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Introduction

Interesting Question
For a nice data set, such as the Fibonacci numbers, stock
prices, street addresses of Smith professors, ..., what
percent of the leading digits are 1?

Plausible answers:
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Introduction

Interesting Question
For a nice data set, such as the Fibonacci numbers, stock
prices, street addresses of Smith professors, ..., what
percent of the leading digits are 1?

Plausible answers: 10%
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Introduction

Interesting Question
For a nice data set, such as the Fibonacci numbers, stock
prices, street addresses of Smith professors, ..., what
percent of the leading digits are 1?

Plausible answers: 10%, 11%
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Introduction

Interesting Question
For a nice data set, such as the Fibonacci numbers, stock
prices, street addresses of Smith professors, ..., what
percent of the leading digits are 1?

Plausible answers: 10%, 11%, about 30%.
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Summary

State Benford’s Law.

Discuss examples and applications.

Sketch proofs.

Describe open problems.
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Caveats!

A math test indicating fraud is not proof of fraud:
unlikely events, alternate reasons.
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Caveats!

A math test indicating fraud is not proof of fraud:
unlikely events, alternate reasons.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.
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Statement
For many data sets, probability of observing a first digit of
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; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.

11



Introduction General Theory Applications 3x + 1 Copulas Conclusions

Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.
⋄ Oscillates between 1/9 and 5/9 with first digit 1.
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Benford’s Law: Newcomb (1881), Benford (1938)

Statement
For many data sets, probability of observing a first digit of
d base B is logB

(
d+1

d

)
; base 10 about 30% are 1s.

Not all data sets satisfy Benford’s Law.
⋄ Long street [1, L]: L = 199 versus L = 999.
⋄ Oscillates between 1/9 and 5/9 with first digit 1.
⋄ Many streets of different sizes: close to Benford.
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Examples

recurrence relations

special functions (such as n!)

iterates of power, exponential, rational maps

products of random variables

L-functions, characteristic polynomials

iterates of the 3x + 1 map

differences of order statistics

hydrology and financial data

many hierarchical Bayesian models
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Applications

analyzing round-off errors

determining the optimal way to store
numbers

detecting tax and image fraud, and data
integrity
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General Theory
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Mantissas (or Significands)

x mod 1 means the fractional part of x : x − ⌊x⌋.
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Mantissas (or Significands)

x mod 1 means the fractional part of x : x − ⌊x⌋.

Mantissa: x = M10(x) · 10k , k integer.
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Mantissas (or Significands)

x mod 1 means the fractional part of x : x − ⌊x⌋.

Mantissa: x = M10(x) · 10k , k integer.

M10(x) = M10(x̃) if and only if x and x̃ have the
same leading digits.

19



Introduction General Theory Applications 3x + 1 Copulas Conclusions

Mantissas (or Significands)

x mod 1 means the fractional part of x : x − ⌊x⌋.

Mantissa: x = M10(x) · 10k , k integer.

M10(x) = M10(x̃) if and only if x and x̃ have the
same leading digits.

Key observation: log10(x) = log10(x̃) mod 1 if
and only if x and x̃ have the same leading digits.
Thus often study y = log10 x .
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.

Proof: if rational: 2 = 10p/q.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a, b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a, b]}
N

→ b − a.

Thm: β 6∈ Q, nβ is equidistributed mod 1.

Examples: log10 2, log10

(
1+

√
5

2

)
6∈ Q.

Proof: if rational: 2 = 10p/q.
Thus 2q = 10p or 2q−p = 5p, impossible.
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

2.0

n
√
π mod 1 for n ≤ 10
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 100
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 1000
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Example of Equidistribution: n
√
π mod 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

n
√
π mod 1 for n ≤ 10, 000
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1log 2 � log 10
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is
equidistributed mod 1, where yi = logB xi .

0 1

1 102

log 2 � log 10
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Examples

2n is Benford base 10 as log10 2 6∈ Q.
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2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
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2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
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Examples

2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
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Examples

2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.
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Examples

2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .
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Examples

2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.
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Examples

2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
an+1 = an + an−1.
Guess an = rn: rn+1 = rn + rn−1 or r2 = r + 1.
Roots r = (1 ±

√
5)/2.

General solution: an = c1rn
1 + c2rn

2 .

Binet: an = 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
.

