Benford's law, or: Why the IRS should care about number theory!

Steven J Miller (Williams College)
Mark Nigrini (The College of New Jersey)

sjm1@williams.edu
http://www.williams.edu/go/math/sjmiller/

Central Connecticut State University September 25th, 2009

Summary

- Review Benford's Law.
- Discuss examples and applications.
- Sketch proofs.
- Describe open problems.

Caveats!

Not all fraud can be detected by Benford's Law.

Caveats!

- Not all fraud can be detected by Benford's Law.
- A math test indicating fraud is not proof of fraud: unlikely events, alternate reasons.

Caveats!

- Not all fraud can be detected by Benford's Law.
- A math test indicating fraud is not proof of fraud: unlikely events, alternate reasons.

• Logarithms: $\log_B x = y$ means $x = B^y$.

6

• Logarithms: $\log_B x = y$ means $x = B^y$. • Example: $\log_{10} 100 = 2$ as $100 = 10^2$.

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10}^{-} 100 = 2$ as $100 = 10^{2}$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$
- Set Theory:
 - $\diamond \mathbb{Q} = \text{rational numbers} = \{p/q : p, q \text{ integers}\}.$

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$
- Set Theory:
 - $\diamond \mathbb{Q} = \text{rational numbers} = \{p/q : p, q \text{ integers}\}.$
 - $\diamond x \in S$ means x belongs to S.

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$
- Set Theory:
 - $\diamond \mathbb{Q} = \text{rational numbers} = \{p/q : p, q \text{ integers}\}.$
 - $\diamond x \in S$ means x belongs to S.
 - $\diamond [a,b] = \{x : a \le x \le b\}.$

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$
- Set Theory:
 - $\diamond \mathbb{Q} = \text{rational numbers} = \{p/q : p, q \text{ integers}\}.$
 - $\diamond x \in S$ means x belongs to S.
 - $\diamond [a,b] = \{x : a \le x \le b\}.$
- Modulo 1:

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$
- Set Theory:
 - $\diamond \mathbb{Q} = \text{rational numbers} = \{p/q : p, q \text{ integers}\}.$
 - $\diamond x \in S$ means x belongs to S.
 - $\diamond [a,b] = \{x : a \le x \le b\}.$
- Modulo 1:
 - ♦ Any x can be written as integer + fraction.

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$
- Set Theory:
 - $\diamond \mathbb{Q} = \text{rational numbers} = \{p/q : p, q \text{ integers}\}.$
 - $\diamond x \in S$ means x belongs to S.
 - $\diamond [a,b] = \{x : a \le x \le b\}.$
- Modulo 1:
 - ♦ Any x can be written as integer + fraction.
 - ⋄ x mod 1 means just the fractional part.

- Logarithms: $\log_B x = y$ means $x = B^y$.
 - \diamond Example: $\log_{10} 100 = 2$ as $100 = 10^2$.
 - $\diamond \log_B(uv) = \log_B u + \log_B v.$
 - $\diamond \log_{10}(100 \cdot 1000) = \log_{10}(100) + \log_{10}(1000).$
- Set Theory:
 - $\diamond \mathbb{Q} = \text{rational numbers} = \{p/q : p, q \text{ integers}\}.$
 - $\diamond x \in S$ means x belongs to S.
 - $\diamond [a,b] = \{x : a \le x \le b\}.$
- Modulo 1:
 - ♦ Any x can be written as integer + fraction.
 - ⋄ x mod 1 means just the fractional part.
 - \diamond Example: π mod 1 is about .14159.

Statement

For many data sets, probability of observing a first digit of d base B is $\log_B\left(\frac{d+1}{d}\right)$; base 10 about 30% are 1s.

Statement

For many data sets, probability of observing a first digit of d base B is $\log_B\left(\frac{d+1}{d}\right)$; base 10 about 30% are 1s.

Not all data sets satisfy Benford's Law.

Statement

For many data sets, probability of observing a first digit of d base B is $\log_B(\frac{d+1}{d})$; base 10 about 30% are 1s.

- Not all data sets satisfy Benford's Law.
 - ♦ Long street [1, L]: L = 199 versus L = 999.

Statement

For many data sets, probability of observing a first digit of d base B is $\log_B(\frac{d+1}{d})$; base 10 about 30% are 1s.

- Not all data sets satisfy Benford's Law.
 - ♦ Long street [1, L]: L = 199 versus L = 999.
 - ♦ Oscillates between 1/9 and 5/9 with first digit 1.

Statement

For many data sets, probability of observing a first digit of d base B is $\log_B(\frac{d+1}{d})$; base 10 about 30% are 1s.

- Not all data sets satisfy Benford's Law.
 - ♦ Long street [1, L]: L = 199 versus L = 999.
 - ♦ Oscillates between 1/9 and 5/9 with first digit 1.
 - Many streets of different sizes: close to Benford.

Examples

- recurrence relations
- special functions (such as n!)
- iterates of power, exponential, rational maps
- products of random variables
- L-functions, characteristic polynomials
- iterates of the 3x + 1 map
- differences of order statistics
- hydrology and financial data
- many hierarchical Bayesian models

Applications

- analyzing round-off errors
- determining the optimal way to store numbers

detecting tax and image fraud, and data integrity

General Theory

Mantissas

Mantissa: $x = M_{10}(x) \cdot 10^k$, k integer.

Mantissas

Mantissa: $x = M_{10}(x) \cdot 10^k$, k integer.

 $M_{10}(x) = M_{10}(\tilde{x})$ if and only if x and \tilde{x} have the same leading digits.

Mantissas

Mantissa: $x = M_{10}(x) \cdot 10^k$, k integer.

 $M_{10}(x) = M_{10}(\tilde{x})$ if and only if x and \tilde{x} have the same leading digits.

Key observation: $\log_{10}(x) = \log_{10}(\tilde{x}) \mod 1$ if and only if x and \tilde{x} have the same leading digits. Thus often study $y = \log_{10} x$.

27

Equidistribution

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a$$

Equidistribution

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$

• Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.

Equidistribution

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

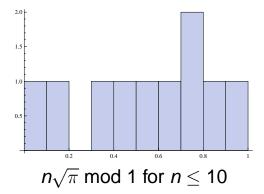
$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$

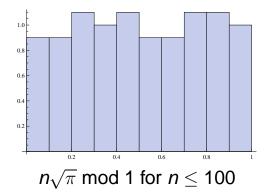
- Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.
- Examples: $\log_{10} 2$, $\log_{10} \left(\frac{1+\sqrt{5}}{2} \right) \not \in \mathbb{Q}$.

