Newman's Conjecture in Various Settings

Alan Chang (acsix@math.princeton.edu)

https://web.math.princeton.edu/~acsix/
(attending the University of Chicago in the fall)

SMALL REU 2013 Advisors:

Steven J. Miller, Professor at Williams College Julio Andrade. Postdoc at IHES

New York Number Theory Workshop, CANT 2014 May 28, 2014

What is Newman's conjecture about?

What is Newman's conjecture about?

 Newman's conjecture is related to the Riemann zeta function $\zeta(s)$.

What is Newman's conjecture about?

- Newman's conjecture is related to the Riemann zeta function $\zeta(s)$.
- It is an "almost counter-conjecture" to the Riemann hypothesis!

- Newman's conjecture is related to the Riemann zeta function $\zeta(s)$.
- It is an "almost counter-conjecture" to the Riemann hypothesis!
- We'll look at what happens when we study Newman's conjecture in the function fields setting.

000000000

The Riemann zeta function is initially defined, for Re(s) > 1, by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \left(= \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} \right).$$

Riemann Hypothesis (1859)

If $\zeta(s) = 0$, then either s is a "trivial zero" or $Re(s) = \frac{1}{2}$.

000000000

Define a new function $\Xi(x)$ for $x \in \mathbb{C}$ as follows:

- Let $\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)$ ("completed zeta function").
- Let $\Xi(x) = \xi(\frac{1}{2} + ix)$

000000000

Define a new function $\Xi(x)$ for $x \in \mathbb{C}$ as follows:

- Let $\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)$ ("completed zeta function").
- Let $\Xi(x) = \xi(\frac{1}{2} + ix)$

Facts:

• If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.

Define a new function $\Xi(x)$ for $x \in \mathbb{C}$ as follows:

- Let $\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)$ ("completed zeta function").
- Let $\Xi(x) = \xi(\frac{1}{2} + ix)$

Facts:

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- RH is equivalent to: all the zeros of $\Xi(x)$ are real.

0000000000 Newman's conjecture

Introduction

Pólya's idea (around 1920s):

 $\Xi(x)$

• Step 0: Start with $\Xi(x)$

Pólya's idea (around 1920s):

$$\equiv (x) \longrightarrow \Phi(u)$$

- Step 0: Start with $\Xi(x)$
- Step 1: Take the Fourier transform

$$\Phi(u) = \frac{1}{2\pi} \int_0^\infty \Xi(x) \cos ux \, dx.$$

Pólya's idea (around 1920s):

$$\Xi(x) \xrightarrow{1} \Phi(u) \xrightarrow{2} e^{tu^2}\Phi(u)$$

- Step 0: Start with $\Xi(x)$
- Step 1: Take the Fourier transform

$$\Phi(u) = \frac{1}{2\pi} \int_0^\infty \Xi(x) \cos ux \, dx.$$

Step 2: Multiply by e^{tu²}

Pólya's idea (around 1920s):

$$\Xi(x)$$
 $\xrightarrow{1}$ $\Phi(u)$ $\xrightarrow{2}$ $e^{tu^2}\Phi(u)$ $\xrightarrow{3}$ $\Xi_t(x)$

- Step 0: Start with $\Xi(x)$
- Step 1: Take the Fourier transform

$$\Phi(u) = \frac{1}{2\pi} \int_0^\infty \Xi(x) \cos ux \, dx.$$

- Step 2: Multiply by e^{tu²}
- Step 3: Fourier inversion

$$\Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du.$$

In other words, study a family of functions given by

$$\Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du,$$

with
$$\Xi_0(x) = \Xi(x)$$
.

000000000

In other words, study a family of functions given by

$$\Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du,$$

with
$$\Xi_0(x) = \Xi(x)$$
.

De Bruijn and Newman showed there exists $\Lambda \in \mathbb{R}$ (called the **De Bruijn–Newman constant**) which divides the real line in half:

0000000000

In other words, study a family of functions given by

$$\Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du,$$

with $\Xi_0(x) = \Xi(x)$.

