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Introduction
°

Summary

@ Describe Benford's Law and some Additive Number
Theory.

@ Give examples and applications.

@ Describe open problems.
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Caveats!

@ A math test indicating fraud is not proof of fraud:
unlikely events, alternate reasons.
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d base B is logg (2+1); base 10 about 30% are 1s.
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Benford’s Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of

d base B is logg (2+1); base 10 about 30% are 1s.

@ Not all data sets satisfy Benford’s Law.
o Long street [1,L]: L =199 versus L = 999.
o Oscillates between 1/9 and 5/9 with first digit 1.
© Many streets of different sizes: close to Benford.
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Examples

@ recurrence relations

e special functions (such as n!)

e iterates of power, exponential, rational maps
e products of random variables

e L-functions, characteristic polynomials

o iterates of the 3x + 1 map

e differences of order statistics

e hydrology and financial data

e many hierarchical Bayesian models
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Applications

e analyzing round-off errors

e determining the optimal way to store
numbers

e detecting tax and image fraud, and data
integrity
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°
Mantissas

Mantissa: x = Myo(x) - 10%, k integer.

Mio(X) = M1o(X) if and only if x and X have the
same leading digits.

Key observation: log,q(X) = log;o(x) mod 1 if
and only if x and X have the same leading digits.
Thus often study y = log;, X.
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Equidistribution and Benford’s Law

{yn}22, is equidistributed modulo 1 if probability
Yonmod 1 € [a,b] tends to b — a:

#{n <N :y,mod1e€[ab]} R

N b—a.
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Equidistribution and Benford’s Law

{yn}o, is equidistributed modulo 1 if probability
Yonmod 1 € [a,b] tends to b — a:
#{n <N :y,mod1e€[ab]}

N —

b—a.

e Thm: 5 £ Q, ng is equidistributed mod 1.

o Examples: log,, 2,109, (”—2\/3) Z Q.
Proof: if rational: 2 = 10P/9,
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Equidistribution and Benford’s Law

{yn}o, is equidistributed modulo 1 if probability
Yonmod 1 € [a,b] tends to b — a:
#{n <N :y,mod1e€[ab]}

N —

b—a.

e Thm: 5 £ Q, ng is equidistributed mod 1.

o Examples: log,, 2,109, (”—2\/3) Z Q.
Proof: if rational; 2 = 10°/4,
Thus 29 = 10P or 29-P = 5P impossible.
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Example of Equidistribution:  n./7 mod 1
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Example of Equidistribution:  n./7 mod 1

08

0.6

04

0.2

02 04 06 08 1

ny/m mod 1 for n < 100




General Theory
oce

Example of Equidistribution:  n./7 mod 1
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Example of Equidistribution:  n./7 mod 1
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Fundamental Equivalence

Data set {x; } is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.




General Theory
®00

Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

0 log2/log 10




General Theory
®00

Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.
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Examples

e 2" is Benford base 10 as log,,2 ¢ Q.
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Examples

e Fibonacci numbers are Benford base 10.
ant1 = a@n + ap-1-
Guessa,=r": "l ="y lorr2=r 41,
Roots r = (1 £+/5)/2.
General solution: a, = cyr{ + carJ.

oAt _l1+\/§n_l1—\/§n

Blnet.an_\@(z) \@(2).

e Most linear recurrence relations Benford:
Oany1 =28, —an_1
otakeag=a; =1orayg=0,a; =1.
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Digits of 2"

First 60 values of 2" (only displaying 30)

1 1024 1048576 | digit # Obs Prob BenfProb
2 2048 2097152 | 1 18 .300 301
4 4096 4194304 2 12 .200 176
8 8192 8388608 | 3 6 100 125
16 16384 16777216 | 4 6 .100 .097
32 32768 33554432 | 5 6 100 .079
64 65536 67108864 | 6 4 .067 .067
128 131072 134217728 7 2 .033 .058
256 262144 268435456 | 8 5 .083 .051
512 524288 536870912 | 9 1 .017 .046
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°