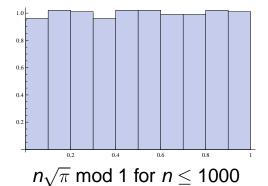
Equidistribution

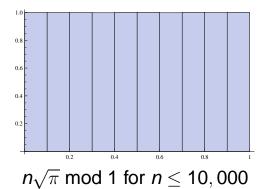
 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$


- Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.
- Examples: $\log_{10} 2$, $\log_{10} \left(\frac{1+\sqrt{5}}{2}\right) \notin \mathbb{Q}$. *Proof:* if rational: $2 = 10^{p/q}$.


Equidistribution


 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:


$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a.$$

- Thm: $\beta \notin \mathbb{Q}$, $n\beta$ is equidistributed mod 1.
- Examples: $\log_{10} 2$, $\log_{10} \left(\frac{1+\sqrt{5}}{2} \right) \notin \mathbb{Q}$. *Proof:* if rational: $2 = 10^{p/q}$ Thus $2^q = 10^p$ or $2^{q-p} = 5^p$, impossible.

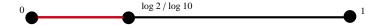
Denseness

Dense

A sequence $\{z_n\}_{n=1}^{\infty}$ of numbers in [0,1] is dense if for any interval [a,b] there are infinitely many z_n in [a,b].

- Dirichlet's Box (or Pigeonhole) Principle:
 If n + 1 objects are placed in n boxes, at least one box has two objects.
- Denseness of $n\alpha$: Thm: If $\alpha \notin \mathbb{Q}$ then $z_n = n\alpha \mod 1$ is dense.

Proof $n\alpha \mod 1$ dense if $\alpha \notin \mathbb{Q}$


- Enough to show in [0, b] infinitely often for any b.
- Choose any integer Q > 1/b.
- Q bins: $\left[0, \frac{1}{Q}\right], \left[\frac{1}{Q}, \frac{2}{Q}\right], \ldots, \left[\frac{Q-1}{Q}, Q\right].$
- Q + 1 objects: $\{\alpha \mod 1, 2\alpha \mod 1, \dots, (Q+1)\alpha \mod 1\}.$
- Two in same bin, say $q_1\alpha \mod 1$ and $q_2\alpha \mod 1$.
- Exists integer p with $0 < q_2 \alpha q_1 \alpha p < \frac{1}{Q}$.
- Get $(q_2 q_1)\alpha \mod 1 \in [0, b]$.

Fundamental Equivalence

Data set $\{x_i\}$ is Benford base B if $\{y_i\}$ is equidistributed mod 1, where $y_i = \log_B x_i$.

Fundamental Equivalence

Data set $\{x_i\}$ is Benford base B if $\{y_i\}$ is equidistributed mod 1, where $y_i = \log_B x_i$.

Fundamental Equivalence

Data set $\{x_i\}$ is Benford base B if $\{y_i\}$ is equidistributed mod 1, where $y_i = \log_B x_i$.

Fundamental Equivalence

Data set $\{x_i\}$ is Benford base B if $\{y_i\}$ is equidistributed mod 1, where $y_i = \log_B x_i$.

Proof:

- $x = M_B(x) \cdot B^k$ for some $k \in \mathbb{Z}$.
- $FD_B(x) = d \text{ iff } d \le M_B(x) < d + 1.$
- $\log_B d \le y < \log_B (d+1)$, $y = \log_B x \mod 1$.
- If $Y \sim \text{Unif}(0, 1)$ then above probability is $\log_{\mathbb{R}}(\frac{d+1}{d})$.

• 2^n is Benford base 10 as $\log_{10} 2 \notin \mathbb{Q}$.

$$a_{n+1} = a_n + a_{n-1}$$
.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = n^r$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

$$a_{n+1} = a_n + a_{n-1}$$
.
Guess $a_n = n^r$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.
Roots $r = (1 \pm \sqrt{5})/2$.

$$a_{n+1} = a_n + a_{n-1}$$
.
Guess $a_n = n^r$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.
Roots $r = (1 \pm \sqrt{5})/2$.
General solution: $a_n = c_1 r_1^n + c_2 r_2^n$.

$$a_{n+1} = a_n + a_{n-1}.$$
 Guess $a_n = n^r$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r+1.$ Roots $r = (1 \pm \sqrt{5})/2.$ General solution: $a_n = c_1 r_1^n + c_2 r_2^n.$ Binet: $a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n.$

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}.$$

Guess $a_n = n^r$: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r+1.$
Roots $r = (1 \pm \sqrt{5})/2.$
General solution: $a_n = c_1 r_1^n + c_2 r_2^n.$
Binet: $a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n.$

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = n^r$$
: $r_-^{n+1} = r^n + r_-^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution:
$$a_n = c_1 r_1^n + c_2 r_2^n$$
.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

$$\diamond a_{n+1} = 2a_n$$

• Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = n^r$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution:
$$a_n = c_1 r_1^n + c_2 r_2^n$$
.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

$$\diamond a_{n+1} = 2a_n - a_{n-1}$$

Fibonacci numbers are Benford base 10.

$$a_{n+1} = a_n + a_{n-1}$$
.

Guess
$$a_n = n^r$$
: $r^{n+1} = r^n + r^{n-1}$ or $r^2 = r + 1$.

Roots
$$r = (1 \pm \sqrt{5})/2$$
.

General solution:
$$a_n = c_1 r_1^n + c_2 r_2^n$$
.

Binet:
$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

$$\diamond a_{n+1} = 2a_n - a_{n-1}$$

$$\diamond$$
 take $a_0 = a_1 = 1$ or $a_0 = 0$, $a_1 = 1$.

Digits of 2^n

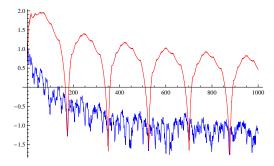
First 60 values of 2ⁿ (only displaying 30)

1	1024	1048576	digit	#	Obs Prob	Benf Prob
2	2048	2097152	1	18	.300	.301
4	4096	4194304	2	12	.200	.176
8	8192	8388608	3	6	.100	.125
16	16384	16777216	4	6	.100	.097
32	32768	33554432	5	6	.100	.079
64	65536	67108864	6	4	.067	.067
128	131072	134217728	7	2	.033	.058
256	262144	268435456	8	5	.083	.051
512	524288	536870912	9	1	.017	.046

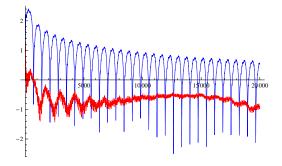
Data Analysis

Introduction

- χ^2 -Tests: Test if theory describes data
 - ⋄ Expected probability: $p_d = \log_{10} \left(\frac{d+1}{d} \right)$.
 - \diamond Expect about Np_d will have first digit d.
 - \diamond Observe Obs(d) with first digit d.


$$\phi \chi^2 = \sum_{d=1}^9 \frac{(\mathrm{Obs}(d) - Np_d)^2}{Np_d}$$
.

