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Summary

Describe Benford’s Law and some Additive Number
Theory.

Give examples and applications.

Describe open problems.
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Caveats!

A math test indicating fraud is not proof of fraud:
unlikely events, alternate reasons.
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Caveats!

A math test indicating fraud is not proof of fraud:
unlikely events, alternate reasons.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.
⋄ Oscillates between 1/9 and 5/9 with first digit 1.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.
⋄ Oscillates between 1/9 and 5/9 with first digit 1.
⋄ Many streets of different sizes: close to Benford.
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Examples

recurrence relations

special functions (such as n!)

iterates of power, exponential, rational maps

products of random variables

L-functions, characteristic polynomials

iterates of the 3x + 1 map

differences of order statistics

hydrology and financial data

many hierarchical Bayesian models
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Applications

analyzing round-off errors

determining the optimal way to store
numbers

detecting tax and image fraud, and data
integrity

11



Introduction General Theory Applications Introduction Examples Results

General Theory
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Mantissas

Mantissa: x = M10(x) · 10k , k integer.

M10(x) = M10(x̃) if and only if x and x̃ have the
same leading digits.

Key observation: log10(x) = log10(x̃) mod 1 if
and only if x and x̃ have the same leading digits.
Thus often study y = log10 x .
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

14



Introduction General Theory Applications Introduction Examples Results

Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.

Proof: if rational: 2 = 10p/q.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.

Proof: if rational: 2 = 10p/q.
Thus 2q = 10p or 2q−p = 5p, impossible.
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

2.0

n
√
π mod 1 for n ≤ 10
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 100
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 1000
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 10, 000
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1log 2 � log 10
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1

1 102

log 2 � log 10
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Examples

2n is Benford base 10 as log10 2 6∈ Q.
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Examples

Fibonacci numbers are Benford base 10.
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.

Most linear recurrence relations Benford:

33



Introduction General Theory Applications Introduction Examples Results

Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.

Most linear recurrence relations Benford:
⋄ an+1 = 2an
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.

Most linear recurrence relations Benford:
⋄ an+1 = 2an − an−1
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Examples

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.

Most linear recurrence relations Benford:
⋄ an+1 = 2an − an−1

⋄ take a0 = a1 = 1 or a0 = 0, a1 = 1.
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Digits of 2n

First 60 values of 2n (only displaying 30)
1 1024 1048576 digit # Obs Prob Benf Prob
2 2048 2097152 1 18 .300 .301
4 4096 4194304 2 12 .200 .176
8 8192 8388608 3 6 .100 .125

16 16384 16777216 4 6 .100 .097
32 32768 33554432 5 6 .100 .079
64 65536 67108864 6 4 .067 .067

128 131072 134217728 7 2 .033 .058
256 262144 268435456 8 5 .083 .051
512 524288 536870912 9 1 .017 .046
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Logarithms and Benford’s Law

χ2 values for αn, 1 ≤ n ≤ N (5% 15.5).
N χ2(γ) χ2(e) χ2(π)

100 0.72 0.30 46.65
200 0.24 0.30 8.58
400 0.14 0.10 10.55
500 0.08 0.07 2.69
700 0.19 0.04 0.05
800 0.04 0.03 6.19
900 0.09 0.09 1.71

1000 0.02 0.06 2.90
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Logarithms and Benford’s Law: Base 10

log(χ2) vs N for πn (red) and en (blue),
n ∈ {1, . . . ,N}. Note π175 ≈ 1.0028 · 1087, (5%,
log(χ2) ≈ 2.74).
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Applications
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.

Write-off limit of $5,000. Officer had friends
applying for credit cards, ran up balances
just under $5,000 then he would write the
debts off.
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Introduction
More Sums Than Differences
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Summary

History of the problem.

Examples.

Main results.

Describe open problems.
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : ai , aj ∈ A}.

Difference set: A − A = {ai − aj : aj , aj ∈ A}.
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : ai , aj ∈ A}.

Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Definition
We say A is difference dominated if
|A − A| > |A + A|, balanced if |A − A| = |A + A|
and sum dominated (or an MSTD set) if
|A + A| > |A − A|.
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Questions

Expect generic set to be difference dominated:

addition is commutative, subtraction isn’t:

Generic pair (x , y) gives 1 sum, 2
differences.
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Questions

Expect generic set to be difference dominated:

addition is commutative, subtraction isn’t:

Generic pair (x , y) gives 1 sum, 2
differences.

Questions
Do there exist sum-dominated sets?

If yes, how many?
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Examples
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Examples

Conway: {0, 2, 3, 4, 7, 11, 12, 14}.

Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.

Freiman and Pigarev (1973): {0, 1, 2, 4, 5,
9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29}.

