Introduction

Biases: From Benford's Law to Additive Number Theory via the IRS and Physics

Steven J Miller (Williams College)

sjm1@williams.edu
http://www.williams.edu/Mathematics/sjmiller/

Williams College, June 22, 2011

Summary

- Describe Benford's Law and some Additive Number Theory.
- Give examples and applications.
- Describe open problems.

Caveats!

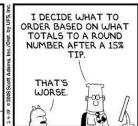
 A math test indicating fraud is not proof of fraud: unlikely events, alternate reasons. Introduction

00000

• A math test indicating fraud is not proof of fraud: unlikely events, alternate reasons.







Results

Benford's Law: Newcomb (1881), Benford (1938)

Statement

Introduction

For many data sets, probability of observing a first digit of d base B is $\log_B\left(\frac{d+1}{d}\right)$; base 10 about 30% are 1s.

Introduction

For many data sets, probability of observing a first digit of d base B is $\log_B(\frac{d+1}{d})$; base 10 about 30% are 1s.

Not all data sets satisfy Benford's Law.

Introduction

For many data sets, probability of observing a first digit of d base B is $\log_B(\frac{d+1}{d})$; base 10 about 30% are 1s.

- Not all data sets satisfy Benford's Law.
 - ♦ Long street [1, L]: L = 199 versus L = 999.

Introduction

For many data sets, probability of observing a first digit of d base B is $\log_B(\frac{d+1}{d})$; base 10 about 30% are 1s.

- Not all data sets satisfy Benford's Law.
 - ♦ Long street [1, L]: L = 199 versus L = 999.
 - ♦ Oscillates between 1/9 and 5/9 with first digit 1.

Introduction

For many data sets, probability of observing a first digit of d base B is $\log_B(\frac{d+1}{d})$; base 10 about 30% are 1s.

- Not all data sets satisfy Benford's Law.
 - ♦ Long street [1, L]: L = 199 versus L = 999.
 - ♦ Oscillates between 1/9 and 5/9 with first digit 1.
 - Many streets of different sizes: close to Benford.

Introduction

- recurrence relations
- special functions (such as n!)
- iterates of power, exponential, rational maps
- products of random variables
- L-functions, characteristic polynomials
- iterates of the 3x + 1 map
- differences of order statistics
- hydrology and financial data
- many hierarchical Bayesian models

Applications

Introduction

- analyzing round-off errors
- determining the optimal way to store numbers

 detecting tax and image fraud, and data integrity

General Theory

Introduction

Mantissa: $x = M_{10}(x) \cdot 10^k$, k integer.

 $M_{10}(x) = M_{10}(\tilde{x})$ if and only if x and \tilde{x} have the same leading digits.

Key observation: $\log_{10}(x) = \log_{10}(\widetilde{x}) \mod 1$ if and only if x and \widetilde{x} have the same leading digits. Thus often study $y = \log_{10} x$.

Equidistribution

Introduction

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a$$

Equidistribution

Introduction

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a,b]$ tends to b-a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$

• Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.

Equidistribution and Benford's Law

Equidistribution

Introduction

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$

- Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.
- Examples: $\log_{10} 2$, $\log_{10} \left(\frac{1+\sqrt{5}}{2} \right) \notin \mathbb{Q}$.

Equidistribution

Introduction

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a,b]$ tends to b-a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$

- Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.
- Examples: $\log_{10} 2$, $\log_{10} \left(\frac{1+\sqrt{5}}{2}\right) \notin \mathbb{Q}$. *Proof:* if rational: $2 = 10^{p/q}$.

Equidistribution and Benford's Law

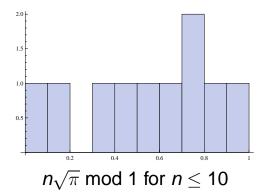
Equidistribution

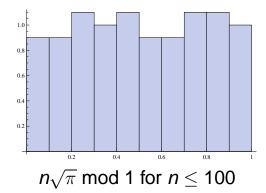
Introduction

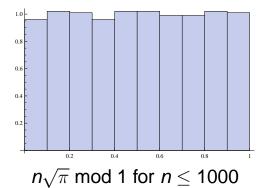
 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

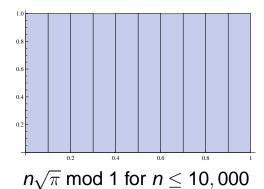
$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$

- Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.
- Examples: $\log_{10} 2$, $\log_{10} \left(\frac{1+\sqrt{5}}{2} \right) \notin \mathbb{Q}$. *Proof:* if rational: $2 = 10^{p/q}$ Thus $2^q = 10^p$ or $2^{q-p} = 5^p$, impossible.









