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Benford’s Law

Definition (Benford’s Law)

A data set is said to satisfy Benford’s Law base B (where B > 1) if the
probability of observing a value with first digit d is logB

(
d+1
d

)
.

For example, when B = 10 (figure from Wikipedia):
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Strong Benford

Definition (Significand, Mantissa)

For x > 0, the significand of x base B is SB(x) ∈ [1,B) such that

x = SB(x) · Bk

for some integer k .

The mantissa of x base B is

MB(x) = logB(SB(x)) = logB(x) (mod 1).

Definition (Strong Benford)

A data set {xn} is strong Benford base B if {MB(xn)} is distributed
uniformly in [0, 1]. In other words, if

P(MB(xn) ∈ [a, b]) = b − a

for all [a, b] ⊆ [0, 1].
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Basic Stick Breaking Model

Start with a stick of length L. Choose a random point on the stick to
break it in two, and repeat the process on each new stick obtained.

Figure 1: Illustration of stick breaking
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Motivation from Physics

This process and its variations may be of interest to nuclear physicists for
modelling particle decay ([2]).

Figure 2: Random Stick Breaking Shares Similarities with Nuclear Fission

Figure source: https://www.thoughtco.com/nuclear-fission-definition-and-examples-4065372
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Previous Results: Unrestricted Continuous Breaking

Theorem ([3])

Fix some distribution D on (0, 1) satisfying the Mellin transform
conditiona.

Start with a stick of length L, and break it in two with ratio sampled from
D. If we repeat this on both fragments for N levels, then the final
collection of stick lengths converges to strong Benford as N → ∞.

aPrecisely, this means that

lim
n→∞

∞∑
ℓ=−∞

ℓ ̸=0

n∏
m=1

MfD

(
1− 2πiℓ

logB

)
= 0.
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Previous Results: Discrete One-Side Breaking

Theorem ([3])

Start with a stick of integer length L. Choose an integer X ∈ {1, · · · , L}
uniformly, and break off a fragment of length X . Repeat this process on
the remaining stick L− X, until no more such breaking can be done. The
final collection converges to strong Benford as L → ∞.

Figure 3: Illustration of discrete one-side breaking
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Our Generalization: Discrete Breaking with Stopping Set

What if we break on both sides with extra stopping conditions?

More precisely:

Define S ⊆ Z+ called the stopping set. Assume 1 ∈ S.

Declare a stick “dead” if its length falls into S and do not break it
further.

Continue until all sticks are dead.

Question

Which sets S would lead to strong Benford behavior as L → ∞?
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Result 1: Stop at Evens

Theorem (F.-Miller-S.-Verga, 2023)

Start with a stick of odd integer length L. Let the stopping set be
S = {1} ∪ {2m : m ∈ Z+}. Then the distribution of lengths of all dead
sticks at the end approaches strong Benfordness as L → ∞.

Question

Can we generalize this to other sets defined by residue classes mod n?
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Simulation Results: Stop At Odds, Many Trials

Figure 4: Histogram for M10(X ), L ≈ 101000, R = 1000 1

1R is the number of trials run with the same starting length L. The figure depicts the
aggregated distribution of ending sticks from these trials.
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Simulation Results: n = 3, stop at 1 residue class

Figure 5: Histogram for M10(X ), L ≈ 8 · 1011, R = 1000
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Simulation Results: n = 3, stop at 2 residue classes

Figure 6: Histogram for M10(X ), L ≈ 4 · 10502, R = 1000
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Simulation Results: n = 4, stop at 2 residue classes

Figure 7: Histogram for M10(X ), L ≈ 4 · 10502, R = 1000
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Result 2: Stop at Half of the Residues

After lots of trials up to n = 10...

Theorem (F.-Miller-S.-Verga, 2023)

Fix an even modulus n ≥ 2 and a subset S ⊂ {0, . . . , n − 1} of size n/2.
Let the stopping set be

S := {1} ∪ {m ∈ Z+ : m = qn + r , r ∈ S , q ∈ Z}.

If we start with R identical sticks of positive integer length L /∈ S, then
the collection of ending stick lengths converges to strong Benford behavior
given that R > (log L)3 as L → ∞.
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Idea of Proof

1 Approximate the discrete process with a continuous analogue.

2 Show that the continuous analogue results in strong Benford
behavior. (Easier!) [Key Input]

3 Deduce that the discrete process also results in strong Benford
behavior by showing they are “close” enough. [Key Lemma]

Our contribution:

1 Generalize and adapt the “continuous approximation” strategy

2 Prove the Key Input

3 Give a new proof of the Key Lemma
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Key Input: Continuous Fragmentation with Stopping Ratio

The continuous analogue is as follows.

Start from R active sticks of length L > 0.

Each new stick dies with probability 1/2. We allow the dying of sticks
to be non-independent!

Repeat until all sticks die.

Theorem (F.-Miller-S.-Verga, 2023)

The above process ends in finitely many levels with probability 1, and the
collection of ending stick lengths almost surely converges to strong
Benford behavior as R → ∞.
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When |S | < n/2: Non-Benford!

Theorem (F.-Miller-S.-Verga, 2023)

If |S | < n/2, then as R → ∞ and L → ∞, the collection of mantissas of
ending stick lengths does not converge to any continuous distribution on
[0, 1]. In particular, it does not converge to strong Benford behavior.
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Future Work: |S | > n/2?

Conjecture

When |S | > n/2, the result does not converge to strong Benford.

Figure 8: Stop at 8 Residue Classes Mod 12, L = 82 · 1012000,R = 1000
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Future Work: General Number of Parts?

In fact, we have a more general version of the Key Input.

Theorem (F.-Miller-S.-Verga, 2023)

Fix some k ≥ 2. Consider the continuous breaking process in which we
start from R sticks of length L, break each stick into k pieces, and let a
new stick die with probability 1− 1/k. The process ends in finitely many
levels with probability 1, and the collection of ending stick lengths almost
surely converges to strong Benford behavior as R → ∞.
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Future Work: General Number of Parts?

Conjecture

Fix k ≥ 2. If we break each active stick into k pieces and stop at
(k − 1)n/k residue classes modulo n, where n is a multiple of k , then the
result converges to strong Benford.
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