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Introduction
.

Summary

@ Review Benford’s Law.
@ Discuss examples and applications.
@ Sketch proofs.

@ Describe open problems.
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Notation

@ Logarithms: logg x =y means x = BY.
o Example: log,, 100 = 2 as 100 = 10°.
o logg(uv) = logg u + logg v.
¢ 10g9,,(100 - 1000) = log,,(100) + log,,(1000).
@ Set Theory:
o Q = rational numbers = {p/q : p, g integers}.
© X € S means x belongs to S.
ola,b] = {x:a<x <b}.
@ Modulo 1:
© Any X can be written as integer + fraction.
© X mod 1 means just the fractional part.
o Example: m mod 1 is about .14159.
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Benford’s Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of
d base B is logg (2+1); base 10 about 30% are 1s.

@ Not all data sets satisfy Benford’s Law.
o Long street [1,L]: L = 199 versus L = 999.
o Oscillates between 1/9 and 5/9 with first digit 1.
© Many streets of different sizes: close to Benford.
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Examples

@ recurrence relations

e special functions (such as n!)

e iterates of power, exponential, rational maps
e products of random variables

e L-functions, characteristic polynomials

o iterates of the 3x + 1 map

e differences of order statistics

e hydrology and financial data

e many hierarchical Bayesian models
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Applications

e analyzing round-off errors

e determining the optimal way to store
numbers

e detecting tax and image fraud, and data
integrity
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°
Mantissas

Mantissa: x = Myo(x) - 10%, k integer.

Mio(X) = M1o(X) if and only if x and X have the
same leading digits.

Key observation: log,q(X) = log;o(x) mod 1 if
and only if x and X have the same leading digits.
Thus often study y = log;, X.
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Equidistribution and Benford’s Law

{yn}o , is equidistributed modulo 1 if probability
Yomod 1 € [a,b] tends to b — a:
#{n <N :y,mod1e€[ab]} n
N

b—a.

o Thm: 5 £ Q, ng is equidistributed mod 1.

o Examples: log,, 2,109, (”—2\/3) Z Q.
Proof: if rational; 2 = 10°/4,
Thus 29 = 10P or 29-P = 5P, impossible.
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Example of Equidistribution:  n. /7 mod 1
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Denseness

A sequence {z,}>°; of numbers in [0,1] is
dense if for any interval [a, b] there are infinitely
many z, in [a, b].

e Dirichlet’'s Box (or Pigeonhole) Principle:
If n + 1 objects are placed in n boxes, at
least one box has two objects.

e Denseness of na:
Thm: If o ¢ Q then z, = ha mod 1 is dense.
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Proof na mod 1 denseif o ¢ Q

e Enough to show in [0, b] infinitely often for
any b.

e Choose any integer Q > 1/b.

e Q bins: [0, 5], [%,%}, [%,Q].

o Q + 1 objects:
{amod1,2amodl,...,(Q+1)amod 1}.

e Two in same bin, say g« mod 1 and
g2ae mod 1.

o Exists integer p with 0 < gza — g1 — p < 5.

e Get (g2 —g1)amod 1 € [0, b].
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Logarithms and Benford’s Law
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Data set {x; } is Benford base B if {y;} is
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

Proof:
o X = Mg(x) - B¥ for some k ¢ Z.
o FDB(X) =diffd < MB(X) <d+ 1
e loggd <y <logg(d + 1),y =logg x mod 1.
o If Y ~ Unif(0, 1) then above probability is
|OgB (d+1)_
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Examples

e Fibonacci numbers are Benford base 10.
ant1 = an + ap-1-
Guessa,=n":r"l =" r"lorr2=r 41,
Roots r = (1 £+/5)/2.
General solution: a, = cyr{ + carJ.

oAt _l1+\/§n_l1—\/§n

Blnet.an_\@(Z) \@(2).

e Most linear recurrence relations Benford:
Oany1 =28, —an_1
otakeag=a; =1o0orayg=0,a; =1.
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Digits of 2"