De Bruijn and Newman showed there exists $\Lambda \in \mathbb{R}$ (called the **De Bruijn–Newman constant**) which divides the real line in half:

0000000000 Newman's conjecture

Introduction

Relationship of ∧ **to RH**

Relationship of ∧ **to RH**

 $RH \iff \Xi_0$ has only real zeros

Introduction

Relationship of ∧ **to RH**

RH $\iff \Xi_0$ has only real zeros $\iff \Lambda \le 0$

0000000000 Newman's conjecture

Introduction

Relationship of ∧ to RH

$$RH \iff \Xi_0 \text{ has only real zeros} \iff \Lambda \leq 0$$

Conjecture (Newman)

 $\Lambda > 0$

Relationship of A to RH

 $RH \iff \Xi_0 \text{ has only real zeros} \iff \Lambda \leq 0$

Conjecture (Newman)

 $\Lambda \geq 0$

Newman: "The new conjecture is a quantitative version of the dictum that the Riemann hypothesis, if true, is only barely so."

0000000000 Newman's conjecture

$$\Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du$$

0000000000 Newman's conjecture

Introduction

$$\Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du$$

If we define $F(x, t) = \Xi_t(x)$, then

$$\frac{\partial F}{\partial t} + \frac{\partial^2 F}{\partial x^2} = 0.$$

0000000000

$$\Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du$$

If we define $F(x,t) = \Xi_t(x)$, then

$$\frac{\partial F}{\partial t} + \frac{\partial^2 F}{\partial x^2} = 0.$$

In other words F(x, t) satisfies the **backwards heat equation**.

Introduction

0000000000

An example of something that solves the backwards heat equation:

$$f_t(x) = 10e^{4t}\cos 2x - 2\sqrt{5}e^t\cos x - 1$$

Introduction

000000000

Movement of zeros

$$t = 0$$
: $(f_0(x) = 10\cos 2x - 2\sqrt{5}\cos x - 1)$

Zeros:

$$x_1, x_2 = \pm 0.532$$

 $x_3, x_4 = \pi \pm 0.879$

As we can see, all four zeros of the original function f are real.

0000000000

Movement of zeros

$$t = -0.05$$
:

Zeros:

$$x_1, x_2 = \pm 0.473$$

 $x_3, x_4 = \pi \pm 0.889$

As we move time back, the peaks get smaller.

0000000000

Movement of zeros

$$t = -0.1$$
:

Zeros:

$$x_1, x_2 = \pm 0.393$$

 $x_3, x_4 = \pi \pm 0.900$

As we move time back, the peaks get smaller.

Introduction

0000000000

Movement of zeros

$$t = -0.15$$
:

Zeros:

$$x_1, x_2 = \pm 0.269$$

 $x_3, x_4 = \pi \pm 0.911$

As we move time back, the peaks get smaller.

Introduction

0000000000

Movement of zeros

$$t \approx -0.188565066$$
:

Zeros:

$$x_1, x_2 = 0$$

 $x_3, x_4 = \pi \pm 0.919$

At $t \approx -0.189$, the first two zeros coalesce!

Introduction

0000000000

Movement of zeros

$$t = -0.25$$
:

Zeros:

$$x_1, x_2 = \pm 0.152i$$

 $x_3, x_4 = \pi \pm 0.933$

If we keep moving time back, those zeros "pop off" the real line!

$$f_t(x)$$
 at $t_0 \approx -0.188565066$:

000000000

$$f_t(x)$$
 at $t_0 \approx -0.188565066$:

(RH: $\Lambda \leq 0$, Newman: $\Lambda \geq 0$.)

Lower bound on Λ
-50
-5
-0.39
$-4.4 \cdot 10^{-6}$
$-2.7 \cdot 10^{-9}$
$-1.2 \cdot 10^{-11}$

(RH: $\Lambda < 0$, Newman: $\Lambda > 0$.)