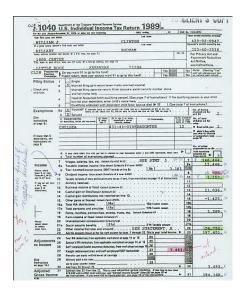
- \diamond Smaller χ^2 , more likely correct model.
- Will study γ^n , e^n , π^n .


 χ^2 values for α^n , $1 \le n \le N$ (5% 15.5).

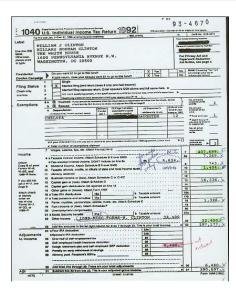
N	$\chi^2(\gamma)$	$\chi^2(e)$	$\chi^2(\pi)$
100	0.72	0.30	46.65
200	0.24	0.30	8.58
400	0.14	0.10	10.55
500	0.08	0.07	2.69
700	0.19	0.04	0.05
800	0.04	0.03	6.19
900	0.09	0.09	1.71
1000	0.02	0.06	2.90

 $\log(\chi^2)$ vs N for π^n (red) and e^n (blue), $n \in \{1, ..., N\}$. Note $\pi^{175} \approx 1.0028 \cdot 10^{87}$, (5%, $\log(\chi^2) \approx 2.74$).

 $\log(\chi^2)$ vs N for π^n (red) and e^n (blue), $n \in \{1, ..., N\}$. Note $e^3 \approx 20.0855$, (5%, $\log(\chi^2) \approx 2.74$).



Applications


Stock Market

Milestone	Date	Effective Rate from last milestone
108.35	Jan 12, 1906	
500.24	Mar 12, 1956	3.0%
1003.16	Nov 14, 1972	4.2%
2002.25	Jan 8, 1987	4.9%
3004.46	Apr 17, 1991	9.5%
4003.33	Feb 23, 1995	7.4%
5023.55	Nov 21, 1995	30.6%
6010.00	Oct 14, 1996	20.0%
7022.44	Feb 13, 1997	46.6%
8038.88	Jul 16, 1997	32.3%
9033.23	Apr 6, 1998	16.1%
10006.78	Mar 29, 1999	10.5%
11209.84	Jul 16, 1999	38.0%
12011.73	Oct 19, 2006	1.0%
13089.89	Apr 25, 2007	16.7%
14000.41	Jul 19, 2007	28.9%

Applications for the IRS: Detecting Fraud

Applications for the IRS: Detecting Fraud

Applications for the IRS: Detecting Fraud

Exhibit 3: Check Fraud in Arizona

The table lists the checks that a manager in the office of the Arizona State Treasurer wrote to divert funds for his own use. The vendors to whom the checks were issued were fictitious.

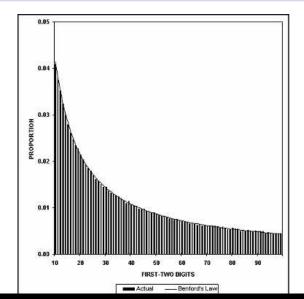
Date of Check	Amount
October 9, 1992	\$ 1,927.48
+	27,902.31
October 14, 1992	86,241.90
	72,117.46
	81,321.75
+	97,473.96
October 19, 1992	93,249.11
	89,658.17
	87,776.89
	92,105.83
ACCEPTAGE OF THE PROPERTY OF THE PERSON OF T	79,949.16
	87,602.93
	96,879.27
	91,806.47
	84,991.67
	90,831.83
	93,766.67
	88,338.72
	94,639.49
STREET,	83,709.28
	96,412.21
	88,432.86
*	71,552.16
TOTAL	\$ 1,878,687.58

Applications for the IRS: Detecting Fraud (cont)

- Embezzler started small and then increased dollar amounts.
- Most amounts below \$100,000 (critical threshold for data requiring additional scrutiny).
- Over 90% had first digit of 7, 8 or 9.

Detecting Fraud

Bank Fraud


- Audit of a bank revealed huge spike of numbers starting with 48 and 49, most due to one person.
- Write-off limit of \$5,000. Officer had friends applying for credit cards, ran up balances just under \$5,000 then he would write the debts off.

Detecting Fraud

Enron

- Benford's Law detected manipulation of revenue numbers.
- Results showed a tendency towards round Earnings Per Share (0.10, 0.20, etc.).
 Consistent with a small but noticeable increase in earnings management in 2002.

Data Integrity: Stream Flow Statistics: 130 years, 457,440 records

Election Fraud: Iran 2009

Numerous protests and complaints over Iran's 2009 elections.

Lot of analysis done; data is moderately suspicious. Tests done include

- First and second leading digits;
- Last two digits (should almost be uniform);
- Last two digits differing by at least 2.

Warning: do enough tests, even if nothing is wrong will find a suspicious result, but when all tests are on the boundary....

Benford Good Processes

Poisson Summation and Benford's Law: Definitions

Feller, Pinkham (often exact processes)

Poisson Summation and Benford's Law: Definitions

- Feller, Pinkham (often exact processes)
- data $Y_{T,B} = \log_B \overrightarrow{X}_T$ (discrete/continuous):

$$\mathbb{P}(A) = \lim_{T \to \infty} \frac{\#\{n \in A : n \le T\}}{T}$$

Poisson Summation and Benford's Law: Definitions

- Feller, Pinkham (often exact processes)
- data $Y_{T,B} = \log_B \overrightarrow{X}_T$ (discrete/continuous):

$$\mathbb{P}(A) = \lim_{T \to \infty} \frac{\#\{n \in A : n \le T\}}{T}$$

Poisson Summation Formula: f nice:

$$\sum_{\ell=-\infty}^{\infty} f(\ell) = \sum_{\ell=-\infty}^{\infty} \widehat{f}(\ell),$$

Fourier transform
$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx$$
.

 X_T is Benford Good if there is a nice f st

$$\mathrm{CDF}_{\overrightarrow{Y}_{T,B}}(y) = \int_{-\infty}^{y} \frac{1}{T} f\left(\frac{t}{T}\right) dt + E_{T}(y) := G_{T}(y)$$

 X_T is Benford Good if there is a nice f st

$$\mathrm{CDF}_{\overrightarrow{Y}_{T,B}}(y) = \int_{-\infty}^{y} \frac{1}{T} f\left(\frac{t}{T}\right) dt + E_{T}(y) := G_{T}(y)$$

• Small tails:
$$G_T(\infty) - G_T(Th(T)) = o(1)$$
, $G_T(-Th(T)) - G_T(-\infty) = o(1)$.

