(z, A) = 7%(4) = > 79(2)Q(z, A). (4.33)
z€EA zEAc

Givenz = (0,b,b") € A¢, exactly one of the following holds.

e, =0,/ =b+1,¢,1 =0,andther)(z, A) = 0.
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e ¢, =0,/ =b+ 1,1 > 0. From the argument in the paragraph abgve {4.30), and since
Q(z,A) =1 — Q(z, A°) we obtain that

Z WQ(Z)Q(ZaA) = WQ(Bz)—WQ(Bs)

{z=(0,b,b+1)€L:cp=0,cp41=1}

— > (0 (1 - p(b).  (4.34)

20=(0,b+1,b+2)€ H>
e ¢, > 0andthern = 1, equivalentlyz € H,, inwhich cas&)(z, A) = 1-Q(z,(0,1,1)) =
1— A"

Summarizing,

n—oo N
20=(0,b+1,b+2)€ Ho

lim E9N, (1) = 1 - x2(0) — (1~ AH)n@(Hy) - ( > e —p(b») .
(4.35)

To finish the proof, we need to show that the results contioueold when considering the
measure)” instead of). However, by the Markov property, the expectation uri@eiof ,,, and
N, (k) are equal to the expectations of corresponding additivetiomals. Therefore it follows
from Theoreni 312 that the expectations\of(k) and N,, under@,, are asymptotical equivalent to

their expectations with respect €, . The theorem now follows. O

Proof of Theorerh 412We have

{1n(A) = pos(A)] > €} C Upea{lin(k) — pioc(k)| > €}

= Upead|Na(k) — st (k)N > €N, Y U {N, = 0}. (4.36)

Since@, (N, =0) = Q.(Zy > 0,2, =--- = Z, = 0) — 0, we can ignore the evettV,, = 0}.

Now for every fixedk € A, we have

{[Nu (k) = proo(K)Nu| > €N} C {[N(k) = proo(K) EZ Nu| > €/2} U{IN, = EfgNy| > €/2}.
(4.37)
Next observe that botl,, andN,, (k) are additive functionals for the process = (7 : k € Z,),
whereZ* = (Z,, Zp+1, - .., Zns1), @and so we can considér, (k) and N,, as additive functionals

of ZF. Letting (2%, 2%, ..., 2%) = ©.(2°), and @/ (2, ..., 2*), the distribution ofZ, ..., Z
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under@., then if as in Definitiof-3]1 we define

ES (45)
Q1 (A) = %ﬂzk) (4.38)
Eg (m)
it follows that the restriction of); , to events generated bY;, ..., Z, coincides with@,. In
particular, the distribution of the additive functionad¥s and N, (k) for Z* under@,, ;» coincides
with their distribution unde€),,. From the variance estimafe (8.4) in Theofem 3.2 applieddsd

additive functionals undep;, ,, we conclude that

Qn({|Na(k) = proo (k) EZ, Ny | > €/2}) = O(n™") andQ,, ({| N, — E%, N, | > €/2}) = O(n™").
(4.39)

Therefore ifA is finite, we obtain that

lim Qn(|fin(A) — poo(A)] > €) = 0. (4.40)

n— o0

Now if A is infinite, lettingA,; = AN {0, ..., M}, we observe that
[ (A) = proo (A = [fin(Anr) = proo(Anr)| + fn({M + 1, 1) + poc({M + 1, })
< N (Apr) = proo(Anp)| + p{M + 1, . ) + poc({M +1,...}). (4.41)
Fix ¢, and letM be such thati.,({M + 1,...}) < e. Thus forn large enough,
{170 (A) = poo(A)] > Se} C {|fin(Anr) = proo(Anr)| > 26} U{in({M +1,...}) > 2¢}. (4.42)

The measure of the first event on the right-hand side tendsatn — oo by (4.40). As for the
second event, it is equal to the evént, ({0, ..., M}) < 1 — 2¢}. However, since, again bly (4]40)
(| ({0, ..., M}) — oo ({M +1, ... })| > €/2) tends ta), it follows that@,, ({ /. ({0, ..., M} >
1—3¢/2) tends tal. But this eventiq i, ({M+1,...,}) < 3¢/2},and saQ,, (fi,({M+1,...,}) >

2¢) tends ta) as well. The result now follows. d
4.2. Maximal Gap. Next we consider the maximal gdg,,, defined as
M, = sup{k € Z; : N, (k) > 0}. (4.43)
Although we can prove the results at the same level of gaheea in the previous section, we

prefer to keep the expressions cleaner and simpler, andagglime throughout this section that
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C1y...,cr > 0.