Year	Lower bound on Λ
1988	-50
1991	-5
1992	-0.39
1994	$-4.4 \cdot 10^{-6}$
2000	$-2.7 \cdot 10^{-9}$
2011	$-1.2 \cdot 10^{-11}$

Strategy of Csordas, Smith, Varga (1994): look for "unusually" close pairs of zeros of $\Xi(x)$.

Generalizations of Newman's conjecture

Introduction

Stopple (2013) showed that the exact same setup can be done for quadratic Dirichlet *L*-functions $L(s, \chi_D)$, where *D* is a fundamental discriminant.

Stopple (2013) showed that the exact same setup can be done for quadratic Dirichlet *L*-functions $L(s, \chi_D)$, where *D* is a fundamental discriminant.

Generalized Newman Conjecture: $\Lambda_D \geq 0$ for all D.

Stopple (2013) showed that the exact same setup can be done for quadratic Dirichlet L-functions $L(s, \chi_D)$, where D is a fundamental discriminant.

Generalized Newman Conjecture: $\Lambda_D \geq 0$ for all D.

Stopple investigated weaker conjecture: sup $\Lambda_D \geq 0$.

Stopple (2013) showed that the exact same setup can be done for quadratic Dirichlet *L*-functions $L(s, \chi_D)$, where *D* is a fundamental discriminant.

Generalized Newman Conjecture: $\Lambda_D \geq 0$ for all D.

Stopple investigated weaker conjecture: sup $\Lambda_D \geq 0$.

Stopple found for D = 175990483, we have $-1.13 \cdot 10^{-7} < \Lambda_D$.

Generalizations of Newman's conjecture

Introduction

Possible to generalize these results even more?

For ζ and the *L*-functions Stopple looked at, the completed function satisfies "nicest" symmetry possible:

Possible to generalize these results even more?

For ζ and the *L*-functions Stopple looked at, the completed function satisfies "nicest" symmetry possible:

$$\xi(s,\chi_D) = \xi(1-s,\chi_D)$$

Possible to generalize these results even more?

For ζ and the L-functions Stopple looked at, the completed function satisfies "nicest" symmetry possible:

$$\xi(s,\chi_D) = \xi(1-s,\chi_D)$$

Symmetries that are not good enough:

- $\xi(s, \chi) = \xi(1 s, \overline{\chi})$
- $\xi(s, \chi) = \epsilon \xi(1 s, \chi)$, where $\epsilon \neq 1$.

Looking for *L***-functions**

Generalizations of Newman's conjecture

Introduction

Looking for *L***-functions**

Automorphic *L*-functions!

Looking for *L*-functions

Automorphic *L*-functions!

Function field quadratic *L*-functions!

Function fields

•00000000

Introduction

Let \mathbb{F}_q denote the finite field with q elements.

Let \mathbb{F}_q denote the finite field with q elements. We will need to assume q is odd.

Function fields

•00000000

Overview of function fields

Introduction

Let \mathbb{F}_q denote the finite field with q elements. We will need to assume q is odd.

Let $\mathbb{F}_q[T]$ denote ring of polynomials in T with coefficients in \mathbb{F}_q .

Let \mathbb{F}_q denote the finite field with q elements. We will need to assume q is odd.

Function fields

00000000

Let $\mathbb{F}_q[T]$ denote ring of polynomials in T with coefficients in \mathbb{F}_q .

 $\mathbb{F}_q[T]$ (in "function field" setting) behaves a lot like \mathbb{Z} (in "number field" setting).

L-functions

Introduction

As in number fields, can look at quadratic Dirichlet L-function $L(s,\chi_D)$ for fundamental discriminants $D\in\mathbb{F}_q[T]$.

L-functions

Introduction

As in number fields, can look at quadratic Dirichlet *L*-function $L(s,\chi_D)$ for fundamental discriminants $D\in\mathbb{F}_q[T]$.