 X_T is Benford Good if there is a nice f st

$$\mathrm{CDF}_{\overrightarrow{Y}_{T,B}}(y) = \int_{-\infty}^{y} \frac{1}{T} f\left(\frac{t}{T}\right) dt + E_{T}(y) := G_{T}(y)$$

- Small tails: $G_T(\infty) G_T(Th(T)) = o(1)$, $G_T(-Th(T)) G_T(-\infty) = o(1)$.
- Decay of the Fourier Transform: $\sum_{\ell \neq 0} \left| \frac{\widehat{f}(T\ell)}{\ell} \right| = o(1)$.

 X_T is Benford Good if there is a nice f st

$$\mathrm{CDF}_{\overrightarrow{Y}_{T,B}}(y) = \int_{-\infty}^{y} \frac{1}{T} f\left(\frac{t}{T}\right) dt + E_{T}(y) := G_{T}(y)$$

- Small tails: $G_T(\infty) G_T(Th(T)) = o(1)$, $G_T(-Th(T)) G_T(-\infty) = o(1)$.
- Decay of the Fourier Transform: $\sum_{\ell \neq 0} \left| \frac{\hat{f}(T\ell)}{\ell} \right| = o(1)$.
- Small translated error: $\mathcal{E}(a, b, T) = \sum_{|\ell| \leq Th(T)} [E_T(b + \ell) E_T(a + \ell)] = o(1).$

Main Theorem

Theorem (Kontorovich and M-, 2005)

 X_T converging to X as $T \to \infty$ (think spreading Gaussian). If X_T is Benford good, then X is Benford.

Main Theorem

Theorem (Kontorovich and M-, 2005)

 X_T converging to X as $T \to \infty$ (think spreading Gaussian). If X_T is Benford good, then X is Benford.

- Examples
 - ♦ L-functions
 - characteristic polynomials (RMT)
 - \diamond 3x + 1 problem
 - geometric Brownian motion.

Sketch of the proof

- Structure Theorem:
 - main term is something nice spreading out
 - ⋄ apply Poisson summation

Sketch of the proof

- Structure Theorem:
 - main term is something nice spreading out
 - apply Poisson summation
- Control translated errors:
 - ♦ hardest step
 - techniques problem specific

$$\sum_{\ell=-\infty}^{\infty} \mathbb{P}\left(\boldsymbol{a} + \ell \leq \overrightarrow{\mathbf{Y}}_{T,B} \leq \boldsymbol{b} + \ell\right)$$

$$\sum_{\ell=-\infty}^{\infty} \mathbb{P}\left(\mathbf{a}+\ell \leq \overrightarrow{\mathbf{Y}}_{T,B} \leq \mathbf{b}+\ell
ight) \ = \sum_{|\ell| \leq Th(T)} \left[\mathbf{G}_{T}(\mathbf{b}+\ell) - \mathbf{G}_{T}(\mathbf{a}+\ell)
ight] + \mathrm{o}(1)$$

$$\sum_{\ell=-\infty}^{\infty} \mathbb{P}\left(a+\ell \leq \overrightarrow{Y}_{T,B} \leq b+\ell\right)$$

$$= \sum_{|\ell| \leq Th(T)} [G_T(b+\ell) - G_T(a+\ell)] + o(1)$$

$$= \int_a^b \sum_{|\ell| \leq Th(T)} \frac{1}{T} f\left(\frac{t}{T}\right) dt + \mathcal{E}(a,b,T) + o(1)$$

$$\sum_{\ell=-\infty}^{\infty} \mathbb{P}\left(a+\ell \leq \overrightarrow{Y}_{T,B} \leq b+\ell\right)$$

$$= \sum_{|\ell| \leq Th(T)} [G_T(b+\ell) - G_T(a+\ell)] + o(1)$$

$$= \int_a^b \sum_{|\ell| \leq Th(T)} \frac{1}{T} f\left(\frac{t}{T}\right) dt + \mathcal{E}(a,b,T) + o(1)$$

$$= \widehat{f}(0) \cdot (b-a) + \sum_{\ell \neq 0} \widehat{f}(T\ell) \frac{e^{2\pi i b\ell} - e^{2\pi i a\ell}}{2\pi i \ell} + o(1).$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

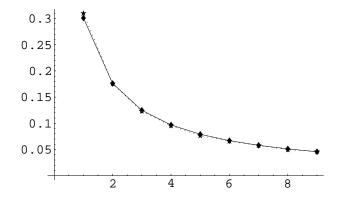
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

$$\prod_{p \text{ prime}} \left(1 - \frac{1}{p^{s}} \right)^{-1} = \prod_{p \text{ prime}} \left(1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}} + \cdots \right)$$

$$= \left(1 + \frac{1}{2^{s}} + \frac{1}{2^{2s}} + \cdots \right) \left(1 + \frac{1}{3^{s}} + \frac{1}{3^{2s}} + \cdots \right)$$

$$= 1 + \frac{1}{2^{s}} + \frac{1}{3^{s}} + \frac{1}{4^{s}} + \frac{1}{5^{s}} + \frac{1}{(2 \cdot 3)^{s}} + \cdots$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$


 $\lim_{s \to 1^+} \zeta(s) = \infty$ implies infinitely many primes.

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

 $\lim_{s \to 1^+} \zeta(s) = \infty$ implies infinitely many primes.