First 60 values of 2" (only displaying 30)

1 1024 1048576 | digit # Obs Prob BenfProb
2 2048 2097152 | 1 18 .300 301
4 4096 4194304 2 12 .200 176
8 8192 8388608 | 3 6 100 125
16 16384 16777216 | 4 6 .100 .097
32 32768 33554432 | 5 6 100 .079
64 65536 67108864 | 6 4 .067 .067
128 131072 134217728 7 2 .033 .058
256 262144 268435456 | 8 5 .083 .051
512 524288 536870912 | 9 1 .017 .046
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Data Analysis

o y>-Tests: Test if theory describes data
o Expected probability: pg = log,, (¢).
¢ Expect about Npg will have first digit d.
o Observe Obs(d) with first digit d.

Z (Obs(d)—Npg)®
d= 1 Npg '
o Smaller Y2, more likely correct model.

o Will study ", e", =",
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Logarithms and Benford’s Law

2 values for a", 1 < n < N (5% 15.5).
N | x°(v) x°(e) x*(n)
100 | 0.72 0.30 46.65
200 0.24 0.30 8.58
400 | 0.14 0.10 10.55
500 | 0.08 0.07 2.69
700 0.19 0.04 0.05
800 | 0.04 0.03 6.19
900 | 0.09 0.09 1.71
1000 | 0.02 0.06 2.90

DR




Theory of Benford's Law

Logarithms and Benford’s Law: Base 10

log(?) vs N for 7" (red) and e" (blue),
ne{l,...,N}. Note 71" ~ 1.0028 - 108, (5%,
log(x?) =~ 2.74).
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Logarithms and Benford’s Law: Base 20

log(?) vs N for 7" (red) and e" (blue),
ne{l,...,N}. Note €3 ~ 20.0855, (5%,
log(x?) ~ 2.74).
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Stock Market

Milestone Date | Effective Rate from last milestone
108.35 | Jan 12, 1906
500.24 | Mar 12, 1956 3.0%
1003.16 | Nov 14, 1972 4.2%
2002.25 Jan 8, 1987 4.9%
3004.46 | Apr 17,1991 9.5%
4003.33 | Feb 23, 1995 7.4%
5023.55 | Nov 21, 1995 30.6%
6010.00 | Oct 14, 1996 20.0%
7022.44 | Feb 13, 1997 46.6%
8038.88 | Jul 16, 1997 32.3%
9033.23 Apr 6, 1998 16.1%
10006.78 | Mar 29, 1999 10.5%
11209.84 | Jul 16, 1999 38.0%
12011.73 | Oct 19, 2006 1.0%
13089.89 | Apr 25, 2007 16.7%
14000.41 | Jul 19, 2007 28.9%

GO
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud

Exh Check Fraud in Arizona

[
The table lists the checks that a manager in the office of the
Arizona State Treasurer wrote to divert funds for his own use
| The vendors to whom the checks were issued were fictitious.
| Date of Check Amount _
October 9, 1992 $ 1.927.48
| + 27,902.31
[ October 14, 1992 B86,241.90
[ 72,117 .46
81.321.75
‘ 97.473.96
October 19, 1992 93,249.11
89,658.17
‘ 87.,776.89

92,105.83
79,949.16
| 87,602.93
‘ 96,879.27
91,806 47
84,991 .67
90,831.83
| 93,766.67
[ 88,338.72
‘ 94,639.49
[ 83,709.28
| 96,412.21
‘ 88,432.86

L 71,552.16

| % 1,878,687.58
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Applications for the IRS: Detecting Fraud (cont)

@ Embezzler started small and then increased dollar
amounts.

@ Most amounts below $100,000 (critical threshold for
data requiring additional scrutiny).

@ Over 90% had first digit of 7, 8 or 9.

¢




Applications

Detecting Fraud

Bank Fraud

@ Audit of a bank revealed huge spike of numbers
starting with 48 and 49, most due to one person.

@ Write-off limit of $5,000. Officer had friends applying
for credit cards, ran up balances just under $5,000
then he would write the debts off.