Fact: $\xi(s, \chi_D) := q^{gs}L(s, \chi_D)$ satisfies the functional equation $\xi(s, \chi_D) = \xi(1 - s, \chi_D)$. (Here, deg D - 1 = 2g.)

As in number fields, can look at quadratic Dirichlet *L*-function $L(s, \chi_D)$ for fundamental discriminants $D \in \mathbb{F}_q[T]$.

Fact:
$$\xi(s, \chi_D) := q^{gs}L(s, \chi_D)$$
 satisfies the functional equation $\xi(s, \chi_D) = \xi(1 - s, \chi_D)$. (Here, deg $D - 1 = 2g$.)

Bonus fact:

Theorem (RH for curves over a finite field)

If
$$L(s, \chi_D) = 0$$
, then $Re(s) = \frac{1}{2}$.

Introduction

Can define
$$\Xi(x,\chi_D) = \xi\left(\frac{1}{2} + i\frac{x}{\log q},\chi_D\right)$$
.

Introduction

Can define
$$\Xi(x,\chi_D) = \xi\left(\frac{1}{2} + i\frac{x}{\log q},\chi_D\right)$$
.

It has a very nice form:

Can define
$$\Xi(x,\chi_D) = \xi\left(\frac{1}{2} + i\frac{x}{\log q},\chi_D\right)$$
.

It has a very nice form:

$$\Xi(x,\chi_D) = \Phi_0 + \sum_{n=1}^g \Phi_n \cdot (e^{inx} + e^{-inx})$$

$$= \Phi_0 + 2\sum_{n=1}^g \Phi_n \cdot \cos nx$$

for some $\Phi_0, \ldots, \Phi_q \in \mathbb{R}$ (deg D-1=2g).

Introduction

$$\Xi(x,\chi_D) = \Phi_0 + 2\sum_{n=1}^g \Phi_n \cdot \cos nx$$

Can still follow Pólya.

$$\Xi(x,\chi_D) \xrightarrow{1} \Phi_n \xrightarrow{2} e^{tn^2} \Phi_n \xrightarrow{3} \Xi_t(x,\chi_D)$$

Introduction

$$\Xi(x,\chi_D) = \Phi_0 + 2\sum_{n=1}^g \Phi_n \cdot \cos nx$$

Can still follow Pólya.

$$\Xi(x,\chi_D) \xrightarrow{1} \Phi_n \xrightarrow{2} e^{tn^2} \Phi_n \xrightarrow{3} \Xi_t(x,\chi_D)$$

Important! Here we take the Fourier transform on the circle.

$$\Xi(x,\chi_D) = \Phi_0 + 2\sum_{n=1}^g \Phi_n \cdot \cos nx$$

Can still follow Pólya.

$$\Xi(x,\chi_D) \xrightarrow{1} \Phi_n \xrightarrow{2} e^{tn^2} \Phi_n \xrightarrow{3} \Xi_t(x,\chi_D)$$

Important! Here we take the Fourier transform on the circle. We end up with

$$\Xi_t(x,\chi_D) = \Phi_0 + 2\sum_{n=1}^g e^{tn^2}\Phi_n \cdot \cos nx.$$

Our example from the beginning:

$$f_t(x) = 10e^{4t}\cos 2x - 2\sqrt{5}e^t\cos x - 1.$$

Our example from the beginning:

$$f_t(x) = 10e^{4t}\cos 2x - 2\sqrt{5}e^t\cos x - 1.$$

That is actually $\Xi_t(x,\chi_D)$ for

$$D = T^5 + T^4 + T^3 + 2T + 2 \in \mathbb{F}_5[T].$$

Introduction

Function fields

00000000

So for
$$D=T^5+T^4+T^3+2T+2\in \mathbb{F}_5[T],$$

$$\Lambda_D\approx -0.188565066.$$

Introduction

So for
$$D=T^5+T^4+T^3+2T+2\in \mathbb{F}_5[T],$$

$$\Lambda_D\approx -0.188565066.$$

Introduction

Very important: We were able to calculate $\Lambda_D!!$

Introduction

Very important: We were able to calculate $\Lambda_D!!$

In our example, $\Lambda_D \approx -0.188565066 < 0$. Is this surprising? (Recall for ζ : RH: $\Lambda \leq 0$. Newman: $\Lambda > 0$.)