 $\zeta(2) = \pi^2/6$ implies infinitely many primes.

$$\left|\zeta\left(\frac{1}{2}+i\frac{k}{4}\right)\right|, \ k \in \{0, 1, \dots, 65535\}.$$

The 3x + 1 Problem and Benford's Law

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- 7

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- $7 \rightarrow_1 11$

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- $7 \rightarrow_1 11 \rightarrow_1 17$

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- $7 \rightarrow_1 11 \rightarrow_1 17 \rightarrow_2 13$

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- $\bullet \ 7 \rightarrow_1 11 \rightarrow_1 17 \rightarrow_2 13 \rightarrow_3 5$

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- $\bullet \ 7 \rightarrow_1 11 \rightarrow_1 17 \rightarrow_2 13 \rightarrow_3 5 \rightarrow_4 1$

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- $\bullet \ 7 \rightarrow_1 11 \rightarrow_1 17 \rightarrow_2 13 \rightarrow_3 5 \rightarrow_4 1 \rightarrow_2 1,$

- Kakutani (conspiracy), Erdös (not ready).
- x odd, $T(x) = \frac{3x+1}{2^k}$, $2^k ||3x+1$.
- Conjecture: for some n = n(x), $T^n(x) = 1$.
- 7 \rightarrow_1 11 \rightarrow_1 17 \rightarrow_2 13 \rightarrow_3 5 \rightarrow_4 1 \rightarrow_2 1, 2-path (1,1), 5-path (1,1,2,3,4). m-path: (k_1,\ldots,k_m) .

$$a_{n+1} = T(a_n)$$

$$a_{n+1} = T(a_n)$$

$$\mathbb{E}[\log a_{n+1}] \approx \sum_{k=1}^{\infty} \frac{1}{2^k} \log \left(\frac{3a_n}{2^k}\right)$$

$$a_{n+1} = T(a_n)$$

$$\mathbb{E}[\log a_{n+1}] \approx \sum_{k=1}^{\infty} \frac{1}{2^k} \log \left(\frac{3a_n}{2^k}\right)$$

$$= \log a_n + \log 3 - \log 2 \sum_{k=1}^{\infty} \frac{k}{2^k}$$

$$\begin{aligned} a_{n+1} &= & \mathcal{T}(a_n) \\ \mathbb{E}[\log a_{n+1}] &\approx & \sum_{k=1}^{\infty} \frac{1}{2^k} \log \left(\frac{3a_n}{2^k} \right) \\ &= & \log a_n + \log 3 - \log 2 \sum_{k=1}^{\infty} \frac{k}{2^k} \\ &= & \log a_n + \log \left(\frac{3}{4} \right). \end{aligned}$$

Geometric Brownian Motion, drift log(3/4) < 1.

$$\mathbb{P}(A) = \lim_{N \to \infty} \frac{\#\{n \le N: n \equiv 1, 5 \mod 6, n \in A\}}{\#\{n \le N: n \equiv 1, 5 \mod 6\}}.$$

$$\begin{split} \mathbb{P}(A) &= \lim_{N \to \infty} \frac{\#\{n \leq N: n \equiv 1, 5 \bmod 6, n \in A\}}{\#\{n \leq N: n \equiv 1, 5 \bmod 6\}}. \\ (k_1, \ldots, k_m): \text{ two full arithm progressions:} \\ 6 \cdot 2^{k_1 + \cdots + k_m} p + q. \end{split}$$

$$\mathbb{P}(A) = \lim_{N \to \infty} \frac{\#\{n \le N: n \equiv 1, 5 \bmod 6, n \in A\}}{\#\{n \le N: n \equiv 1, 5 \bmod 6\}}.$$

$$(k_1, \dots, k_m): \text{ two full arithm progressions:}$$

$$6 \cdot 2^{k_1 + \dots + k_m} p + q.$$

Theorem (Sinai, Kontorovich-Sinai)

 k_i -values are i.i.d.r.v. (geometric, 1/2):

$$\mathbb{P}\left(\frac{\log_2\left[\frac{\mathsf{x}_m}{\left(\frac{3}{4}\right)^m\mathsf{x}_0}\right]}{\sqrt{2m}} \leq a\right) = \mathbb{P}\left(\frac{\mathsf{S}_m - 2m}{\sqrt{2m}} \leq a\right)$$

$$\mathbb{P}(A) = \lim_{N \to \infty} \frac{\#\{n \le N: n \equiv 1, 5 \bmod 6, n \in A\}}{\#\{n \le N: n \equiv 1, 5 \bmod 6\}}.$$

$$(k_1, \dots, k_m): \text{ two full arithm progressions:}$$

$$6 \cdot 2^{k_1 + \dots + k_m} p + q.$$

Theorem (Sinai, Kontorovich-Sinai)

 k_i -values are i.i.d.r.v. (geometric, 1/2):

$$\mathbb{P}\left(\frac{\log_2\left\lfloor\frac{x_m}{\left(\frac{3}{4}\right)^m x_0}\right\rfloor}{(\log_2 B)\sqrt{2m}} \le a\right) = \mathbb{P}\left(\frac{S_m - 2m}{(\log_2 B)\sqrt{2m}} \le a\right)$$

Structure Theorem: Sinai, Kontorovich-Sinai

$$\mathbb{P}(A) = \lim_{N \to \infty} \frac{\#\{n \le N: n \equiv 1, 5 \bmod 6, n \in A\}}{\#\{n \le N: n \equiv 1, 5 \bmod 6\}}.$$

$$(k_1, \dots, k_m): \text{ two full arithm progressions:}$$

$$6 \cdot 2^{k_1 + \dots + k_m} p + q.$$

Theorem (Sinai, Kontorovich-Sinai)

 k_i -values are i.i.d.r.v. (geometric, 1/2):

$$\mathbb{P}\left(\frac{\log_B\left\lfloor\frac{\mathsf{x}_m}{\left(\frac{3}{4}\right)^m\mathsf{x}_0}\right\rfloor}{\sqrt{2m}}\leq a\right)=\mathbb{P}\left(\frac{\frac{\left(\mathsf{S}_m-2m\right)}{\log_2B}}{\sqrt{2m}}\leq a\right)$$

3x + 1 and Benford

Theorem (Kontorovich and M-, 2005)

As $m \to \infty$, $x_m/(3/4)^m x_0$ is Benford.

Theorem (Lagarias-Soundararajan 2006)

 $X \ge 2^N$, for all but at most $c(B)N^{-1/36}X$ initial seeds the distribution of the first N iterates of the 3x + 1 map are within $2N^{-1/36}$ of the Benford probabilities.

• Failed Proof: lattices, bad errors.

