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What is the Langlands program?

Conjectures relating many areas of math.

Proposed by Robert P. Langlands about 50 years ago.
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Automorphic Forms

A modular form of weight k is a complex-valued function f on the
upper half-plane H = {z ∈ C, Im(z) > 0} (z = a + bi with b > 0),
satisfying the following three conditions:

1 For any z in H and any matrix
(
a b
c d

)
in SL2(Z), f satisfies the

equation f
(
az+b
cz+d

)
= (cz + d)k f (z).

2 f is a holomorphic (complex analytic) function on H.

3 f satisfies certain growth conditions at the cusps.

Automorphic forms generalize modular forms.
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Langlands’ Functoriality Conjecture

Conjecture 1.1

Given two reductive groups H, G with a homomorphism LH →L G,
there exists a related transfer of automorphic forms on H to
automorphic forms on G Π(H)→ Π(G ).
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What are L-functions?

Diverse families of functions attached to arithmetic objects, for
example:

Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
for <s > 1,

useful in studying distribution of primes.

Dirichlet L-function

L(s, χ) =
∞∑
n=1

χ(n)

ns
for <s > 1,

where χ is a Dirichlet’s character, i.e. homomorphism
χ : (Z/NZ)× → S1. Useful in studying distribution of primes
in arithmetic progression.
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What are L-functions?

Dedekind zeta function: associated to a number field E ,
i.e., finite degree field extension of Q.

ζE (s) =
∑
a

1

NE/Q(a)s
,

for <s > 1, where the sum is over all non-zero integral ideals of E .
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Artin L-function: associated to a Galois representation.

Definition 2.1

Let E be a number field. Let ρ : Gal(E/Q)→ GL(d ,C) be a finite
dimensional Galois representation. The Artin L-function associated
to ρ is given in terms of the Euler product:

L(s, ρ) =
∏
p

det(I − ρ(Frp)p−s)−1,

where Frp is the Frobenius element in Gal(E/Q).

Denote by σE the Artin representation obtained from the
factorization ζE (s) = ζQ(s)L(s, σE ), where ζQ is the Riemann zeta
function.
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Essential Properties of L-functions

Series expansion for <s > 1.

Euler product for <s > 1:

ζ(s) =
∏
p

(1− p−s)−1,

L(s, χ) =
∏
p

(1− χ(p)p−s)−1,

ζE (s) =
∏
p

1

1− NE/Q(p)s
.
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Essential Properties of L-functions

Can be completed by ‘gamma factors’. The completed
L-functions are meromorphic on C with at most poles at
s = 0 and s = 1 and they satisfy functional equations.
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Functional Equations of ζ(s)

Gamma factor: γ(s) = π−s/2Γ(s/2).

Completion: Λ(s) = γ(s)ζ(s).

Functional equation: Λ(s) = Λ(1− s).

Λ(s) is analytic on C except with a simple pole at s = 1.
Also, Ress=1 ζ(s) = 1.

Riemann Hypothesis: all non-trivial zeros lie on the critical
line Re(s) = 1

2 . Such a result would provide results on the
distribution of prime numbers.
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Functional Equation of L(s, χ)

For a primitive character χ (i.e., not induced by any character of
smaller modulus), we have the following.

Gamma factor: γ(s) = π−s/2Γ((s + δ)/2), where δ = 0 if
χ(−1) = 1 and δ = 1 if χ(−1) = −1.

Completion Λ(s) = qs/2γ(s)L(s, χ), where q is the modulus of
χ.

Functional equation Λ(s, χ) = τ(χ)√
q Λ(1− s, χ̄).

L(s, χ) is entire if χ 6= χ0. If χ = χ0, then L(s, χ) is analytic
on C except having a simple pole at s = 1.
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Functional equation of ζE (s) (Hecke)

Gamma factor: γ(s) = ΓR(s)r1ΓC(s)2r2 , where
ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s), r1 and 2r2 are
the number of real and complex places of the number field E .

Completion: ΛE (s) = |DE |s/2γ(s)ζE (s), where DE is the
discriminant of the number field E .

