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Interesting Question

Interesting Question
For a nice data set, such as the Fibonacci numbers, what
percent of the leading digits are 1?
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For a nice data set, such as the Fibonacci numbers, what
percent of the leading digits are 1?

Plausible answers:10%, 11%
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Interesting Question

Interesting Question
For a nice data set, such as the Fibonacci numbers, what
percent of the leading digits are 1?

Plausible answers:10%, 11%, about 30%.

6



Introduction General Theory Copulas Conclusions

Summary

State Benford’s Law.

Discuss examples and applications.

Sketch proofs.

Describe open problems.
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Caveats!

A math test indicating fraud is not proof of fraud:
unlikely events, alternate reasons.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.
⋄ Oscillates between 1/9 and 5/9 with first digit 1.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.
⋄ Oscillates between 1/9 and 5/9 with first digit 1.
⋄ Many streets of different sizes: close to Benford.
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Examples

recurrence relations

special functions (such as n!)

iterates of power, exponential, rational maps

products of random variables

L-functions, characteristic polynomials

iterates of the 3x + 1 map

differences of order statistics

hydrology and financial data

many hierarchical Bayesian models
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Applications

analyzing round-off errors

determining the optimal way to store
numbers

detecting tax and image fraud, and data
integrity
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General Theory
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Mantissas

Mantissa: x = M10(x) · 10k , k integer.

M10(x) = M10(x̃) if and only if x and x̃ have the
same leading digits.

Key observation: log10(x) = log10(x̃) mod 1 if
and only if x and x̃ have the same leading digits.
Thus often study y = log10 x .
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.
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Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

2.0

n
√
π mod 1 for n ≤ 10
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Example of Equidistribution: n
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 1000
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 10, 000
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1log 2 � log 10
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1

1 102

log 2 � log 10
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Examples

2n is Benford base 10 as log10 2 6∈ Q.
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Examples

2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.

Approximation: an ≈ 1√
5

(
1+

√
5

2

)n
.
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.

Write-off limit of $5,000. Officer had friends
applying for credit cards, ran up balances
just under $5,000 then he would write the
debts off.
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Copulas and
Benford’s Law
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Definition of Copulas
Copula: A form of joint CDF between multiple
variables with given uniform marginals on the
d-dimensional unit cube.

Sklar’s Theorem
Let X and Y be random variables with joint
distribution function H and marginal distribution
fucntions F and G respectively. There exists a
copula, C, such that

∀x , y ∈ R, H(x , y) = C(F (x),G(y)).
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Archimedean Copulas
A commonly used / studied family of copulas is
of the form

C(x , y) = φ−1(φ(x) + φ(y))

where φ is the generator and φ−1 is the inverse
generator of the copula.
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Investigating the Benfordness of the product of
random variables arising from copulas.

Clayton Copula: C(x , y) = (x−θ + y−θ − 1)−1/θ.

PDF (bivariate): θ(θ−1 + 1)(xy)−θ−1(x−θ + y−θ − 1)−2−1/θ .

PDF (general case):
θn−1 Γ(n+θ−1)

Γ(1+θ−1)
(x1 · · · xn)

−θ−1(x−θ
1 + · · ·+ x−θ

n − 1)−n−1/θ .
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Results

Early data and chi-square tests of multivariate copulas suggest
Benford behavior of the products of copulas.

Proof strategy includes the integration of the PDF over the region
in which the product has first digit d using Poisson summation:

∫ 1

0
· · ·

∫ 1

0

∑

k

φ̂log10(x1···xn)(k)p(x1, . . . , xn)dx1 · · · dxn,

where

φa(u) = χ[1,2)(10u+a) =

{
1 if 10u+a ∈ [1, 2)

0 otherwise.
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Conclusions
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Conclusions and Future Investigations

See many different systems exhibit Benford
behavior.

Ingredients of proofs (logarithms,
equidistribution).

Applications to fraud detection / data
integrity.
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