RE




Applications

Detecting Fraud

Enron

@ Benford's Law detected manipulation of revenue
numbers.

@ Results showed a tendency towards round Earnings
Per Share (0.10, 0.20, etc.).
Consistent with a small but noticeable increase in
earnings management in 2002.

AR
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Data Integrity: Stream Flow Statistics: 130 years, 457,440  records
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Election Fraud: Iran 2009

Numerous protests and complaints over Iran’s 2009
elections.
Lot of analysis done; data is moderately suspicious.
Tests done include

@ First and second leading digits;

@ Last two digits (should almost be uniform);

@ Last two digits differing by at least 2.

Warning: do enough tests, even if nothing is wrong will
find a suspicious result, but when all tests are on the
boundary....

¢
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Benford Good Processes J
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@ Feller, Pinkham (often exact processes)

Z0)




Benford Good
000

Poisson Summation and Benford’s Law: Definitions

@ Feller, Pinkham (often exact processes)
@ data Yt g = logg YT (discrete/continuous):

P(A) — T”_rgo #{n EAT: n<T}

2SS
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Poisson Summation and Benford’s Law: Definitions

@ Feller, Pinkham (often exact processes)
@ data Yt g = logg YT (discrete/continuous):

A:n<T
P(A) - Tlinoo {n - T - }

@ Poisson Summation Formula: f nice:

o0

>t = >

{=—00 {=—00

Fourier transform f / e~ 2mX¢dy .

y
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Benford Good Process

y

Xt is Benford Good if there is a nice f st

COFs (y) = /y 1 (;) dt + Er(y) = Gr(y)

and monotonically increasing h (h(|T|) — o0):
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Benford Good Process

y

Xt is Benford Good if there is a nice f st

COFs (y) = /y 1 (;) dt + Er(y) = Gr(y)

and monotonically increasing h (h(|T|) — o0)

@ Small tails: Gt (oc0) — Gr(Th(T)) = o(1 )
Gr(=Th(T)) — Gr(—o0) = 0(1).
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Benford Good Process

y

Xt is Benford Good if there is a nice f st

COFs (y) = /y 1 (;) dt + Er(y) = Gr(y)

and monotonically increasing h (h(|T|) — o0)

@ Small tails: Gt (oc0) — Gr(Th(T)) = o(1 )
Gr(=Th(T)) — Gr(—o0) = 0(1).

@ Decay of the Fourier Transform: 3_,_, ’?(TTZ)’ =0(1).
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Benford Good Process

Xt is Benford Good if there is a nice f st

Y1, [/t _

Gr(y)
and monotonically increasing h (h(|T|) — o0)
@ Small tails: Gr(c0) — G1(Th(T)) = o(1 )
Gr(=Th(T)) — Gr(—oc) = 0(1).
@ Decay of the Fourier Transform: Y=, f(y)’ = o(1).
)

@ Small translated error: £(a,b,T)) =
> j<th(r) [ET (b +£) — Er(a+{)] = o(1).




Benford Good
[efe] ]

Main Theorem

Theorem (Kontorovich and M-, 2005)

Xt converging to X as T — oo (think spreading
Gaussian). If Xt is Benford good, then X is Benford.

TS S




Benford Good
[efe] ]

Main Theorem

Theorem (Kontorovich and M-, 2005)

Xt converging to X as T — oo (think spreading
Gaussian). If Xt is Benford good, then X is Benford.