- Failed Proof: lattices, bad errors.
- CLT: $(S_m 2m)/\sqrt{2m} \to N(0, 1)$:

$$\mathbb{P}\left(\mathsf{S}_m-2m=k\right)=\frac{\eta(k/\sqrt{m})}{\sqrt{m}}+\mathsf{O}\left(\frac{1}{g(m)\sqrt{m}}\right).$$

- Failed Proof: lattices, bad errors.
- CLT: $(S_m 2m)/\sqrt{2m} \to N(0, 1)$:

$$\mathbb{P}\left(S_m-2m=k\right)=\frac{\eta(k/\sqrt{m})}{\sqrt{m}}+O\left(\frac{1}{g(m)\sqrt{m}}\right).$$

Quantified Equidistribution:

$$I_{\ell} = \{\ell M, \dots, (\ell+1)M-1\}, M = m^{c}, c < 1/2$$

- Failed Proof: lattices, bad errors.
- CLT: $(S_m 2m)/\sqrt{2m} \to N(0, 1)$:

$$\mathbb{P}\left(S_m-2m=k\right)=\frac{\eta(k/\sqrt{m})}{\sqrt{m}}+O\left(\frac{1}{g(m)\sqrt{m}}\right).$$

• Quantified Equidistribution:

$$I_{\ell} = \{\ell M, \dots, (\ell+1)M-1\}, M = m^c, c < 1/2$$

 $k_1, k_2 \in I_{\ell}: \left| \eta\left(\frac{k_1}{\sqrt{m}}\right) - \eta\left(\frac{k_2}{\sqrt{m}}\right) \right| \text{ small}$

- Failed Proof: lattices, bad errors.
- CLT: $(S_m 2m)/\sqrt{2m} \to N(0, 1)$:

$$\mathbb{P}\left(S_m - 2m = k\right) = \frac{\eta(k/\sqrt{m})}{\sqrt{m}} + O\left(\frac{1}{g(m)\sqrt{m}}\right).$$

• Quantified Equidistribution:

$$\begin{split} &I_{\ell} = \{\ell M, \dots, (\ell+1)M-1\}, \, M = m^c, \, c < 1/2 \\ &k_1, k_2 \in I_{\ell} \colon \left| \eta \left(\frac{k_1}{\sqrt{m}} \right) - \eta \left(\frac{k_2}{\sqrt{m}} \right) \right| \, \text{small} \\ &C = \log_B 2 \, \text{of irrationality type} \, \kappa < \infty ; \end{split}$$

$$\#\{k\in I_\ell: \overline{kC}\in [a,b]\}=M(b-a)+O(M^{1+\epsilon-1/\kappa}).$$

Irrationality Type

Irrationality type

 α has irrationality type κ if κ is the supremum of all γ with

$$\underline{\lim}_{q\to\infty}q^{\gamma+1}\min_{p}\left|\alpha-\frac{p}{q}\right|=0.$$

- Algebraic irrationals: type 1 (Roth's Thm).
- Theory of Linear Forms: log₈ 2 of finite type.

Linear Forms

Theorem (Baker)

 $\alpha_1, \ldots, \alpha_n$ algebraic numbers height $A_j \geq 4$, $\beta_1, \ldots, \beta_n \in \mathbb{Q}$ with height at most $B \geq 4$,

$$\Lambda = \beta_1 \log \alpha_1 + \cdots + \beta_n \log \alpha_n.$$

If
$$\Lambda \neq 0$$
 then $|\Lambda| > B^{-C\Omega \log \Omega'}$, with $d = [\mathbb{Q}(\alpha_i, \beta_j) : \mathbb{Q}]$, $C = (16nd)^{200n}$, $\Omega = \prod_j \log A_j$, $\Omega' = \Omega/\log A_n$.

Gives $\log_{10} 2$ of finite type, with $\kappa < 1.2 \cdot 10^{602}$:

$$|\log_{10} 2 - p/q| = |q \log 2 - p \log 10|/q \log 10.$$

Quantified Equidistribution

Theorem (Erdös-Turan)

$$D_{N} = \frac{\sup_{[a,b]} |N(b-a) - \#\{n \leq N : x_{n} \in [a,b]\}|}{N}$$

There is a C such that for all m:

$$D_N \leq C \cdot \left(\frac{1}{m} + \sum_{h=1}^m \frac{1}{h} \left| \frac{1}{N} \sum_{n=1}^N e^{2\pi i h x_n} \right| \right)$$

Proof of Erdös-Turan

Consider special case $x_n = n\alpha$, $\alpha \notin \mathbb{Q}$.

- Exponential sum $\leq \frac{1}{|\sin(\pi h\alpha)|} \leq \frac{1}{2||h\alpha||}$.
- Must control $\sum_{h=1}^{m} \frac{1}{h||h\alpha||}$, see irrationality type enter.
- type κ , $\sum_{h=1}^{m} \frac{1}{h||h\alpha||} = O(m^{\kappa-1+\epsilon})$, take $m = \lfloor N^{1/\kappa} \rfloor$.

3x + 1 Data: random 10,000 digit number, $2^k ||3x + 1|$

80,514 iterations $((4/3)^n = a_0 \text{ predicts } 80,319);$ $\chi^2 = 13.5 \text{ (5\% } 15.5).$

Digit	Number	Observed	Benford
1	24251	0.301	0.301
2	14156	0.176	0.176
3	10227	0.127	0.125
4	7931	0.099	0.097
5	6359	0.079	0.079
6	5372	0.067	0.067
7	4476	0.056	0.058
8	4092	0.051	0.051
9	3650	0.045	0.046

3x + 1 Data: random 10,000 digit number, 2|3x + 1

241,344 iterations, $\chi^2 = 11.4$ (5% 15.5).

Digit	Number	Observed	Benford
1	72924	0.302	0.301
2	42357	0.176	0.176
3	30201	0.125	0.125
4	23507	0.097	0.097
5	18928	0.078	0.079
6	16296	0.068	0.067
7	13702	0.057	0.058
8	12356	0.051	0.051
9	11073	0.046	0.046

5x + 1 Data: random 10,000 digit number, $2^{k}||5x + 1|$

27,004 iterations, $\chi^2 = 1.8$ (5% 15.5).

Digit	Number	Observed	Benford
1	8154	0.302	0.301
2	4770	0.177	0.176
3	3405	0.126	0.125
4	2634	0.098	0.097
5	2105	0.078	0.079
6	1787	0.066	0.067
7	1568	0.058	0.058
8	1357	0.050	0.051
9	1224	0.045	0.046

5x + 1 Data: random 10,000 digit number, 2|5x + 1

241,344 iterations, $\chi^2 = 3 \cdot 10^{-4}$ (5% 15.5).

Digit	Number	Observed	Benford
1	72652	0.301	0.301
2	42499	0.176	0.176
3	30153	0.125	0.125
4	23388	0.097	0.097
5	19110	0.079	0.079
6	16159	0.067	0.067
7	13995	0.058	0.058
8	12345	0.051	0.051
9	11043	0.046	0.046

Products and Chains of Random Variables

Key Ingredients

- Mellin transform and Fourier transform related by logarithmic change of variable.
- Poisson summation from collapsing to modulo 1 random variables.

Preliminaries

• Ξ_1, \ldots, Ξ_n nice independent r.v.'s on $[0, \infty)$.