Most linear recurrence relations Benford.
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Digits of 2n

First 60 values of 2n (only displaying 30)
1 1024 1048576 digit # Obs Prob Benf Prob
2 2048 2097152 1 18 .300 .301
4 4096 4194304 2 12 .200 .176
8 8192 8388608 3 6 .100 .125

16 16384 16777216 4 6 .100 .097
32 32768 33554432 5 6 .100 .079
64 65536 67108864 6 4 .067 .067

128 131072 134217728 7 2 .033 .058
256 262144 268435456 8 5 .083 .051
512 524288 536870912 9 1 .017 .046
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Digits of 2n

First 60 values of 2n (only displaying 30)
1 1024 1048576 digit # Obs Prob Benf Prob
2 2048 2097152 1 18 .300 .301
4 4096 4194304 2 12 .200 .176
8 8192 8388608 3 6 .100 .125

16 16384 16777216 4 6 .100 .097
32 32768 33554432 5 6 .100 .079
64 65536 67108864 6 4 .067 .067

128 131072 134217728 7 2 .033 .058
256 262144 268435456 8 5 .083 .051
512 524288 536870912 9 1 .017 .046
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Digits of 2n

First 60 values of 2n (only displaying 30): 210 = 1024 ≈ 103.
1 1024 1048576 digit # Obs Prob Benf Prob
2 2048 2097152 1 18 .300 .301
4 4096 4194304 2 12 .200 .176
8 8192 8388608 3 6 .100 .125

16 16384 16777216 4 6 .100 .097
32 32768 33554432 5 6 .100 .079
64 65536 67108864 6 4 .067 .067

128 131072 134217728 7 2 .033 .058
256 262144 268435456 8 5 .083 .051
512 524288 536870912 9 1 .017 .046

43



Introduction General Theory Applications 3x + 1 Copulas Conclusions

Logarithms and Benford’s Law

χ2 values for αn, 1 ≤ n ≤ N (5% 15.5).
N χ2(γ) χ2(e) χ2(π)

100 0.72 0.30 46.65
200 0.24 0.30 8.58
400 0.14 0.10 10.55
500 0.08 0.07 2.69
700 0.19 0.04 0.05
800 0.04 0.03 6.19
900 0.09 0.09 1.71

1000 0.02 0.06 2.90
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Logarithms and Benford’s Law: Base 10

log10(χ
2) vs N for πn (red) and en (blue),

n ∈ {1, . . . ,N}. Note π175 ≈ 1.0028 · 1087, (5%
and 8 d.f., log10(χ

2) ≈ .44).
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Applications
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Applications for the IRS: Detecting Fraud
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Applications for the IRS: Detecting Fraud
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 4
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49

51



Introduction General Theory Applications 3x + 1 Copulas Conclusions

Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.
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Detecting Fraud

Bank Fraud
Audit of a bank revealed huge spike of
numbers starting with 48 and 49, most due
to one person.

Write-off limit of $5,000. Officer had friends
applying for credit cards, ran up balances
just under $5,000 then he would write the
debts off.
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Data Integrity: Stream Flow Statistics: 130 years, 457,440 records

54



Introduction General Theory Applications 3x + 1 Copulas Conclusions

Election Fraud: Iran 2009

Numerous protests/complaints over Iran’s 2009
elections.
Lot of analysis; data moderately suspicious:

First and second leading digits;

Last two digits (should almost be uniform);

Last two digits differing by at least 2.

Warning: enough tests, even if nothing wrong
will find a suspicious result (but when all tests
are on the boundary...).
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The 3x + 1 Problem
and

Benford’s Law
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3x + 1 Problem

Kakutani (conspiracy), Erdös (not ready).

x odd, T (x) = 3x+1
2k , 2k ||3x + 1.

Conjecture: for some n = n(x), T n(x) = 1.

7 →1 11 →1 17 →2 13 →3 5 →4 1 →2 1
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3x + 1 and Benford

Theorem (Kontorovich and M–, 2005)
As m → ∞, xm/(3/4)mx0 is Benford.

Theorem (Lagarias-Soundararajan 2006)

X ≥ 2N , for all but at most c(B)N−1/36X initial
seeds the distribution of the first N iterates of
the 3x + 1 map are within 2N−1/36 of the
Benford probabilities.
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Sketch of the proof

Failed Proof: lattices, bad errors.