Our analysis is based on a renewal structure we now desdiieerefer to the gaps of length

k > 2 as “long gaps", and denote the lengths of the long gaps, @ttleyx order of appearance, by
(R, : j € N). Observe that any long gap is followed by a possibly emptyerage of: gaps of zero
length (summand repeated more than once, see first paragfr&@gttior{ 4.11) and gaps of length
1, independent ok. This is then followed again by an independent long gap. Tumbrer of the
small gaps is bounded above iy — 1) + > .(c; — 1) = (>_, ¢;) — 1, as the first summand bounds
the number of length, and the second summand bounds the number of gaps of lengthLzd
T,, denote the first time exactly. long gaps are completedh(n) = sup{m : T,, < n}. Observe

that a long gap is completed whenever the digit zero is fallyy a nonzero digit. Therefore
= Z Lo(Z;(1))1{z,411)>0}- (4.44)
From the Markov property,
ZEQ 10(Z(1))Qz,(Z:(1) > 0)). (4.45)

Letting A = {z = (x,0,0') € L : x > 0}, and repeating a similar computation as in the proof of
the casé: = 1 in Theoreni4l, it follows that

1

7}1—{20 EEQm(n) = Z 9 (2)Q(z, A) ZT{'
z€AC z€A
= (1—-79(0)) — (1 = 79(0)) + (1 — A;")7%(0), (4.46)

where the last equality follows froni {4.33) arid (4.35). Alsy the renewal theorem [DurilO,
Theorem 2.4.6]

im ™ _ o gas, (4.47)

n—o00 n

wherea = 1/E§?T1 andp is the uniform distribution om; elements:(z,1,1), 1 < = < ¢; and

(¢1,1,2). The limit above also holds ih!(Q), asm(n) < n. Consequently

a = 12(0) (1 — i) (4.48)

Ac
32



To state our result we need to introduce some additionahgstson. We say that a sequence
(ng : k € N) of natural numbers tending te satisfies thespacing conditionwith respect tax and
q if
In(nga)

liminf inf —
k—oo 2E€7Zy

> 0. (4.49)

In =
q
Roughly speaking, this means thatn is eventually uniformly far from integer powers ofq

in some normalized sense.

Theorem 4.5. Assume ¢, - - - ¢, > 0. Then for every: € Z,

_ 1
lim Q, (Mn < rnml(o)(l Ac>J +k;> _ N (4.50)

n—00 In Ao

when the limit is taken along any sequence satisfying theisgaondition(4.49)with respect to
_ 1 1

Example 4.6. For the standard Zeckendorf decompositian,= ¢ andm;(0) = %. This gives

lim O, (Mn < r“" —In(g+ Q)J n k) — 9, (4.51)

n—r00 In (b

Proof of Theorerh 4]5To prove the theorem, we need to recall some facts on the nuaxiofineg-

ative geometric random variables. L&be a negative geometric random variable with parameter
€ (0,1). Thatis, fork € Z,, P(® > k) = ¢* whereq = 1 — p. LetG be negative geometric
with parametep. That is,® takes values ifZ., , andP(® > k) = ¢*, whereq = 1 — p. We denote
this distribution byGeom™ (p). Let (&, : £ € N) be IID Geom™ (p)-distributed random variables,
and letM® = max;<,,, ®,. ThenP(M® < j) = (1 — ¢/)™. For eachn € N, let4,, be chosen so

thathfnn;% - Hnl%J' Observe then thdt,, € (¢, 1]. From this we obtain that for any € Z,

1 E
PMO<| 2 k) = (1-2 e (4.52)
In 1/(] mém m—r00

We return to the proof. Fix some sequence satisfying theisgaondition. Abusing notation,

we will refer to a generic element in the sequence.a®bserve that if we choos® = R; — 2,
then (®; : j € N) is an IID sequence oficom™ (p) random variables with = 1 — A;'. In

particular, for everyn

My, = MO +2. (4.53)
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ClearlyT,,.,) < n, but also by the law of large numbers ahd (4.47)