Preliminaries

- Ξ_1, \ldots, Ξ_n nice independent r.v.'s on $[0, \infty)$.
- Density $\Xi_1 \cdot \Xi_2$:

$$\int_0^\infty f_2\left(\frac{x}{t}\right)f_1(t)\frac{dt}{t}$$

Preliminaries

- Ξ_1, \ldots, Ξ_n nice independent r.v.'s on $[0, \infty)$.
- Density $\Xi_1 \cdot \Xi_2$:

$$\int_0^\infty f_2\left(\frac{x}{t}\right)f_1(t)\frac{dt}{t}$$

♦ Proof: Prob($\Xi_1 \cdot \Xi_2 \in [0, x]$):

$$\int_{t=0}^{\infty} \operatorname{Prob}\left(\Xi_{2} \in \left[0, \frac{x}{t}\right]\right) f_{1}(t) dt$$

$$= \int_{t=0}^{\infty} F_{2}\left(\frac{x}{t}\right) f_{1}(t) dt,$$

differentiate.

Mellin Transform

$$(\mathcal{M}f)(s) = \int_0^\infty f(x)x^s \frac{dx}{x}$$

 $(\mathcal{M}^{-1}g)(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} g(s)x^{-s}ds$
 $g(s) = (\mathcal{M}f)(s), f(x) = (\mathcal{M}^{-1}g)(x).$

$$(f_1 \star f_2)(x) = \int_0^\infty f_2\left(\frac{x}{t}\right) f_1(t) \frac{dt}{t}$$

$$(\mathcal{M}(f_1 \star f_2))(s) = (\mathcal{M}f_1)(s) \cdot (\mathcal{M}f_2)(s).$$

Mellin Transform Formulation: Products Random Variables

Theorem

 X_i 's independent, densities f_i . $\Xi_n = X_1 \cdots X_n$,

$$h_n(x_n) = (f_1 \star \cdots \star f_n)(x_n)$$

 $(\mathcal{M}h_n)(s) = \prod_{m=1}^n (\mathcal{M}f_m)(s).$

As $n \to \infty$, Ξ_n becomes Benford: $Y_n = \log_B \Xi_n$, $|\operatorname{Prob}(Y_n \bmod 1 \in [a,b]) - (b-a)| \le$

$$(b-a)\cdot \sum_{\ell\neq 0,\ell=-\infty}^{\infty} \prod_{m=1}^{n} (\mathcal{M} \mathit{f}_{i}) \left(1-\frac{2\pi i\ell}{\log B}\right).$$

Conditions

• $\{\mathcal{D}_i(\theta)\}_{i\in I}$: one-parameter distributions, densities $f_{\mathcal{D}_i(\theta)}$ on $[0,\infty)$.

Conditions

- $\{\mathcal{D}_i(\theta)\}_{i\in I}$: one-parameter distributions, densities $f_{\mathcal{D}_i(\theta)}$ on $[0,\infty)$.
- $\bullet \ p: \mathbb{N} \to I, \ X_1 \sim \mathcal{D}_{p(1)}(1), \ X_m \sim \mathcal{D}_{p(m)}(X_{m-1}).$

Conditions

- $\{\mathcal{D}_i(\theta)\}_{i\in I}$: one-parameter distributions, densities $f_{\mathcal{D}_i(\theta)}$ on $[0,\infty)$.
- $p: \mathbb{N} \to I$, $X_1 \sim \mathcal{D}_{p(1)}(1)$, $X_m \sim \mathcal{D}_{p(m)}(X_{m-1})$.
- $m \ge 2$,

$$f_m(x_m) = \int_0^\infty f_{\mathcal{D}_{p(m)}(1)}\left(\frac{x_m}{x_{m-1}}\right) f_{m-1}(x_{m-1}) \frac{dx_{m-1}}{x_{m-1}}$$

Conditions

- $\{\mathcal{D}_i(\theta)\}_{i\in I}$: one-parameter distributions, densities $f_{\mathcal{D}_i(\theta)}$ on $[0,\infty)$.
- ullet $p: \mathbb{N} \to I, X_1 \sim \mathcal{D}_{p(1)}(1), X_m \sim \mathcal{D}_{p(m)}(X_{m-1}).$
- $m \geq 2$,

$$f_m(x_m) = \int_0^\infty f_{\mathcal{D}_{p(m)}(1)}\left(\frac{x_m}{x_{m-1}}\right) f_{m-1}(x_{m-1}) \frac{dx_{m-1}}{x_{m-1}}$$

$$\lim_{n\to\infty}\sum_{\ell=-\infty}^{\infty}\,\prod_{m=1}^{n}(\mathcal{M}f_{\mathcal{D}_{p(m)}(1)})\left(1-\frac{2\pi i\ell}{\log B}\right)\;=\;0$$

Theorem (JKKKM)

- If conditions hold, as $n \to \infty$ the distribution of leading digits of X_n tends to Benford's law.
- The error is a nice function of the Mellin transforms: if $Y_n = \log_B X_n$, then

$$|\operatorname{Prob}(Y_n \mod 1 \in [a, b]) - (b + a)| \le$$

$$\left| (b - a) \cdot \sum_{\substack{\ell = -\infty \ \ell \neq 0}}^{\infty} \prod_{m=1}^{n} (\mathcal{M} f_{\mathcal{D}_{p(m)}(1)}) \left(1 - \frac{2\pi i \ell}{\log B} \right) \right|$$

Example: All $X_i \sim \text{Exp}(1)$

- $X_i \sim \operatorname{Exp}(1), \ Y_n = \log_B \Xi_n$.
- Needed ingredients:

•
$$|P_n(s) - \log_{10}(s)| \le$$

$$\log_B s \sum_{\ell=1}^{\infty} \left(\frac{2\pi^2 \ell / \log B}{\sinh(2\pi^2 \ell / \log B)} \right)^{n/2}.$$

Example: All $X_i \sim \text{Exp}(1)$

Bounds on the error

- $|P_n(s) \log_{10} s| \le$ • $3.3 \cdot 10^{-3} \log_B s$ if n = 2, • $1.9 \cdot 10^{-4} \log_B s$ if n = 3,
 - $\diamond 1.1 \cdot 10^{-5} \log_B s$ if n = 5, and
 - $\diamond 3.6 \cdot 10^{-13} \log_B s \text{ if } n = 10.$
- Error at most

$$\log_{10} s \sum_{\ell=1}^{\infty} \left(\frac{17.148\ell}{\exp(8.5726\ell)} \right)^{n/2} \le .057^n \log_{10} s$$

Conclusions

See many different systems exhibit Benford behavior.

- See many different systems exhibit Benford behavior.
- Ingredients of proofs (logarithms, equidistribution).

- See many different systems exhibit Benford behavior.
- Ingredients of proofs (logarithms, equidistribution).
- Applications to fraud detection / data integrity.