Very important: We were able to calculate $\Lambda_D!!$

In our example, $\Lambda_D \approx -0.188565066 < 0$. Is this surprising? (Recall for ζ : RH: $\Lambda \leq 0$. Newman: $\Lambda > 0$.)

Don't want to conjecture that $\Lambda_D \geq 0$ for all D.

Very important: We were able to calculate $\Lambda_D!!$

In our example, $\Lambda_D \approx -0.188565066 < 0$. Is this surprising? (Recall for ζ : RH: $\Lambda \leq 0$. Newman: $\Lambda > 0$.)

Don't want to conjecture that $\Lambda_D \geq 0$ for all D.

Instead, do what Stopple did: consider an entire "family."

Introduction

Many different kinds of families:

Introduction

Many different kinds of families:

Conjecture (Newman for function fields, *q* **version)**

Keep q, the size of the finite field, fixed. Then

$$\sup_{D\in\mathbb{F}_{\alpha}[T]}\Lambda_{D}\geq0.$$

Introduction

Many different kinds of families:

Conjecture (Newman for function fields, degree version)

Keep d, the degree, fixed. Then

$$\sup_{\deg D=d} \Lambda_D \geq 0.$$

Introduction

If we follow Stopple, we get:

Introduction

If we follow Stopple, we get:

Theorem

Let $D \in F_q[T]$, and let $\gamma_1 < \gamma_2$ be the two smallest zeros of $L(s, \chi_D)$.

Introduction

If we follow Stopple, we get:

Theorem

Let $D \in F_a[T]$, and let $\gamma_1 < \gamma_2$ be the two smallest zeros of $L(s, \chi_D)$. If γ_1 is "unusually small" and γ_2 is "roughly where it is expected to be," then we can get a lower bound on Λ_D .

Introduction

If we follow Stopple, we get:

Theorem

Let $D \in F_q[T]$, and let $\gamma_1 < \gamma_2$ be the two smallest zeros of $L(s, \chi_D)$. If γ_1 is "unusually small" and γ_2 is "roughly where it is expected to be," then we can get a lower bound on Λ_D . The smaller γ_1 is, the better the lower bound.

Introduction

If we follow Stopple, we get:

Theorem

Let $D \in F_q[T]$, and let $\gamma_1 < \gamma_2$ be the two smallest zeros of $L(s, \chi_D)$. If γ_1 is "unusually small" and γ_2 is "roughly where it is expected to be," then we can get a lower bound on Λ_D . The smaller γ_1 is, the better the lower bound.

In other words, low zeros give us good bounds on Λ_D .

Introduction

If we follow Stopple, we get:

Theorem

Let $D \in F_q[T]$, and let $\gamma_1 < \gamma_2$ be the two smallest zeros of $L(s, \chi_D)$. If γ_1 is "unusually small" and γ_2 is "roughly where it is expected to be," then we can get a lower bound on Λ_D . The smaller γ_1 is, the better the lower bound.

In other words, low zeros give us good bounds on Λ_D .

Within a family, we expect low zeros occur, because of connections to random matrix theory.

Here's another family:

Introduction

Conjecture (Newman for function fields, *D* **version)**

Fix $D \in \mathbb{Z}[T]$ squarefree. For each prime p, let D_p be the polynomial in $\mathbb{F}_p[T]$ obtained by reducing D mod p. Then

$$\sup_{\rho} \Lambda_{D_{\rho}} \geq 0.$$

Fix $D \in \mathbb{Z}[T]$ squarefree with deg D = 3.