Tmn Tmn
m _ Tow om0, (4.54)

n m(n) n  n—oo

From (4.47) we can find, > 0 with lim,,_,, ¢, = 0 and satisfying

Q (@ €[l—¢€,1+ en]a) — 1. (4.55)

n— oo

Observe then that

0 (Mn < Hn”f‘J v k:) > Q (Mn < FH”O‘J + k0 <mn) < (1+ En)noz)

; In &
> Q <M\_@(§1+En)naj < \‘hllnnlaJ + k- 2) - Q(m(n)
> (14 ¢€,)na) —Q(m(n) =0). (4.56)

The last two terms on the righthand side tend.ttn addition, sincén(n(1+¢,)a)—In(na) — 0,

n—

it follows from the spacing condition that for all large enougr{”zinf”‘”J = {IEIWJ It then
q q
follows from (4.52) that

1 .
lim inf Q (Mn < {n”f‘J +k:> > 02 (4.57)
n—00 ]ng

We turn to the upper bound.

Q (Mn < Hn”f‘J + k:) < Q (Mn < ﬁn”f‘J Y k—2mn) > (1— En)m>
(

+@Q(m(n) < (1 = e)na)

< Q (M o < F?H”O‘J +k:> o(1). (4.58)

The same argument as before shows thanflarge enough[m( (1= E”)”‘”J = {IH"O‘J and so

Ini Ind
q

1 )
lim sup Q (Mn < V”f‘J +k> < 2 (4.59)
n—o00 IHE
Summarizing,
1 .
lim Q (M, < |—— | +k) = e (4.60)
n—oo lng
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It remains to convert the result 19,,. Let A, = {M,, > [Inlnn|}. ThenQ(A,) — 1. Let
n—o0

b, = [Inlnn]. Thenasy — b, = n(1 + o(1)), we conclude that the sequence- b, also satisfies

the spacing condition. Furthermore, for sufficiently Iarge{l“(”‘b”)aJ = {IH"QJ. Thus, from

Inl/q Inl/q
(4.60)

lim Q (Mn_bn < ﬁ”f‘J +k> —— (4.61)
n_
q

n—oo

Letting B, = {M,,_s, < LI&"FJ + k}, it follows from the Markov property and the ergodicity of
Z that

1 1
E°9 (1 — E° (1 Eyx 7>
( B SOC(Zn>) Bn = Xn—bn @c(an)

= B¢ <1BnEWQiC) +0(1) = Q(B,) +o(1). (4.62)
Now
¢ (M" : ﬁnnlaJ - soc&n)) < 0 (1 )
_ Q(Bn)E,TQiC +o(1). (4.63)
and so
ng:s;}p Q, (Mn < {%J +k;) < 17 (4.64)

We turn to the lower bound. Observe thdf, > M,,_, only if one of the lasb,, + 1 long gaps
among the firsin(n) is maximal. Fixc > 0, then for alln large enough, depending oand on the
event{ M,, > clnn}, those maximal gap among the last+ 1 must begin before — b,, (because
otherwise it will have length at most < ¢Inn) and end after. — b,, (otherwise already included
in M,,_, ). Thatis,

{M, > M,_,,} N {M, >clnn} C { . hax ®; = Onn—b,)+1}- (4.65)
‘]:
Denote the event on the right-hand sidedjy We have that

Q(C,) < Q(C,,m(n) € (1 —e)na, (14 €)na)) + o(1)

1 2
< 2(—:noz><17+0(1) .

n—oo 1 — €

(4.66)



Sincee is arbitrary, we conclude th&(C,,) — 0. Hence

n—oo

In no 1 In no 1
Q . - < [ c __ -
E (Mn> {ln% J +k, SOC(Zn)> < Q(Mn_bn> 1n% J +k,Ch, @;(Xn)> +Q(Cy)

In(n — b,)a 1 ,
ThI J +k, —%(Zn)> +o(1).
(4.67)

< Q (Mn—bn >

The remainder of the proof is identical to the argument preskin [4.62), with the obvious

changes. This gives the lower bound

1 _
liminf Q" | M, < Lnnlo‘J T A (4.68)
n— 00 lna
thus completing the proof. O

APPENDIX: GENERALIZATION TO INITIAL SEGMENTS

Although our approach is most natural for intervals of therf¢G,,, G, 1), most of the results
can be easily extended to the general case where we conis@ertérval(l, N). We will now
briefly show how this can be done. For evéYyc N there exists a uniqgue = n(N) such that
N € [Gpi1, Gry2). Denote the uniform measure gn N) by Wy. Then it follows from Theorem
2.2 that

n(N)—1

Wr(4) = > a;Q(A) + Q" (Al[Grs1, N)), (4.69)

j=0
whereGy = 0, o; = (min(Gj49, N) — G441)/N, and for simplicity we considep’ as a probabil-

ity measure oN which gives zero mass to elements outside the intéé&val;, G;).