Logarithms and Benford’s Law

y? values for a", 1 < n < N (5% 15.5).
N | x°(7) x°(e) x°(x)
100 | 0.72 0.30 46.65
200 0.24 0.30 8.58
400 | 0.14 0.10 10.55
500 | 0.08 0.07 2.69
700 | 0.19 0.04 0.05
800 | 0.04 0.03 6.19
900 | 0.09 0.09 1.71
1000 | 0.02 0.06 2.90
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General Theory

Logarithms and Benford’s Law: Base 10

log(?) vs N for 7" (red) and e" (blue),
ne{l,...,N}. Note 71"® ~ 1.0028 - 108, (5%,
log(x?) =~ 2.74).
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud

eLTHToR

WASHINOTON, D 208

i ST e R
P it o1
T g

Friog mists 2 e g o e e £ 6

Gty e -

& Civetac L Arach
i e




Applications
Detecting Fraud

Bank Fraud

o Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.




Applications
Detecting Fraud

Bank Fraud

o Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.

o Write-off limit of $5,000. Officer had friends
applying for credit cards, ran up balances
just under $5,000 then he would write the
debts off.
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Introduction

Summary

e History of the problem.
e Examples.
e Main results.

e Describe open problems.
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Statement

A finite set of integers, |A| its size. Form
o Sumset: A+A={a +a:a,a €A}
o Difference set: A — A = {a; —a; : g, & € A}.
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Statement

A finite set of integers, |A| its size. Form
o Sumset: A+A={a +a:a,a €A}
o Difference set: A — A = {a; —a; : g, & € A}.

Definition

We say A is difference dominated if

|A—A| > |A+ A| balanced if |A—A| = |A+A|
and sum dominated (or an MSTD set) if
A+Al > |A-A|
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Questions

Expect generic set to be difference dominated:
e addition is commutative, subtraction isn’t:

e Generic pair (x,y) gives 1 sum, 2
differences.

AQ




Introduction
°

Questions

Expect generic set to be difference dominated:
e addition is commutative, subtraction isn’t:

e Generic pair (x,y) gives 1 sum, 2
differences.

o Do there exist sum-dominated sets?

e If yes, how many?
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Examples

e Conway: {0,2,3,4,7,11,12 14}.
o Marica (1969): {0,1,2,4,7,8,12, 14, 15}.

e Freiman and Pigarev (1973): {0,1,2,4,5,
9,12,13, 14,16,17, 21, 24,25, 26, 28, 29}.

@ Computer search: subsets of {1,..., 100}: {2, 6, 7,9, 13, 14,
16, 18, 19, 22, 23, 25, 30, 31, 33, 37, 39, 41, 42, 45 46, 47, 48,
49, 51, 52, 54, 57, 58, 59, 61, 64, 65, 66, 67, 68, 72, 73, 74, 75,

81, 83, 84, 87, 88, 91, 93, 94, 95, 98, 100}.

@ Recently infinite families (Hegarty, Nathanson).

D)
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Key observation

If A is an arithmetic progression,
A+ A|=|A-A|.
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doesn’t change |A + A|, |A —A|.
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Infinite Families

Key observation

If A is an arithmetic progression,
A+ A|=|A-A|.

Proof:

e WLOG,A={0,1,...,n}asA— oA+
doesn’t change |A + A|, |A —A|.

o A+A={0,....2n},A—A={—n,...,n},
both of size 2n + 1. O
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Previous Constructions

Most constructions perturb an arithmetic
progression.

Example:
e MSTD set A=1{0,2,3,4,7,11,12, 14}.

o A=1{0,2}U{3,7,11} U (14 — {0,2}) U {4}.
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New Construction: Notation

o [a,b]={k e€Z:a<k <Db}.

o Ais a Py-set if its sumset and its difference
set contain all but the first and last n possible
elements (and of course it may or may not
contain some of these fringe elements).
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New Construction

Theorem (Miller-Scheinerman '09)

@ A=LURbeaP,, MSTD setwhere L C [1,n], R C [n+1,2n],
and 1,2n € A.

