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Fibonacci sequence and Zeckendorf’s Theorem

Creating a sequence with bin size 1 and you can’t decompose a
number using more than one addend from adjacent bins.

[1] [2] [3] [5] [8] [13] [21] [34] [55] [89] [144] [233] [377] . . .

Example:
48 = 34 + 13 + 1



The 2 kid family from Kentucky sequence

Creating a sequence with bin size 2 and using the Kentucky Rule
(i.e. you can’t decompose a number using more than one
summand from the same bin or addends from adjacent bins).

[1, 2] [3, 4] [5, 8] [11, 16] [21, 32] [43, 64] [85, 128] [171, 256] . . .

Early patterns we noticed:

I a2n = a2n−1 + a2n−3 = 2n

I a2n+1 = a2n + a2n−3 = a2n−1 + 2a2n−3
I Looking at the OEIS we found this sequence of numbers

counts the number of ways to tile a 3 by (n − 1) rectangle
using only monominoes and dominoes.
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Single Recurrence Relation and Uniqueness of
Decomposition

[1, 2] [3, 4] [5, 8] [11, 16] [21, 32] [43, 64] [85, 128] [171, 256] . . .

am = am−2 + 2am−4

Every whole number has a unique decomposition where the
summands come from the 2 kid family Kentucky sequence.



Counting decompositions with k summands

I Let pn,k = the number of integers that can be decomposed
with k summands in the interval [0, a2n+1).

I Proved pn,k =
(2
1

)k(n−k+1
k

)
using the recursive rule

pn,k = 2pn−2,k−1 + pn−1,k and induction.

I In fact we noticed that:

b n+1
2
c∑

k=0

pn,k = a2n+1



The Distribution of the Number of Summands is Gaussian

I Numerical Evidence:
Take a sample of 100,000 integers from [0, 10600).
Consider the number of summands.

mean = 666.838 (prediction = 666.889)

sd = 12.156 (predicted = 12.176)



Gaussian Distribution “Proof” Using Fibonacci
Polynomials

I (Generating function) F (x , y) =
∑
n,k≥0

pn,kx
nyk .

We can compute F (x , y) using Fibonacci polynomials:
I F0(t) = 0,F1(t) = 1,F2(t) = t, and for n ≥ 3:

Fn(t) = tFn−1(t) + Fn−2(t).
I Known about Fn(t):

I Fn(t) =
n∑

j=0

(
n − j − 1

j

)
tn−2j−1

I

∞∑
n=0

Fn(t)w
n =

w

1− w 2 − wt
.

I Formula for F (x , y) in terms of Fibonacci polynomials:

F (x , y) =
∞∑
n=0

Fn+2( 1√
2y

)(
√

2y)n+1xn



I For n ≥ 3: gn(y) =
n∑

k=0

pn,ky
k = Fn+2(

1√
2y

)(
√

2y)n+1.

I Let Yn = random variable denoting the number of summands
in the unique bin decomposition of an integer chosen
uniformly from [0, a2n+1). The mean of Yn is

µn =
n∑

i=0

iP(Yn = i) =
n∑

i=0

i
pn,i∑n

k=0 pn,k
=

g ′n(1)

gn(1)
.

The variance of Yn is

σ2n =
∞∑
i=0

(i − µn)2P(Yn = i) =
n∑

i=0

i2
pn,i∑n

k=0 pn,k
− µ2n

=

d
dy (yg ′n(y)|y=1

gn(1)
− µ2n.

I To show Gaussian behavior we look at gn(ern)(rn = t/σn) for
some fixed value of t and see what happens as n→∞.
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The Distribution of the Number of Summands is Gaussian

I A more general approach which generalizes to other scenarios.

Let

F (x , y) =
∞∑
n=0

n∗∑
k=0

pn,kx
nyk .

Use recurrence relation pn,k = 2pn−2,k−1 + pn−1,k ,

F (x , y) =
1 + 2xy

1− x − 2x2y
.



The Distribution of the Number of Summands is Gaussian

We’ll need the coefficient of xn: gn(y) =
∑
k≥0

pn,ky
k .

Use partial fractions!

gn(y) =
1

2n+1
√

1 + 8y[
4y(1 +

√
1 + 8y)n − 4y(1−

√
1 + 8y)n

+ (1 +
√

1 + 8y)n+1 − (1−
√

1 + 8y)n+1
]



After this week (related to this work)

I Finish up the Kentucky sequence
I Proof by Stirling’s formula (undergraduate research)
I Continue on the work with gap sizes in decompositions

I Investigate other similar sequences like the Tennessee
sequence

I Generacci Sequences: vary the bin sizes and the restrict the
selections of summands from a span of adjacent bins.



2-D analog

Problem: Describe a process by which one could tile the plane
such that every positive integer has a unique decomposition as a
sum of “non-adjacent” terms in a sequence.

We answered this problem in a countable number of ways!



Regular Tilings

1, 2, 4, 6, 8, 10, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, . . .



Circumscribing Triangles



Circumscribing Squares

By circumscribing regular n-gons to cover the plane we arrive at a
unique decompositions of each positive integer.



Fibonacci Quilt

I We noticed that for n
large, an+1 = an−1 + an−2

I This is a recurrence
relation where the first
coefficient is zero.

I We do not have unique
decomposition of all whole
numbers.



Counting the number of decompositions

d(m) = the number of FQ legal decompositions.

We proved that as m increases, max d(m)→∞

We still want to answer, for m ∈ [0, an), what is the distribution of
d(m)?

We can also ask questions about the different decompositions and
the gaps.



Many avenues for undergraduate research!

Consider other tilings of the plane and develop a procedure under
which every positive integer has a unique decomposition.



How about other 2-D objects?

Consider the same question regarding unique decomposition using:

Sierpinski Triangle Apollonian Gasket Koch Snowflake



But that is not all...

Once procedures are developed which give rise to (unique)
decompositions of positive integers we could ask some of the
following questions:

I What can we say about the sequence of numbers we created?
Namely those used to create the summands.

I What can we say about the distribution of the number of
summands need to represent a positive integer? Is it
Gaussian?

I What about gaps between summands?

One natural extension of all of these problems is to now consider
3-dimensional analog using polyhedra to pack 3-space!



Ideas?
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