Consider now a functiof’ : N — [0, 1], and assume théitn; ., E% ' = ¢(F'). We will make
more assumptions of later. We will basically requiré’ not to depend too much on its first and

last digits.

Then we can write
N(n)—1 .
E"™F = Y aEYF +a,E¥(F|[Gn1,N)) = (I)+ (11). (4.70)

Jj=1
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It is easy to see that along sequences satisfying either> 0 or a,, — 1, the righthand side
converges te(F’). However, when this is not the case, then the term (Il) maydoélatory. How-
ever, if we can show that?" (F|[G,41, N)) — c(F), then it follows thatE"'~ F' — ¢(F). The
idea is very much in the spirit of Propositibn2.3. This cartmald for all ', so we need to restrict

our discussion to thosk not affected much by first or last digits.

In order to do this we make some assumptiong'afo that the oscillations will asymptotically
vanish. Denote the length of the decomposition by |z|. Suppose that for eachlarge enough,
there exists:, such that,, |x| — n, — oo, and if A, denotes all numbers with length| whose
decomposition differs from that af only in the firstn,. or lastn, digits, we will assume

lim sup |F(z') — F(z)| = 0. (4.71)
T=00 e A,

An example of such a function is any additive functioaldivided by the length of the de-
compositionD (a random variable we localized to numbers with decompmsstof fixed length in
previous sections). Another example:i&5—</vD for somec. We note that we can make weaker

assumptions o’ for the argument to work. Before presenting the argumentate the result:

Proposition 4.7. Suppose that” : N — [0, 1] satisfiedim; ,., E9 F = ¢(F). If (&Z1)holds,
thenlimy_... EWNF = ¢(F).

Proof. Assume then that we have a sequeAge< Ny < --- with ny(Ny) < na(Ny) < ---.

Without loss of generality, we may assume that that n;,, andinf a,; > p € (0, 1). That s,
(Nj - an-i-l)/Nj > P, (472)

which in turn impliesN; > (1 + ¢3)Gp, 1. This along with the exponential growth ¢t ),
guarantee that for ary> 0, there exists som& € N ande € [Gy; 41, N;), such that

(1) The firstK digits of Nj coincide with those ofV;.

(2) All other digits of N; are zero.

(3) N;/N; > (1 —e).
In other words, the fact thaV; is at least a certain fixed multiple (depending only(d¥}) ) of
G,+1 Means that the first digits may have some constraints, buhadast (because they cannot

contribute much to the sum). This allows us to “round” daWnto N;, a near number for which
37



the condition of being in the intervads, 1, Nj) is determined only by the firgt’ digits.
Now we repeat the argument from Proposifion 2.3 which alltmseparate the first < n, and
the lastn, digits from the rest. This gives

lim E@ (F(X)|X < Nj> = ¢(F). (4.73)

j—o0
The last step is to recover (l1) fay; from the corresponding expression f&’;. We have
E9 (F(X),X < N;) = E% (F(X),X < Ji@-) + B9y (F(X),Nj <X < Nj) . (4.74)

By condition (3) in the choice on, the absolute value of second summand on the righthand
side is bounded above BN, — N;) /(G2 — Gy 41) < e#+1 This implies

ONj 1 —On;
B (FOIX < ) = B9 (FOOIX < ) :%:g: 0w, @
Thus,
E9 (F(X)|X < N;) — E9 <F(X)|X < Nj)‘ = %0(1) + ewj_]\fﬁ()(l)
_ ENJ»—LCJ%O(D _ o), (476)

the first equality on the second line is from condition (3) e tchoice ofNj, and the second
equality there follows fron{(4.72). TherefofEQ"j (F(X)|X < N;) = c(F)| = O(e), and it then

follows from (4.70) thatim sup; |E"™Ni F(X) — ¢(F)| = €O(1), completing the proof. O
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