Computer search: subsets of {1, . . . , 100}: {2, 6, 7, 9, 13, 14,
16, 18, 19, 22, 23, 25, 30, 31, 33, 37, 39, 41, 42, 45, 46, 47, 48,
49, 51, 52, 54, 57, 58, 59, 61, 64, 65, 66, 67, 68, 72, 73, 74, 75,
81, 83, 84, 87, 88, 91, 93, 94, 95, 98, 100}.

Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation
If A is an arithmetic progression,
|A + A| = |A − A|.
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Infinite Families

Key observation
If A is an arithmetic progression,
|A + A| = |A − A|.

Proof:

WLOG, A = {0, 1, . . . , n} as A → αA + β

doesn’t change |A + A|, |A − A|.
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Infinite Families

Key observation
If A is an arithmetic progression,
|A + A| = |A − A|.

Proof:

WLOG, A = {0, 1, . . . , n} as A → αA + β

doesn’t change |A + A|, |A − A|.

A + A = {0, . . . , 2n}, A − A = {−n, . . . , n},
both of size 2n + 1. �
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Previous Constructions

Most constructions perturb an arithmetic
progression.

Example:

MSTD set A = {0, 2, 3, 4, 7, 11, 12, 14}.

A = {0, 2} ∪ {3, 7, 11} ∪ (14 − {0, 2}) ∪ {4}.
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New Construction: Notation

[a, b] = {k ∈ Z : a ≤ k ≤ b}.

A is a Pn-set if its sumset and its difference
set contain all but the first and last n possible
elements (and of course it may or may not
contain some of these fringe elements).
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New Construction

Theorem (Miller-Scheinerman ’09)

A = L ∪ R be a Pn, MSTD set where L ⊂ [1, n], R ⊂ [n + 1, 2n],
and 1, 2n ∈ A.

Fix a k ≥ n and let m be arbitrary.

M any subset of [n + k + 1, n + k + m] st no run of more than k
missing elements. Assume n + k + 1 6∈ M.

Set A(M) = L ∪ O1 ∪ M ∪ O2 ∪ R′, where O1 = [n + 1, n + k ],
O2 = [n + k + m + 1, n + 2k + m], and R′ = R + 2k + m.

Then A(M) is an MSTD set, and ∃C > 0 st the percentage of subsets
of {0, . . . , r} that are in this family (and thus are MSTD sets) is at
least C/r4.
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Generalization: Miller-Orosz-Scheinerman

Can we find A so that:

|ǫ1A + · · ·+ ǫnA| > |ǫ̃1A + · · ·+ ǫ̃nA| , ǫi , ǫ̃i ∈ {−1, 1}.

Consider the generalized sumset

fj1, j2(A) = A + A + · · ·+ A − A − A − · · · − A,

where there are j1 pluses and j2 minuses, and set j = j1 + j2.

P j
n-set

Let A ⊂ [1, k ] with 1, k ,∈ A. We say A is a P j
n-set if any fj1, j2(A)

contains all but the first n and last n possible elements. (Note that a
P2

n -set is the same as what we called a Pn-set earlier.)
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Generalization: Miller-Orosz-Scheinerman

Conjecture (MOS)

For any fj1, j2 and fj′1, j′2
, there exists a finite set of integers A which is

(1) a P j
n-set; (2) A ⊂ [1, 2n] and 1, 2n ∈ A; and (3)

|fj1, j2(A)| > |fj′1, j′2
(A)|.

Problem is finding an A with |fj1, j2(A)| > |fj′1, j′2
(A)|; once we find

such a set, we can mirror previous construction and construct
infinitely many.

Theorem: Conjecture true for j ∈ {2, 3}.
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Proof of Generalization

Needed input for j = 3: A = {1, 2, 5, 6, 16, 19, 22, 26, 32, 34,
35, 39, 43, 48, 49, 50}. Took elements in {2, . . . , 49} in A with
probability 1/3; it took about 300000 sets to find one satisfying
our conditions. To be a P3

25-set we need to have
A + A + A ⊃ [n + 3, 6n − n] = [28, 125] and A + A − A ⊃
[−n + 2, 3n − 1] = [−23, 74]. Have A + A + A = [3, 150] (all
possible elements), while A + A − A = [−48, 99]\{−34} (i.e., all
but -34). Thus A is a P3

25-set satisfying |A +A +A| > |A+ A− A|,
and have the needed example.

Could also take A = {1, 2, 3, 4, 8, 12, 18, 22, 23, 25, 26, 29, 30,
31, 32, 34, 45, 46, 49, 50}.
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Results
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Probability Review

X random variable with density f (x) means

f (x) ≥ 0;
∫∞

−∞
f (x) = 1;

Prob(X ∈ [a, b]) =
∫ b

a f (x)dx .

Key quantities:

Expected (Average) Value: E[X ] =
∫

xf (x)dx .

Variance: σ2 =
∫
(x − E[X ])2f (x)dx .
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Binomial model

Binomial model, parameter p(n)

Each k ∈ {0, . . . , n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

Let A ∈ {0, . . . , n}. Most elements in {0, . . . , 2n} in A + A and in
{−n, . . . , n} in A − A.