@ Examples
o L-functions
o characteristic polynomials (RMT)
© 3X + 1 problem
© geometric Brownian motion.

y
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Sketch of the proof

@ Structure Theorem:
© main term is something nice spreading out
o apply Poisson summation
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Sketch of the proof

@ Structure Theorem:
© main term is something nice spreading out
o apply Poisson summation

@ Control translated errors:
¢ hardest step
© techniques problem specific
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Sketch of the proof (continued)

i P<a+€§7T,B§b+€>

{=—00
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Sketch of the proof (continued)

[e.9]

Z P(a—l—fﬁ 7T,B < b—i—f)
f=—00

= Y [Gr(b+0)—Gr(a+0)]+0(1)
[£|<Th(T)
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Sketch of the proof (continued)

[e.9]

Z P(a—l—fﬁ 7T,B < b—i—f)
f=—00

= Y [Gr(b+0)—Gr(a+0)]+0(1)
[£|<Th(T)

b 1./t

:/ > o (—)dt+5(a,b,T)+o(1)
. T \T
[e|<Th(T)
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Sketch of the proof (continued)

[e.9]

Z P<a+£§ 7T,B < b—i—ﬁ)
f=—00

= Y [Gr(b+0)—Gr(a+0)]+0(1)
[€|<Th(T)

b 1./t

:/ > o (—)dt+£(a,b,T)+o(1)
. T \T
[e|<Th(T)

N e27rib€ _ e27Ti6L€

= f(0)-(b—a)+ Z?(T@T +o(1).
00
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1\7* 11
H (1——s> = H (14—54-@4"“)
p prime p p prime

1 1 1 1
= 1+§+ﬁ+"' 1+§+¥+"‘

1 1 1 1

1
= l+§+§+5+§+w+”'
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Riemann Zeta Function

lims_1+ {(S) = oo implies infinitely many primes.

¢(2) = 72 /6 implies infinitely many primes.
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Riemann Zeta Function

¢(3+i%)], k € {0,1,...,65535}.

0.3
0.25
0.2
0.15
0.1
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@ x odd, T(x) = &, 2¢[|3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.
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@ x odd, T(x) = &, 2¢[|3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.
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@ Kakutani (conspiracy), Erdos (not ready).
@ x odd, T(x) = &, 2¢[|3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.
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@ Kakutani (conspiracy), Erdos (not ready).
@ x odd, T(x) = &, 2¢[|3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.
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3x + 1 Problem

@ Kakutani (conspiracy), Erdos (not ready).
@ x odd, T(x) = &, 2¢[|3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.

7 —111 —>117 —-513 =35 —4,1 —> 1,
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3x + 1 Problem

@ Kakutani (conspiracy), Erdos (not ready).

@ x odd, T(x) = &, 2¢[|3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.

7 —111—,17 —513 —35—,1 —5, 1,
2-path (1,1), 5-path (1,1, 2, 3,4).
m-path: (Kq,. .., Km).
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Heuristic Proof of 3x + 1 Conjecture

a1 = T(an)
=1 3a
E[logan;1] =~ Z?Iog (2—'<n>
k=1

=k
= Iogan+logS—Iogzzg
k=1
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Heuristic Proof of 3x + 1 Conjecture

dny1 = ( )

=1 3a,
Slogana] = 35 lon ()

=k
= Iogan+logS—Iogzzg
k=1

3
= loga, + log (Z) )

Geometric Brownian Motion, drift log(3/4) < 1
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Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
P(A) = limy_ Z{N<N.n=1,5 mod 6}

(Kq, ..., Km): two full arithm progressions:
6 . 2k1+"'+kmp + q_

Theorem (Sinai, Kontorovich-Sinai)

ki-values are i.i.d.r.v. (geometric, 1/2):

log, {X—%
P| ———=<al| =P ——<a
v2m o vom




The 3x + 1 Problem
ocoe

Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
P(A) = limy_ Z{N<N.n=1,5 mod 6}

(Kq, ..., Km): two full arithm progressions:
6 . 2k1+"'+kmp + q_

Theorem (Sinai, Kontorovich-Sinai)

ki-values are i.i.d.r.v. (geometric, 1/2):

109, {(lix)—n”“x()} | _p( Sm—2m
(log, B)v2m ~ (log, B)v2m

<)
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Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
]P(A) = liMn_o #{n<N:n=15 mod 6}

(Kg, ..., Km): two full arithm progressions:
6 . 2k1+"'+kmp _'_ q

Theorem (Sinai, Kontorovich-Sinai)
ki-values are i.i.d.r.v. (geometric, 1/2):

log {X—%] (Sm—2m)
- B (%) Xo Sa :P< log, B

v2m v2m

<)
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3x + 1 and Benford

Theorem (Kontorovich and M—, 2005)
As m — oo, Xm/(3/4)™X, is Benford.