CLT: (Sm − 2m)/
√

2m → N(0, 1):

P (Sm − 2m = k) =
η(k/

√
m)√

m
+ O

(
1

g(m)
√

m

)
.

Quantified Equidistribution: Iℓ = {ℓM, . . . , (ℓ+ 1)M − 1},
M = mc , c < 1/2

k1, k2 ∈ Iℓ:
∣∣∣η

(
k1√

m

)
− η

(
k2√

m

)∣∣∣ small

C = logB 2 of irrationality type κ < ∞:

#{k ∈ Iℓ : kC ∈ [a, b]} = M(b − a) + O(M1+ǫ−1/κ).
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Sketch of the proof

Failed Proof: lattices, bad errors.

CLT: (Sm − 2m)/
√

2m → N(0, 1):

P (Sm − 2m = k) =
η(k/

√
m)√

m
+ O

(
1

g(m)
√

m

)
.

Quantified Equidistribution: Iℓ = {ℓM, . . . , (ℓ+ 1)M − 1},
M = mc , c < 1/2

k1, k2 ∈ Iℓ:
∣∣∣η

(
k1√

m

)
− η

(
k2√

m

)∣∣∣ small

C = logB 2 of irrationality type κ < 1.2 · 10602 < ∞:

#{k ∈ Iℓ : kC ∈ [a, b]} = M(b − a) + O(M1+ǫ−1/κ).
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3x + 1 Data: random 10,000 digit number, 2k ||3x + 1

80,514 iterations ((4/3)n = a0 predicts 80,319);
χ2 = 13.5 (5% 15.5).

Digit Number Observed Benford
1 24251 0.301 0.301
2 14156 0.176 0.176
3 10227 0.127 0.125
4 7931 0.099 0.097
5 6359 0.079 0.079
6 5372 0.067 0.067
7 4476 0.056 0.058
8 4092 0.051 0.051
9 3650 0.045 0.046
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3x + 1 Data: random 10,000 digit number, 2|3x + 1

241,344 iterations, χ2 = 11.4 (5% 15.5).

Digit Number Observed Benford
1 72924 0.302 0.301
2 42357 0.176 0.176
3 30201 0.125 0.125
4 23507 0.097 0.097
5 18928 0.078 0.079
6 16296 0.068 0.067
7 13702 0.057 0.058
8 12356 0.051 0.051
9 11073 0.046 0.046
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Copulas and Benford’s Law
(joint with Thealexa Becker ’13)
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Definition of Copulas
Copula: A form of joint CDF between multiple
variables with given uniform marginals on the
d-dimensional unit cube.

Sklar’s Theorem
Let X and Y be random variables with joint
distribution function H and marginal distribution
fucntions F and G respectively. There exists a
copula, C, such that

for all x , y ∈ R, H(x , y) = C(F (x),G(y)).
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Archimedean Copulas
A commonly used / studied family of copulas is
of the form

C(x , y) = φ−1(φ(x) + φ(y))

where φ is the generator and φ−1 is the inverse
generator of the copula.
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Investigating the Benfordness of the product of
random variables arising from copulas.

Clayton Copula: C(x , y) = (x−θ + y−θ − 1)−1/θ.

PDF (bivariate): θ(θ−1 + 1)(xy)−θ−1(x−θ + y−θ − 1)−2−1/θ .

PDF (general case):
θn−1 Γ(n+θ−1)

Γ(1+θ−1)
(x1 · · · xn)

−θ−1(x−θ
1 + · · ·+ x−θ

n − 1)−n−1/θ .
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Results

Early data and chi-square tests of multivariate copulas suggest
Benford behavior of the products of copulas.

Proof strategy includes the integration of the PDF over the region
in which the product has first digit d using Poisson summation:

∫ 1

0
· · ·

∫ 1

0

∑

k

φ̂log10(x1···xn)(k)p(x1, . . . , xn)dx1 · · · dxn,

where

φa(u) = χ[1,2)(10u+a) =

{
1 if 10u+a ∈ [1, 2)

0 otherwise.
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Conclusions
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Conclusions and Future Investigations

Many different systems are Benford.

Ingredients of proofs (logarithms,
equidistribution).

Applications to fraud detection / data
integrity.

Future work:
⋄ Study digits of other systems.
⋄ Develop more sophisticated tests for fraud.
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