E[|A + A|] = 2n − 11, E[|A − A|] = 2n − 7.
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Martin and O’Bryant ’06

Theorem

Let A be chosen from {0, . . . ,N} according to the binomial model with
constant parameter p (thus k ∈ A with probability p). At least
kSD;p2N+1 subsets are sum dominated.
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Martin and O’Bryant ’06

Theorem

Let A be chosen from {0, . . . ,N} according to the binomial model with
constant parameter p (thus k ∈ A with probability p). At least
kSD;p2N+1 subsets are sum dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.
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Martin and O’Bryant ’06

Theorem

Let A be chosen from {0, . . . ,N} according to the binomial model with
constant parameter p (thus k ∈ A with probability p). At least
kSD;p2N+1 subsets are sum dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.

Proof (p = 1/2): Generically |A| = N
2 + O(

√
N).

⋄ about N
4 − |N−k |

4 ways write k ∈ A + A.

⋄ about N
4 − |k |

4 ways write k ∈ A − A.
⋄ Almost all numbers that can be in A ± A are.
⋄ Win by controlling fringes.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.

New model: Binomial with parameter p(N):

1/N = o(p(N)) and p(N) = o(1);

Prob(k ∈ A) = p(N).

Conjecture (Martin-O’Bryant)

As N → ∞, A is a.s. difference dominated.
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Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 2 e−x−(1−x)
x .

p(N) = o(N−1/2): D ∼ 2S ∼ (Np(N))2;

p(N) = cN−1/2: D ∼ g(c2)N, S ∼ g
(

c2

2

)
N

(c → 0, D/S → 2; c → ∞, D/S → 1);

N−1/2 = o(p(N)): Sc ∼ 2Dc ∼ 4/p(N)2.

Can generalize to binary linear forms, still have critical threshold.
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Inputs

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).
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Inputs

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): ti iid binary random variables, Y =
∑n

i=1 ti , then

∀λ > 0 : Prob
(
|Y − E[Y ]| ≥

√
λn

)
≤ 2e−λ/2.
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Inputs

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): ti iid binary random variables, Y =
∑n

i=1 ti , then

∀λ > 0 : Prob
(
|Y − E[Y ]| ≥

√
λn

)
≤ 2e−λ/2.

Need to allow dependent random variables.
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Inputs

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): ti iid binary random variables, Y =
∑n

i=1 ti , then

∀λ > 0 : Prob
(
|Y − E[Y ]| ≥

√
λn

)
≤ 2e−λ/2.

Need to allow dependent random variables.
Sketch of proofs: X ∈ {S,D,Sc,Dc}.

1 Prove E[X ] behaves asymptotically as claimed;

2 Prove X is strongly concentrated about mean.
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Transition Behavior
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Figure: Plot of |A − A|/|A + A| for ten A chosen uniformly from
{1, . . . , n} (n = 10, 000 on the left and 100, 000 on the right) with
probability p(n) = c/

√
n versus g(c2)/g(c2/2).
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Transition Behavior
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Figure: Plot of |A − A|/|A + A| for ten A chosen uniformly from
{1, . . . , n} with probability p(n) = c/

√
n (n = 1, 000, 000) versus

g(c2)/g(c2/2) (second plot is just a zoom in of the first).

77



Introduction General Theory Applications Introduction Examples Results

Transition Behavior (cont)

To further investigate the transition behavior, we fixed two values of c
and studied the ratio for various n. We chose c = .01 (where the ratio
should converge to 1.99997) and c = .1 (where the ratio should
converge to 1.99667); the results are displayed in Table 1.

n Observed Ratio (c = .01) Observed Ratio (c = .1)
100,000 1.123 1.873

1,000,000 1.614 1.956
10,000,000 1.871 1.984

100,000,000 1.960 1.993

Table: Observed ratios of |A − A|/|A + A| for A chosen with the binomial model p(n) = cn−1/2 for

k ∈ {0, . . . , n − 1} for c = .01 and .1; as n → ∞ the ratios should respectively converge to 1.99997 and

1.99667. Each observed data point is the average from 10 randomly chosen A’s, except the last one for c = .1

which was for just one randomly chosen A.

78



Introduction General Theory Applications Introduction Examples Results

Open Questions

Is there a set A such that A and A + A are MSTD sets?

Do a positive percentage of sets A have A + A
sum-dominant?

For linear combinations of sums / differences, is each
ordering possible? IE,
|A + A + A + A| > |A + A − A − A| > |A + A + A − A|?

Can one give explicit constructions of large families of such
sets?
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Open Questions

Is there a set A such that A and A + A are MSTD sets?

Do a positive percentage of sets A have A + A
sum-dominant? YES!

For linear combinations of sums / differences, is each
ordering possible? IE,
|A + A + A + A| > |A + A − A − A| > |A + A + A − A|?

Can one give explicit constructions of large families of such
sets?
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