Theorem (Lagarias-Soundararajan 2006)

X > 2N, for all but at most c(B)N~%/36X initial seeds the
distribution of the first N iterates of the 3x + 1 map are
within 2N ~%/36 of the Benford probabilities.
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Sketch of the proof

o Failed Proof: lattices, bad errors.

@ CLT: (Sm — 2m)/v/2m — N(0, 1):

IP’(Sm—Zm:k):n(L\/gm)JrO(m).

@ Quantified Equidistribution:
l,={M,....,(¢(+1)M -1}, M =m°,c <1/2
ki, ko € 1y ’Tl (%) -7 (%)’ small

C =logg 2 of irrationality type x < oo:

#{k €1,: kC € [a,b]} = M(b — a) + O(MI*+<"1/%),
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Irrationality Type

Irrationality type
« has irrationality type « if x is the supremum of all ~ with

. ,erl .
limg_..q”** min

a—E’:O.
q

@ Algebraic irrationals: type 1 (Roth’s Thm).
@ Theory of Linear Forms: logg 2 of finite type.
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Linear Forms

Theorem (Baker)

ai, ..., o algebraic numbers height A; > 4, 51,...,6, € Q
with height at most B > 4,

N=pilogag + -+ B log an.

If A # 0 then |A| > B=C209% 'with d = [Q(w, 3) : Q,
C = (16nd)?®", Q = []; log A}, ' = Q/log A,.

Gives log,, 2 of finite type, with x < 1.2 - 10502

log,,2 — p/a| = |gqlog2 — plog 10| /g log 10.
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Quantified Equidistribution

Theorem (Erdds-Turan)
_ SUPg IN(b — ) —#{n <N :x, € [a,b]}]
N =

N
There is a C such that for all m:

1 m
DNSC-<H+Z

h=1

N
E e27rihxn
n=1

)

Sl
Zl -
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Proof of Erdos-Turan

Consider special case x, = na, a € Q.

1

H 1
@ Exponential sum < rSn(ha)] < 3Thal]

@ Must control >, hllﬁaH’ see irrationality type enter.

® type r, Yoy ey = O (M™7179), take m = [N/~ ],
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3x + 1 Data: random 10,000 digit number,  2K||3x + 1

80,514 iterations ((4/3)" = ag predicts 80,319);
¥? = 13.5 (5% 15.5).

Digit Number Observed Benford
24251 0.301 0.301
2 14156 0.176 0.176
3 10227 0.127 0.125
4 7931 0.099 0.097
5 6359 0.079 0.079
6
7
8
9

=

5372 0.067 0.067
4476 0.056 0.058
4092 0.051 0.051
3650 0.045 0.046
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000

3x + 1 Data: random 10,000 digit number, 2[3x + 1

241,344 iterations, y? = 11.4 (5% 15.5).

Digit Number Observed Benford
72924 0.302 0.301
42357 0.176 0.176
30201 0.125 0.125
23507 0.097 0.097
18928 0.078 0.079
16296 0.068 0.067
13702 0.057 0.058
12356 0.051 0.051
11073 0.046 0.046

O©COoOO~NOULA WNPEP
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5x + 1 Data: random 10,000 digit number,  2K||5x + 1

27,004 iterations, y?> = 1.8 (5% 15.5).

Digit Number Observed Benford
8154 0.302 0.301
4770 0.177 0.176
3405 0.126 0.125
2634 0.098 0.097
2105 0.078 0.079
1787 0.066 0.067
1568 0.058 0.058
1357 0.050 0.051
1224 0.045 0.046

O©CoO~NOULAWNPE
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5x + 1 Data: random 10,000 digit number, 2[5x + 1

241,344 iterations, x?> = 3-10~* (5% 15.5).