Introduction

Logarithms and Benford's Law

Introduction

Fundamental Equivalence

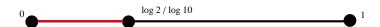
Data set $\{x_i\}$ is Benford base B if $\{y_i\}$ is equidistributed mod 1, where $y_i = \log_B x_i$.

Logarithms and Benford's Law

Introduction

Fundamental Equivalence

Data set $\{x_i\}$ is Benford base B if $\{y_i\}$ is equidistributed mod 1, where $y_i = \log_B x_i$.

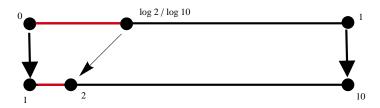


Logarithms and Benford's Law

Introduction

Fundamental Equivalence

Data set $\{x_i\}$ is Benford base B if $\{y_i\}$ is equidistributed mod 1, where $y_i = \log_B x_i$.



• 2^n is Benford base 10 as $\log_{10} 2 \notin \mathbb{Q}$.

• Fibonacci numbers are Benford base 10.

Introduction

• Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Introduction

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = r^n$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Introduction

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}.$$

Guess $a_n = r^n$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.
Roots $r = (1 \pm \sqrt{5})/2$.

Introduction

• Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = r^n$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution:
$$a_n = c_1 r_1^n + c_2 r_2^n$$
.

Introduction

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = r^n$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution:
$$a_n = c_1 r_1^n + c_2 r_2^n$$
.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

Introduction

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess $a_n = r^n$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution: $a_n = c_1 r_1^n + c_2 r_2^n$.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

Introduction

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess $a_n = r^n$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution: $a_n = c_1 r_1^n + c_2 r_2^n$.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

$$\diamond a_{n+1} = 2a_n$$

Introduction

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess $a_n = r^n$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution: $a_n = c_1 r_1^n + c_2 r_2^n$.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

$$\diamond a_{n+1} = 2a_n - a_{n-1}$$

Introduction

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = r^n$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution:
$$a_n = c_1 r_1^n + c_2 r_2^n$$
.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

$$\diamond a_{n+1} = 2a_n - a_{n-1}$$

$$\diamond$$
 take $a_0 = a_1 = 1$ or $a_0 = 0$, $a_1 = 1$.

Digits of 2^n

First 60 values of 2^n (only displaying 30)

1	1024	1048576	digit	#	Obs Prob	Benf Prob
2	2048	2097152	1	18	.300	.301
4	4096	4194304	2	12	.200	.176
8	8192	8388608	3	6	.100	.125
16	16384	16777216	4	6	.100	.097
32	32768	33554432	5	6	.100	.079
64	65536	67108864	6	4	.067	.067
128	131072	134217728	7	2	.033	.058
256	262144	268435456	8	5	.083	.051
512	524288	536870912	9	1	.017	.046

Logarithms and Benford's Law

Introduction

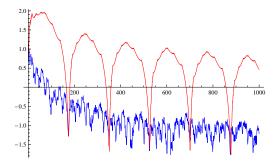
 χ^2 values for α^n , $1 \le n \le N$ (5% 15.5).

Ν	$\chi^2(\gamma)$	$\chi^2(e)$	$\chi^2(\pi)$
100	0.72	0.30	46.65
200	0.24	0.30	8.58
400	0.14	0.10	10.55
500	0.08	0.07	2.69
700	0.19	0.04	0.05
800	0.04	0.03	6.19
900	0.09	0.09	1.71
1000	0.02	0.06	2.90

38

Logarithms and Benford's Law: Base 10

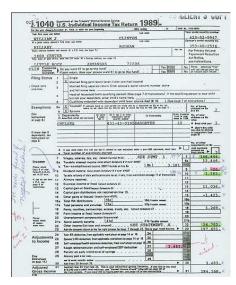
 $\log(\chi^2)$ vs N for π^n (red) and e^n (blue), $n \in \{1, ..., N\}$. Note $\pi^{175} \approx 1.0028 \cdot 10^{87}$, (5%, $\log(\chi^2) \approx 2.74$).



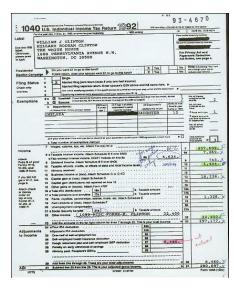
Introduction

Applications

Applications for the IRS: Detecting Fraud



Applications for the IRS: Detecting Fraud



Detecting Fraud

Bank Fraud

 Audit of a bank revealed huge spike of numbers starting with 48 and 49, most due to one person.

