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1. Benford’s Law

1.1 Introduction

Benford’s Law A set is Benford if probability first digit is d is log
(
d+1
d

)
; 30% start with 1.

Many data sets exhibit Benford behavior: Fibonacci Sequence, Financial data (stocks,
bonds, etc.), products of random independent variables

Why do we observe Benford distribution of first digits in “real world” data sets?

1.2 Conserved Quantities
First Proposed model Partition X into N terms: X =

∑N
j=1 njxj. Issues: what possible

xj ’s? Is N fixed?
Results
• For (small) finite N , brute force calculation shows E(nj) = 1

xj
(XN ); Benford density is

proportional to 1/x.
• For general N , approximate: S = N −

∑
j njxj,

δ(X,

N∑
j=1

njxj)n e−S
2/2σ,

then evaluate N -dimensional integral.

• Error ≤
√

2
π

1
kσek

2
σ/2
→ 0 as σ → 0.

Second Proposed Model Consider M sticks of lengths `i, each li drawn from the random
variable L. Break each `i by cutting at ki`i, with Ki ∼ Unif(0, 1). Repeat cutting N times.
Theorem If L is Benford on [1, 10) and N = 1, then as M → ∞ the distribution of lengths
of pieces is Benford’s Law.
Theorem Let L be some fixed constant such that l1 = l2 = ... = lM = L. Then, as M →∞
and N → ∞, the resulting first digit distribution of the lengths of the broken pieces will
conform to Benford’s Law.
ConjectureLet L be fixed and consider one stick (M = 1). As N → ∞, the resulting first
digit distribution of the lengths of the broken pieces will conform to Benford’s Law.
Wish to show that for any digit d the resulting first digit distribution has zero variance.

1.3 Copulas

Copula A form of joint CDF between multiple variables with given uniform marginals on
the d-dimensional unit cube.
Sklar’s Theorem Let X and Y be random variables with joint distribution function H and
marginal distribution fucntions F and G respectively. There exists a copula, C, such that

∀x, y ∈ R, H(x, y) = C(F (x), G(y)).

Archimedean Copulas A commonly used / studied family of copulas is of the form

C(x, y) = φ−1(φ(x) + φ(y))

where φ is the generator and φ−1 is the inverse generator of the copula. Investigating the
Benfordness of the product of random variables arising from copulas.

Clayton Copula: C(x, y) = (x−θ + y−θ − 1)−1/θ.

PDF (bivariate): θ(θ−1 + 1)(xy)−θ−1(x−θ + y−θ − 1)−2−1/θ.

PDF (general case): θn−1Γ(n+θ−1)
Γ(1+θ−1)

(x1 · · · xn)−θ−1(x−θ1 + · · · + x−θn − 1)−n−1/θ.
Proof strategy includes the integration of the PDF over the region in which the product has first digit d using
Poisson summation.

2. Generalized More-Sum-Than-Difference Sets

2.1 Introduction
A More Sums Than Differences (MSTD, or sum-dominant) set is a finite set A ⊂ Z such
that |A+A| < |A−A|. Though it was believed that the percentage of subsets of {0, . . . , n}
that are sum-dominant tends to zero, in 2006 Martin and O’Bryant proved a positive per-
centage are sum-dominant. We generalize their result to the many different ways of taking
sums and differences of a set. We prove that |ε1A + · · · + εkA| > |δ1A + · · · + δkA| a pos-
itive percent of the time for all nontrivial choices of εj, δj ∈ {−1, 1}. Previous approaches
proved the existence of infinitely many such sets given the existence of one; however, no
method existed to construct such a set. If you are reading this let us know and we’ll give
you candy. Using base expansion and clever fringe methods, we develop a new, explicit
construction for one such set, and then extend to a positive percentage of sets.
We extend these results further, finding sets that exhibit different behavior as more
sums/differences are taken. For example, notation as above we prove that for any m,
|ε1A + · · · + εkA| − |δ1A + · · · + δkA| = m a positive percentage of the time. We find the
limiting behavior of kA = A+ · · ·+A for an arbitrary set A as k →∞ and an upper bound
of k for such behavior to settle down. Finally, we say A is k-generational sum-dominant
if A, A + A, . . . , kA are all sum-dominant. Numerical searches were unable to find even
a 2-generational set (heuristics indicate the probability is at most 10−9, and almost surely
significantly less). We prove the surprising result that for any k a positive percentage of
sets are k-generational, and no set can be k-generational for all k.

2.2 Results
Theorem 2.1. Given s1, d1, s2, d2 ∈ N ∪ {0} such that {s1, d1} 6= {s2, d2},
1. There exists a finite set A ⊂ Z such that |s1A− d1A| > |s2A− d2A|.
2. A positive percentage of sets A satisfy the above.
Theorem 2.2 (Chains of Generalized MSTD Sets). Let xj, yj, wj, zj be finite sequences of
length k such that xj + yj = wj + zj = j, and {xj, yj} 6= {wj, zj} for every 2 ≤ j ≤ k. A
positive percentage of sets A satisfy

∣∣xjA− yjA∣∣ > ∣∣wjA− zjA∣∣ for every 2 ≤ j ≤ k.