Fix $D \in \mathbb{Z}[T]$ squarefree with deg D = 3. For each odd prime p, we can reduce D to $D_p \in \mathbb{F}_q[T]$ and get the function

$$\Xi_t(x,\chi_{D_p}) = -a_p(D) + 2\sqrt{p} e^t \cos x.$$

Fix $D \in \mathbb{Z}[T]$ squarefree with deg D = 3. For each odd prime p, we can reduce D to $D_p \in \mathbb{F}_q[T]$ and get the function

$$\Xi_t(x,\chi_{D_p}) = -a_p(D) + 2\sqrt{p} e^t \cos x.$$

Note: $a_p(D)$ is called the **trace of Frobenius** of the elliptic curve $v^2 = D(T)$.

Fix $D \in \mathbb{Z}[T]$ squarefree with deg D = 3. For each odd prime p, we can reduce D to $D_p \in \mathbb{F}_q[T]$ and get the function

Function fields

$$\Xi_t(x,\chi_{D_p}) = -a_p(D) + 2\sqrt{p} e^t \cos x.$$

Note: $a_p(D)$ is called the **trace of Frobenius** of the elliptic curve $v^2 = D(T)$.

Theorem (Exact expression for Λ_{D_0})

$$\Lambda_{D_p} = \log \frac{|a_p(D)|}{2\sqrt{p}}$$

$$\Lambda_{D_p} = \log \frac{|a_p(D)|}{2\sqrt{p}}$$

Hasse showed in the 1930s that $|a_p(D)| < 2\sqrt{p}$.

$$\Lambda_{D_p} = \log \frac{|a_p(D)|}{2\sqrt{p}}$$

Hasse showed in the 1930s that $|a_p(D)| < 2\sqrt{p}$.

What is the distribution of

$$\frac{a_p(D)}{2\sqrt{p}}$$

Easy to show if *D* has complex multiplication, then will have distribution on left.

Let $D \in \mathbb{Z}[T]$ be squarefree and such that the elliptic curve $y^2 = D(T)$ does not have complex multiplication. Then as p varies, the distribution of $\frac{a_p(D)}{2\sqrt{D}}$ is:

Theorem (Barnet-Lamb, Geraghty, Harris, and Taylor, 2011)

Let $D \in \mathbb{Z}[T]$ be squarefree and such that the elliptic curve $y^2 = D(T)$ does not have complex multiplication. Then as p varies, the distribution of $\frac{a_p(D)}{2\sqrt{D}}$ is:

(This is a special case of the Sato-Tate conjecture.)

$$\Lambda_{D_p} = \log \frac{|a_p(D)|}{2\sqrt{p}}$$

Theorem (Newman's conjecture for fixed D, deg D=3)

Let $D \in \mathbb{Z}[T]$ be squarefree with deg D = 3. Then $\sup_{D} \Lambda_{D_0} = 0$.

$$\Lambda_{D_p} = \log \frac{|a_p(D)|}{2\sqrt{p}}$$

Theorem (Newman's conjecture for fixed D, deg D=3)

Let $D \in \mathbb{Z}[T]$ be squarefree with deg D = 3. Then $\sup_{D} \Lambda_{D_D} = 0$.

Proof.

We can find a sequence of primes p_1, p_2, \dots s.t.

$$\lim_{n o \infty} rac{a_{p_n}(D)}{2\sqrt{p_n}} o 1.$$

Things to look at?

- Fix *D* of higher degree? (much harder)
- Study the other versions of Newman's conjecture.

Acknowledgments

Thanks to:

- SMALL, especially my advisors Steven J. Miller and Julio Andrade.
- CUNY and organizers of the CANT 2014 conference.
- NSF. This research was funded by NSF Grant DMS0850577 (SMALL GRANT).

Also, thank you for listening!