Detecting Fraud

Bank Fraud

- Audit of a bank revealed huge spike of numbers starting with 48 and 49, most due to one person.
- Write-off limit of \$5,000. Officer had friends applying for credit cards, ran up balances just under \$5,000 then he would write the debts off.

Introduction More Sums Than Differences

Summary

- History of the problem.
- Examples.
- Main results.

Describe open problems.

Statement

Introduction

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_i : a_i, a_i \in A\}.$
- Difference set: $A A = \{a_i a_i : a_i, a_i \in A\}.$

Statement

Introduction

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_i : a_i, a_i \in A\}$.
- Difference set: $A A = \{a_i a_i : a_i, a_i \in A\}.$

Definition

We say A is difference dominated if |A-A|>|A+A|, balanced if |A-A|=|A+A|and sum dominated (or an MSTD set) if |A + A| > |A - A|.

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

- Do there exist sum-dominated sets?
- If yes, how many?

Examples

Introduction

• Conway: {0, 2, 3, 4, 7, 11, 12, 14}.

Applications

- Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.
- Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29}.
- Computer search: subsets of {1, ..., 100}: {2, 6, 7, 9, 13, 14, 16, 18, 19, 22, 23, 25, 30, 31, 33, 37, 39, 41, 42, 45, 46, 47, 48, 49, 51, 52, 54, 57, 58, 59, 61, 64, 65, 66, 67, 68, 72, 73, 74, 75, 81, 83, 84, 87, 88, 91, 93, 94, 95, 98, 100}.
- Recently infinite families (Hegarty, Nathanson).

Infinite Families

Introduction

Key observation

If A is an arithmetic progression,

$$|A + A| = |A - A|$$
.

Infinite Families

Introduction

Key observation

If A is an arithmetic progression,

$$|A + A| = |A - A|.$$

Proof:

• WLOG, $A = \{0, 1, \dots, n\}$ as $A \rightarrow \alpha A + \beta$ doesn't change |A + A|, |A - A|.

Infinite Families

Introduction

Kev observation

If A is an arithmetic progression,

$$|A + A| = |A - A|.$$

Proof:

- WLOG, $A = \{0, 1, ..., n\}$ as $A \rightarrow \alpha A + \beta$ doesn't change |A + A|, |A - A|.
- $A + A = \{0, \ldots, 2n\}, A A = \{-n, \ldots, n\},$ both of size 2n + 1.

Previous Constructions

Introduction

Most constructions perturb an arithmetic progression.

Example:

- MSTD set $A = \{0, 2, 3, 4, 7, 11, 12, 14\}.$
- $A = \{0,2\} \cup \{3,7,11\} \cup (14 \{0,2\}) \cup \{4\}.$

New Construction: Notation

Introduction

- $[a, b] = \{k \in \mathbb{Z} : a < k < b\}.$
- A is a P_n-set if its sumset and its difference set contain all but the first and last n possible elements (and of course it may or may not contain some of these fringe elements).

New Construction

Introduction

Theorem (Miller-Scheinerman '09)

- $A = L \cup R$ be a P_n , MSTD set where $L \subset [1, n]$, $R \subset [n + 1, 2n]$, and $1, 2n \in A$.
- Fix a $k \ge n$ and let m be arbitrary.
- M any subset of [n+k+1, n+k+m] st no run of more than k missing elements. Assume $n+k+1 \notin M$.
- Set $A(M) = L \cup O_1 \cup M \cup O_2 \cup R'$, where $O_1 = [n+1, n+k]$, $O_2 = [n+k+m+1, n+2k+m]$, and R' = R+2k+m.

Then A(M) is an MSTD set, and $\exists C > 0$ st the percentage of subsets of $\{0, ..., r\}$ that are in this family (and thus are MSTD sets) is at least C/r^4 .

Generalization: Miller-Orosz-Scheinerman

Can we find A so that:

$$|\epsilon_1 A + \cdots + \epsilon_n A| > |\widetilde{\epsilon}_1 A + \cdots + \widetilde{\epsilon}_n A|, \quad \epsilon_i, \widetilde{\epsilon}_i \in \{-1, 1\}.$$

Consider the generalized sumset

$$f_{j_1, j_2}(A) = A + A + \cdots + A - A - A - \cdots - A,$$

where there are j_1 pluses and j_2 minuses, and set $j = j_1 + j_2$.