- See many different systems exhibit Benford behavior.
- Ingredients of proofs (logarithms, equidistribution).
- Applications to fraud detection / data integrity.
- Future work:
 - Study digits of other systems.
 - Develop more sophisticated tests for fraud.

- A. K. Adhikari, Some results on the distribution of the most significant digit, Sankhyā: The Indian Journal of Statistics, Series B **31** (1969), 413–420.
- A. K. Adhikari and B. P. Sarkar, *Distribution of most significant digit in certain functions whose arguments are random variables*, Sankhyā: The Indian Journal of Statistics, Series B **30** (1968), 47–58.
- R. N. Bhattacharya, Speed of convergence of the n-fold convolution of a probability measure ona compact group, Z. Wahrscheinlichkeitstheorie verw. Geb. **25** (1972), 1–10.
- F. Benford, *The law of anomalous numbers*, Proceedings of the American Philosophical Society **78** (1938), 551–572.
- A. Berger, Leonid A. Bunimovich and T. Hill, One-dimensional dynamical systems and Benford's Law, Trans. Amer. Math. Soc. 357 (2005), no. 1, 197–219.

- A. Berger and T. Hill, *Newton's method obeys Benford's law*, The Amer. Math. Monthly **114** (2007), no. 7, 588-601.
- J. Boyle, An application of Fourier series to the most significant digit problem Amer. Math. Monthly **101** (1994), 879–886.
- J. Brown and R. Duncan, *Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences*, Fibonacci Quarterly **8** (1970) 482–486.
- P. Diaconis, *The distribution of leading digits and uniform distribution mod 1*, Ann. Probab. **5** (1979), 72–81.
- W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, second edition, John Wiley & Sons, Inc., 1971.

- R. W. Hamming, *On the distribution of numbers*, Bell Syst. Tech. J. **49** (1970), 1609-1625.
- T. Hill, *The first-digit phenomenon*, American Scientist **86** (1996), 358–363.
- T. Hill, A statistical derivation of the significant-digit law, Statistical Science **10** (1996), 354–363.
- P. J. Holewijn, On the uniform distribuiton of sequences of random variables, Z. Wahrscheinlichkeitstheorie verw. Geb. 14 (1969), 89–92.
- W. Hurlimann, Benford's Law from 1881 to 2006: a bibliography, http://arxiv.org/abs/math/0607168.
- D. Jang, J. U. Kang, A. Kruckman, J. Kudo and S. J. Miller, Chains of distributions, hierarchical Bayesian models and Benford's Law, preprint.

- E. Janvresse and T. de la Rue, *From uniform distribution to Benford's law*, Journal of Applied Probability **41** (2004) no. 4, 1203–1210.
- A. Kontorovich and S. J. Miller, *Benford's Law, Values of L-functions and the* 3x + 1 *Problem*, Acta Arith. **120** (2005), 269–297.
- D. Knuth, *The Art of Computer Programming, Volume 2:* Seminumerical Algorithms, Addison-Wesley, third edition, 1997.
- J. Lagarias and K. Soundararajan, Benford's Law for the 3x + 1 Function, J. London Math. Soc. (2) **74** (2006), no. 2, 289–303.
- S. Lang, *Undergraduate Analysis*, 2nd edition, Springer-Verlag, New York, 1997.

- P. Levy, L'addition des variables aléatoires définies sur une circonférence, Bull. de la S. M. F. **67** (1939), 1–41.
- E. Ley, On the peculiar distribution of the U.S. Stock Indices Digits, The American Statistician **50** (1996), no. 4, 311–313.
- R. M. Loynes, Some results in the probabilistic theory of asympototic uniform distributions modulo 1, Z. Wahrscheinlichkeitstheorie verw. Geb. **26** (1973), 33–41.
- S. J. Miller, When the Cramér-Rao Inequality provides no information, to appear in Communications in Information and Systems.
- S. J. Miller and M. Nigrini, *The Modulo 1 Central Limit Theorem* and Benford's Law for Products, International Journal of Algebra **2** (2008), no. 3, 119–130.
- S. J. Miller and M. Nigrini, *Differences between Independent Variables and Almost Benford Behavior*, preprint. http://arxiv.org/abs/math/0601344

- S. J. Miller and R. Takloo-Bighash, *An Invitation to Modern Number Theory*, Princeton University Press, Princeton, NJ, 2006.
- S. Newcomb, *Note on the frequency of use of the different digits in natural numbers*, Amer. J. Math. **4** (1881), 39-40.
- M. Nigrini, Digital Analysis and the Reduction of Auditor Litigation Risk. Pages 69–81 in Proceedings of the 1996 Deloitte & Touche / University of Kansas Symposium on Auditing Problems, ed. M. Ettredge, University of Kansas, Lawrence, KS, 1996.
- M. Nigrini, *The Use of Benford's Law as an Aid in Analytical Procedures*, Auditing: A Journal of Practice & Theory, **16** (1997), no. 2, 52–67.
- M. Nigrini and S. J. Miller, Benford's Law applied to hydrology data results and relevance to other geophysical data, Mathematical Geology 39 (2007), no. 5, 469–490.

- R. Pinkham, On the Distribution of First Significant Digits, The Annals of Mathematical Statistics **32**, no. 4 (1961), 1223-1230.
- R. A. Raimi, *The first digit problem*, Amer. Math. Monthly **83** (1976), no. 7, 521–538.
- H. Robbins, On the equidistribution of sums of independent random variables, Proc. Amer. Math. Soc. 4 (1953), 786–799.
- H. Sakamoto, On the distributions of the product and the quotient of the independent and uniformly distributed random variables, Tôhoku Math. J. **49** (1943), 243–260.
- P. Schatte, On sums modulo 2π of independent random variables, Math. Nachr. **110** (1983), 243–261.

- P. Schatte, On the asymptotic uniform distribution of sums reduced mod 1, Math. Nachr. **115** (1984), 275–281.
- P. Schatte, On the asymptotic logarithmic distribution of the floating-point mantissas of sums, Math. Nachr. **127** (1986), 7–20.
- E. Stein and R. Shakarchi, *Fourier Analysis: An Introduction*, Princeton University Press, 2003.
- M. D. Springer and W. E. Thompson, *The distribution of products of independent random variables*, SIAM J. Appl. Math. **14** (1966) 511–526.
- K. Stromberg, *Probabilities on a compact group*, Trans. Amer. Math. Soc. **94** (1960), 295–309.
- P. R. Turner, *The distribution of leading significant digits*, IMA J. Numer. Anal. **2** (1982), no. 4, 407–412.