Digit Number Observed Benford
72652 0.301 0.301
42499 0.176 0.176
30153 0.125 0.125
23388 0.097 0.097
19110 0.079 0.079
16159 0.067 0.067
13995 0.058 0.058
12345 0.051 0.051
11043 0.046 0.046

O©COoOO~NOULA WNPEP
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Key Ingredients

@ Mellin transform and Fourier transform related by
logarithmic change of variable.

@ Poisson summation from collapsing to modulo 1
random variables.
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Preliminaries

® =;,..., =, nice independent r.v.s on [0, ).
@ Density =; - =5:

o Proof: Prob(=; - =; € [0, x]):

/OO Prob (=, € [0, %] ) u(t)ot
_ /OO Fa (%) f,(t)dt,

differentiate.
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Mellin Transform

* Sax
(MF)(s) = / e
(MP9)) = 5 [ g(s)ds

c—ioo

g(s) = (MF)(s),f(x) = (M~'g)(x).

(Frf)(x) = /OOO f, (%) fl(t)$
(M(fLxf2))(s) = (MfF)(s) - (MF)(s).
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Mellin Transform Formulation: Products Random Variables

Xi’s independent, densities f;. =, = X; - - - X,

ha(X2) = (fo - %fa)(Xn)

n

(Mho)(s) = J[(MfFn)(s).

m=1

As n — oo, =, becomes Benford: Y, = logg =,
|Prob(Y, mod 1 € [a,b]) — (b —a)| <

b-a) 3 LM (1 - |§gié) |

0£0,0=— o0 m=1
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@ {Di(8)}ici: one-parameter distributions, densities fp, ()
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Proof of Kossovsky’s Chain Conjecture for certain densitie S

Conditions
@ {Di(8)}ici: one-parameter distributions, densities fp, ()
on [0, ).
© p:N—1, Xy ~Dp)(1), Xm ~ Dy(m)(Xm-1)-
om>2,

o X dXm—
fm(xm) = /0 po(m)(l) (X T )fml(xml) X m-1

m—1 m—1
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Proof of Kossovsky’s Chain Conjecture for certain densitie S
Conditions
@ {Di(8)}ici: one-parameter distributions, densities fp, ()
on [0, ).
o p: N — |, Xl ~ Dp(l)(l), Xm ~ Dp(m)(Xm,l).
om> 2,
fm(xm) = /0 po(m)(l) (Xm—l) fmfl(mel) X1




Products/Chains
[e]e] o]

Proof of Kossovsky’s Chain Conjecture for certain densitie S

Theorem (JKKKM)

@ If conditions hold, as n — oo the distribution of
leading digits of X, tends to Benford’s law.

@ The error is a nice function of the Mellin transforms: if
Yn = logg X,, then

|Prob(Y, mod 1 € [a,b]) — (b + a)| <

(b —a) ZHMfD D ( f{;ié)

ef—oo m=1
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Example: All X; ~ Exp(1)

o X ~ Exp(1), Yn = logg =p.

@ Needed ingredients:
o [y exp(—x)xstdx = I(s).

o |l (1+ix)| = \/mx/sinh(mx),x € R.

@ [Pn(s) —logy(s)| <

0o 2n2(/logB  \"*
logg s Z (smh (272¢/ log B)) .
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Example: All X; ~ Exp(1)

Bounds on the error

@ [Pn(s) —log,ys| <
©3.3-10%loggs ifn=2,
©1.9-10"%loggs ifn=3,
©1.1-10°loggs ifn=25,and
©3.6-10"logg s if n = 10.

@ Error at most

> 17.148¢ \"?
| < 057"
0910 Z <exp 8. 5726€)> = 103
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Conclusions

Conclusions and Future Investigations

@ See many different systems exhibit Benford behavior.
@ Ingredients of proofs (logarithms, equidistribution).
@ Applications to fraud detection / data integrity.

@ Future work:
¢ Study digits of other systems.
o Develop more sophisticated tests for fraud.
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