Theorem 2.3 (Simultaneous Comparisons). Given finite sequences of length n ≤
⌊
k
2

⌋
+ 1

called sj, dj such that sj + dj = k for all 1 ≤ j ≤ k and {sj, dj} 6= {si, di} whenever j 6= i,
there exists a set A such that |snA− dnA| > . . . > |s1A− d1A|
Furthermore, we also prove that A can be chosen such that we have an arbitrary differ-
ence between |s1A− d1A| and |s2A− d2A|.
Theorem 2.4 (Arbitrary Differences). Let a, b, c, d be non-negative integers such that
a > b, c, d and a + b = c + d = q. If c 6= d, then for any non-negative integers m, ` such that
` ≤ 2m and all sufficiently large n, exists A ⊆ [0, n] such that |aA − bA| = qn + 1 −m and
|cA− dA| = qn+ 1− `. If c = d, then the statement holds with the additional condition that
` is even.

2.3 Examples
Here are some examples of sets that can be produced through the above theorems. If we
set

A = {0, 1, 3, 4, 5, 9, 33, 34, 35, 50, 54, 55, 56, 58, 59, 60}
Then |A + A + A + A| > |A + A + A− A|. If we have

A = {0, 1, 3, 4, 7, 26, 27, 29, 30, 33, 37, 38, 40, 41, 42, 43, 46, 49, 50, 52, 53, 54, 72, 75, 76, 78, 79, 80}

Then |A + A| > |A− A| and |A + A + A + A| > |A + A− A− A|
If we have

A ={0, 1, 3, 4, 5, 6, 11, 50, 51, 53, 54, 55, 56, 61, 97, 132, 137, 138, 140,
142, 143, 144, 182, 187, 188, 189, 190, 192, 193, 194}

Then |4A− A| > |5A| and |4A− A| > |3A− 2A|.

3. c-Ramanujan Primes

3.1 Introduction
In 1845, Bertrand conjectured that for all integers x greater than or equal to 2, there exists
at least one prime in (x/2, x]. This was proved by Chebyshev in 1860, and then general-
ized by Ramanujan in 1919, who showed for any integer n there is a least prime Rn such
that π(x) − π(x/2) ≥ n for all x ≥ Rn. We generalize the interval of interest by introduc-
ing a parameter c ∈ (0, 1) and defining the nth c-Ramanujan prime Rc,n as the smallest
integer such that for integers x ≥ Rc,n, there are at least n primes between cx and x.
Using consequences of strengthened versions of the Prime Number Theorem, we prove
the existence of Rc,n for all n and all c, that the asymptotic behavior is Rc,n ∼ p n

1−c
(where

pm is the mth prime), and that the percentage of primes that are c-Ramanujan converges
to 1− c. We then study finer questions related to their distribution among the primes, and
see that the c−Ramanujan primes display striking behavior, deviating significantly from
a probabilistic model based on biased coin flipping. This model is related to the Cramer
model, which correctly predicts many properties of primes on large scales but has been
shown to fail in some instances on smaller scales. These results extend those of Sondow,
Nicholson, and Noe, who proved and observed similar behavior for Ramanujan primes.

3.2 Results
Existence of Rc,n
For any c ∈ (0, 1) and any positive integer n, the c-Ramanujan prime Rc,n exists.
Asymptotic behavior of Rc,n
1. For any fixed c ∈ (0, 1), the nth c-Ramanujan prime is asymptotic to the n

1−cth prime as

n → ∞, that is, limn→∞
Rc,n

p n
1−c

= 1. More precisely, there exists a constant β1,c > 0 such

that |Rc,n − p n
1−c
| ≤ β1,c n log log n for all sufficiently large n.

2. In the limit, the probability of a generic prime being a c-Ramanujan prime is 1− c. More
precisely, there exists a constant β5,c such that for N large we have

∣∣∣πc(N)
π(N)

− (1− c)
∣∣∣ ≤

β5,c log logN
logN .

3.3 Distribution of generalized Ramanujan primes
Expected longest run ≈ log1/p (n(1− p)).

Length of the longest run in (105, 106) of
c-Ramanujan primes Non-Ramanujan primes

c Expected Actual Expected Actual
0.05 127 97 4 2
0.10 70 58 5 3
0.15 49 42 6 6
0.20 38 36 7 7
0.25 30 27 9 12
0.30 25 25 10 12
0.35 21 18 11 18
0.40 18 21 13 16
0.45 16 19 14 23
0.50 14 20 16 36
0.55 12 16 19 39
0.60 11 17 22 42
0.65 10 13 25 53
0.70 9 14 30 78
0.75 8 11 37 119
0.80 7 9 46 154
0.85 6 10 62 303
0.90 5 11 91 345