@ Fix ak > n and let m be arbitrary.

@ M any subset of [n + k + 1,n + k + m] st no run of more than k
missing elements. Assume n+k +1 ¢ M.

@ SetA(M)=LUO; UM UO,UR’, where O1 = [n+1,n+K],
O,=[n+k+m-+1n+2k+m],and R’ =R + 2k + m.

Then A(M) is an MSTD set, and 3C > 0 st the percentage of subsets
of {0, ...,r} that are in this family (and thus are MSTD sets) is at
least C /r*.
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Generalization: Miller-Orosz-Scheinerman

Can we find A so that:
letA+ -+ enAl > [A+--+&A], 6,6 € {-1,1}.
Consider the generalized sumset
fi.,(A) = A+A+- - +A-A-A—-.. - A

where there are j; pluses and j, minuses, and setj = j; + .

Let A C [1,k] with 1,k, € A. We say A is a P}-set if any f,, ;,(A)
contains all but the first n and last n possible elements. (Note that a
P2-set is the same as what we called a P,-set earlier.)
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Generalization: Miller-Orosz-Scheinerman

Conjecture (MOS)

For any fj, j, and fj; ;, there exists a finite set of integers A which is
(1) a Pl-set; (2) A C [1,2n] and 1,2n € A; and (3)
Ifi, i (A > [y, 5 (AL

@ Problem is finding an A with [f;, j,(A)| > [fi; ;(A)[; once we find
such a set, we can mirror previous construction and construct
infinitely many.

@ Theorem: Conjecture true for j € {2, 3}.
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Proof of Generalization

@ Needed inputforj =3: A={1, 2,5, 6, 16, 19, 22, 26, 32, 34,
35, 39, 43, 48, 49, 50}. Took elements in {2,...,49} in A with
probability 1/3; it took about 300000 sets to find one satisfying
our conditions. To be a P3.-set we need to have
A+A+AD[N+3,6n—n]=[28,125]and A+ A—AD
[-n+2,3n — 1] =[-23,74]. Have A+ A+ A = [3,150] (all
possible elements), while A + A — A = [—48,99]\{—34} (i.e., all
but -34). Thus A is a P3.-set satisfying |[A+A+A| > [A+A—A|,
and have the needed example.

@ Could also take A = {1,2,3,4,8,12, 18, 22,23, 25, 26, 29, 30,
31,32,34,45, 46,49,50}.

R
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Probability Review

X random variable with density f(x) means
o f(x)>0;
o [T fx)=1;

@ Prob(X € [a,b]) = [P f(x)dx.

Key quantities:
@ Expected (Average) Value: E[X] = [ xf(x)dx.
@ Variance: 02 = [(x — E[X])?f(x)dx.

R
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Binomial model

Binomial model, parameter p(n)
Each k € {0,...,n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

@ LetAe{0,...,n}. Most elements in {0,...,2n} in A4+ Aandin
{=n,...,n}inA—A.

@ E[[A+A|]=2n—11,E[[A—A]]=2n—7.

RA
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Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the binomial model with
constant parameter p (thus k € A with probability p). At least
ksp:p2V 1 subsets are sum dominated.
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Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the binomial model with
constant parameter p (thus k € A with probability p). At least
ksp:p2V 1 subsets are sum dominated.

@ Ksp.1/2 > 1077, expect about 103,
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Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the binomial model with
constant parameter p (thus k € A with probability p). At least
ksp:p2V 1 subsets are sum dominated.

@ Ksp.1/2 > 1077, expect about 103,

@ Proof (p = 1/2): Generically |A| = ¥ + O(V/N).
o about & — MKl ways write k € A+ A.
o about ¥ — Kl ways write k € A — A.
< Almost all numbers that can be in A + A are.

< Win by controlling fringes.

¢
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Notation

@ X ~f(N) means Vep, ez >0, 3N, ¢, StYN > N

€1,€2

Prob (X ¢ [(1 — en)f(N), (1 + e))f(N)]) < ea.
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Notation

@ X ~f(N) means Vep, ez >0, 3N, ¢, StYN > N

€1,€2

Prob (X ¢ [(1 — en)f(N), (1 + e))f(N)]) < ea.