P_n^J -set

Introduction

Let $A \subset [1, k]$ with $1, k \in A$. We say A is a P_n^j -set if any $f_{h, h}(A)$ contains all but the first *n* and last *n* possible elements. (Note that a P_n^2 -set is the same as what we called a P_n -set earlier.)

Generalization: Miller-Orosz-Scheinerman

Conjecture (MOS)

Introduction

For any f_{j_1, j_2} and $f_{j'_1, j'_2}$, there exists a finite set of integers A which is (1) a P_n^j -set; (2) $A \subset [1, 2n]$ and $1, 2n \in A$; and (3) $|f_{j_1, j_2}(A)| > |f_{j'_1, j'_2}(A)|.$

- Problem is finding an A with $|f_{j_1, j_2}(A)| > |f_{j'_1, j'_2}(A)|$; once we find such a set, we can mirror previous construction and construct infinitely many.
- Theorem: Conjecture true for $i \in \{2, 3\}$.

Introduction

35, 39, 43, 48, 49, 50}. Took elements in $\{2, \ldots, 49\}$ in A with probability 1/3; it took about 300000 sets to find one satisfying our conditions. To be a P_{25}^3 -set we need to have $A + A + A \supset [n + 3, 6n - n] = [28, 125]$ and $A + A - A \supset$ [-n+2,3n-1]=[-23,74]. Have A+A+A=[3,150] (all possible elements), while $A + A - A = [-48, 99] \setminus \{-34\}$ (i.e., all but -34). Thus A is a P_{25}^3 -set satisfying |A+A+A| > |A+A-A|, and have the needed example.

31, 32, 34, 45, 46, 49, 50}.

Results

Probability Review

Introduction

X random variable with density f(x) means

- $f(x) \geq 0$;
- Prob $(X \in [a, b]) = \int_a^b f(x) dx$.

Key quantities:

- Expected (Average) Value: $\mathbb{E}[X] = \int xf(x)dx$.
- Variance: $\sigma^2 = \int (x \mathbb{E}[X])^2 f(x) dx$.

Binomial model

Introduction

Binomial model, parameter p(n)

Each $k \in \{0, ..., n\}$ is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

- Let $A \in \{0, ..., n\}$. Most elements in $\{0, ..., 2n\}$ in A + A and in $\{-n,\ldots,n\}$ in A-A.
- \bullet $\mathbb{E}[|A + A|] = 2n 11, \mathbb{E}[|A A|] = 2n 7.$

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, \dots, N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\text{SD}:p}2^{N+1}$ subsets are sum dominated.

Martin and O'Bryant '06

Theorem

Introduction

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\text{SD} \cdot n} 2^{N+1}$ subsets are sum dominated.

• $k_{SD:1/2} \ge 10^{-7}$, expect about 10^{-3} .

Martin and O'Bryant '06

Theorem

Introduction

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least k_{SD} n^{2N+1} subsets are sum dominated.

- $k_{SD:1/2} > 10^{-7}$, expect about 10^{-3} .
- Proof (p = 1/2): Generically $|A| = \frac{N}{2} + O(\sqrt{N})$.
 - \diamond about $\frac{N}{4} \frac{|N-k|}{4}$ ways write $k \in A + A$.
 - \diamond about $\frac{N}{4} \frac{|k|}{4}$ ways write $k \in A A$.
 - \diamond Almost all numbers that can be in $A \pm A$ are.
 - Win by controlling fringes.

Notation

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \geq N_{\epsilon_1, \epsilon_2}$

Prob
$$(X \notin [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2$$
.

Notation

Introduction

$$\bullet \ \, X \sim \textit{f(N)} \text{ means } \forall \epsilon_1, \epsilon_2 > 0 \text{, } \exists \textit{N}_{\epsilon_1, \epsilon_2} \text{ st } \forall \textit{N} \geq \textit{N}_{\epsilon_1, \epsilon_2}$$

Prob
$$(X \notin [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2$$
.

$$\begin{array}{l} \bullet \ \ \mathcal{S} = |A+A|, \ \mathcal{D} = |A-A|, \\ \mathcal{S}^c = 2N+1-\mathcal{S}, \ \mathcal{D}^c = 2N+1-\mathcal{D}. \end{array}$$

Notation

Introduction

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \geq N_{\epsilon_1, \epsilon_2}$

Prob
$$(X \notin [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2$$
.

•
$$S = |A + A|, D = |A - A|,$$

 $S^{c} = 2N + 1 - S, D^{c} = 2N + 1 - D.$

New model: Binomial with parameter p(N):

- 1/N = o(p(N)) and p(N) = o(1);
- \bullet Prob $(k \in A) = p(N)$.