S=|A+A,D=|A—A|
SC=2N+1-8,D°=2N+1-D.

RO




Results
L]

Notation

@ X ~f(N) means Vep, ez >0, 3N, ¢, StYN > N

€1,€2

Prob (X ¢ [(1 — en)f(N), (1 + e))f(N)]) < ea.

S=|A+A,D=|A—A|
SC=2N+1-8,D°=2N+1-D.

New model: Binomial with parameter p(N):

® 1/N = o(p(N)) and p(N) = o(L);
@ Prob(k € A) = p(N).

Conjecture (Martin-O’Bryant)

As N — oo, Ais a.s. difference dominated.

Z0)
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Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 2&—=1=x),
@ p(N) = o(N"/2): D ~ 25 ~ (Np(N))%;

@ p(N)=cN"¥2: D ~g(c®)N,S ~g (%) N
(c—0,D/S—2;c— o0, D/S — 1);
@ N~1/2 = o(p(N)): S~ 2D° ~ 4/p(N)>?.

Can generalize to binary linear forms, still have critical threshold.

2SS
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Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).
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Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t iid binary random variables, Y = 3" | t;, then

YA>0: Prob(|Y —E[Y]| > \/)\n> < 2072,
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Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t iid binary random variables, Y = 3" | t;, then

YA>0: Prob(|Y —E[Y]| > \/)\n> < 2072,

Need to allow dependent random variables.
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Results

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t iid binary random variables, Y = 3" | t;, then
YA>0: Prob(|Y —E[Y]| > \/)\n> < 2072,

Need to allow dependent random variables.
Sketch of proofs: X € {S,D,S¢, D}.

© Prove E[X] behaves asymptotically as claimed;

@ Prove X is strongly concentrated about mean.

y
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Transition Behavior

L L L L
1 2 3 4

Figure: Plot of |A — A|/|A + A| for ten A chosen uniformly from
{1,...,n} (n = 10,000 on the left and 100, 000 on the right) with

probability p(n) = ¢/+/n versus g(c?)/g(c?/2).
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Transition Behavior

20

05f

L L L L
01 02 03 04

Figure: Plot of |A — A|/|A + A| for ten A chosen uniformly from

{1,...,n} with probability p(n) = c/+/n (n = 1,000, 000) versus
g(c?)/g(c?/2) (second plot is just a zoom in of the first).

y
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Transition Behavior (cont)

To further investigate the transition behavior, we fixed two values of ¢
and studied the ratio for various n. We chose ¢ = .01 (where the ratio
should converge to 1.99997) and ¢ = .1 (where the ratio should
converge to 1.99667); the results are displayed in Table 1.

Results

n | Observed Ratio (c = .01) | Observed Ratio (c = .1)
100,000 1.123 1.873
1,000,000 1.614 1.956
10,000,000 1.871 1.984
100,000,000 1.960 1.993

Table: observed ratios of A — A[/|A + A] for A chosen with the binomial model p(n) = cn—/2 for

ke{o,..., n — 1} forc = .01and.1l;asn — oo the ratios should respectively converge to 1.99997 and

1.99667. Each observed data point is the average from 10 randomly chosen A’s, except the last one forc = .1

which was for just one randomly chosen A.

O




Results

Open Questions

@ Is there a set A such that A and A + A are MSTD sets?

@ Do a positive percentage of sets A have A + A
sum-dominant?

@ For linear combinations of sums / differences, is each
ordering possible? IE,
IA+A+A+A>|A+A-A-A>A+A+A-A]?

@ Can one give explicit constructions of large families of such
sets?

Qe



Results

Open Questions

@ Is there a set A such that A and A + A are MSTD sets?

@ Do a positive percentage of sets A have A + A
sum-dominant? YES!

@ For linear combinations of sums / differences, is each
ordering possible? IE,
IA+A+A+A>|A+A-A-A>A+A+A-A]?

@ Can one give explicit constructions of large families of such
sets?
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