Conjecture (Martin-O'Bryant)

As $N \to \infty$, A is a.s. difference dominated.

Main Result

Introduction

Theorem (Hegarty-Miller)

$$p(N)$$
 as above, $g(x) = 2\frac{e^{-x} - (1-x)}{x}$.

•
$$p(N) = o(N^{-1/2})$$
: $\mathcal{D} \sim 2S \sim (Np(N))^2$;

•
$$p(N) = cN^{-1/2}$$
: $\mathcal{D} \sim g(c^2)N$, $\mathcal{S} \sim g\left(\frac{c^2}{2}\right)N$
($c \to 0$, $\mathcal{D}/\mathcal{S} \to 2$; $c \to \infty$, $\mathcal{D}/\mathcal{S} \to 1$);

•
$$N^{-1/2} = o(p(N))$$
: $S^c \sim 2D^c \sim 4/p(N)^2$.

Can generalize to binary linear forms, still have critical threshold.

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Introduction

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > 0: \ \text{Prob} \left(|\, Y - \mathbb{E}[\, Y]| \geq \sqrt{\lambda n} \right) \ \leq \ 2 e^{-\lambda/2}.$$

Introduction

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > 0: \ \text{Prob} \left(| \, Y - \mathbb{E}[\, Y] | \geq \sqrt{\lambda n} \right) \ \leq \ 2 e^{-\lambda/2}.$$

Need to allow dependent random variables.

Introduction

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > 0: \ \text{Prob} \left(|Y - \mathbb{E}[Y]| \geq \sqrt{\lambda n} \right) \ \leq \ 2 e^{-\lambda/2}.$$

Need to allow dependent random variables. Sketch of proofs: $\mathcal{X} \in \{\mathcal{S}, \mathcal{D}, \mathcal{S}^c, \mathcal{D}^c\}$.

- Prove E[X] behaves asymptotically as claimed:
- Prove \mathcal{X} is strongly concentrated about mean.

Transition Behavior

Introduction

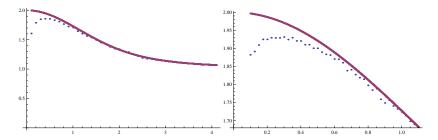


Figure: Plot of |A - A|/|A + A| for ten A chosen uniformly from $\{1, \ldots, n\}$ (n = 10,000 on the left and 100,000 on the right) with probability $p(n) = c/\sqrt{n}$ versus $g(c^2)/g(c^2/2)$.

Transition Behavior

Introduction

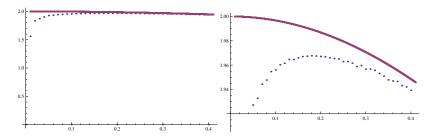


Figure: Plot of |A-A|/|A+A| for ten A chosen uniformly from $\{1,\ldots,n\}$ with probability $p(n)=c/\sqrt{n}$ (n=1,000,000) versus $g(c^2)/g(c^2/2)$ (second plot is just a zoom in of the first).

Transition Behavior (cont)

Introduction

To further investigate the transition behavior, we fixed two values of c and studied the ratio for various n. We chose c = .01 (where the ratio should converge to 1.99997) and c = .1 (where the ratio should converge to 1.99667); the results are displayed in Table 1.

$n \parallel \text{Observed Ratio } (c = .01)$		Observed Ratio ($c = .1$)	
100,000	1.123	1.873	
1,000,000	1.614	1.956	
10,000,000	1.871	1.984	
100,000,000	1.960	1.993	

Table: Observed ratios of |A-A|/|A+A| for A chosen with the binomial model $p(n)=cn^{-1/2}$ for $k\in\{0,\ldots,n-1\}$ for c=.01 and .1; as $n\to\infty$ the ratios should respectively converge to 1.99997 and 1.99667. Each observed data point is the average from 10 randomly chosen A's, except the last one for c=.1 which was for just one randomly chosen A.

Open Questions

Introduction

- Is there a set A such that A and A + A are MSTD sets?
- Do a positive percentage of sets A have A + A sum-dominant?
- For linear combinations of sums / differences, is each ordering possible? IE,

$$|A + A + A + A| > |A + A - A - A| > |A + A + A - A|$$
?

 Can one give explicit constructions of large families of such sets?

Open Questions

Introduction

- Is there a set A such that A and A + A are MSTD sets?
- Do a positive percentage of sets A have A + A sum-dominant? YES!
- For linear combinations of sums / differences, is each ordering possible? IE,
 |A + A + A + A| > |A + A A A| > |A + A + A A|?
- Can one give explicit constructions of large families of such sets?