Functional equation ΛE (s) = ΛE (1− s). ζ(E ) is analytic on C
except with a simple pole at s = 1.
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Ress=1 ζE (s) is very interesting and it connects many
fundamental quantities of algebraic number theory.

r1 is the number of real places of E ,

2r2 is the number of complex places of E (r1 + 2r2 = n),

hE is the class number of E ,

RE is the regulator of E ,

wE is the number of roots of unity in E

Theorem 2.2 (Class Number Formula)

Ress=1 ζE (s) =
2r1(2π)r2hERE

wE

√
|DE |

.
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Arthur-Selberg Trace Formula

Definition 2.3 (Right Regular Representation of G )

The right regular representation of group G on L2(Γ \ G ), denoted
by R, is defined by

R(y)φ(x) = φ(xy),

where x , y ∈ G, φ ∈ L2(Γ \ G ).

Definition 2.4 (Right Regular Operator)

Let f ∈ Cc(G ). We define the right regular operator R(f ) on
L2(Γ \ G ) as follows: for φ ∈ L2(Γ \ G ), we have

R(f )φ(x) =

∫
G
f (x)R(y)φ(x)dy =

∫
G
f (y)φ(xy)dy .
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Let Qp denote the p-adic field (p being a prime), Q∞ := R.
Together they give all of the completions of Q.

The ring of adeles is the restricted direct product of all Qp,
where p ≤ ∞. We denote the ring of adeles by A.

In this way A is locally compact and we can assign a Haar
measure on G (A), where G = GL(n).
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Arthur-Selberg Trace Formula

γ ∈ G (Q) is said to be elliptic if its characteristic polynomial
is irreducible over Q.

Denote by Gγ the centralizer of γ in G .

Theorem 2.5 (Elliptic Part of Arthur-Selberg Trace Tormula)

trR(f ) =
∑
γ ell

meas(γ)

∫
Gγ(A)\G(A)

f (g−1γg)dg + · · ·

=
∑
γ ell

meas(γ)
∏
v

∫
Gγ(Qv )\G(Qv )

fv (g−1γg)dgv .+ · · ·
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Idea of Beyond Endoscopy and L-functions

Given an automorphic form π on G and a representation r of
LG , one can define an automorphic L-function

L(s, π, r) =
∞∑
n=1

aπ,r (n)

ns
.

Let G , G
′

be reductive groups. If an automorphic form π on
G is a functorial transfer from a smaller G ′, then one expects
the L-function L(s, π, r) to have a pole at s = 1 for some
representation r of LG .

In particular, the order of pole of L(s, π, r) at s = 1, which we
denote by mr (π), should be nonzero if and only if π is a
transfer.
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Idea of Beyond Endoscopy and L-functions

Langlands’ idea is to weight the spectral terms in the stable
trace formula by mr (π), resulting in a trace formula whose
spectral side detects only π for which the mr (π) is nonzero.

Since in general L(s, π, r) is not a priori defined at s = 1, we
account for the weight factor by taking the residue at s = 1 of
the logarithmic derivative of L(s, π, r).
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Outline of Altuğ’s work

Apply Poisson summation to the elliptic part of the trace
formula.

This isolates the contribution from trivial representation,
which should give us the major contribution.

Give other versions of trace formula to be used in detecting
the functorial transfer.
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Our goal: Carry out the analysis of Altuğ to GL(n).

Obstacle: We cannot directly apply Poisson summation
formula!

There are singularities from the real orbital integrals.
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Our Work

By using the Class Number Formula, we have

meas(γ) = meas(Z+Gγ(Q)\Gγ(A))

= meas(E×\I 1
E )

=
2r1(2π)r2hERE

wE

=
√
|DE | L(1, σE ).
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Using the CNF, we can write the elliptic part of the trace formula
as follows:∑
±pk

∑
tr(γ),...,tr(γn−1)

1

|sγ |
L(1, σE )|Dγ |1/2Orb(f∞; γ)

∏
q

Orb(fq; γ).
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Approximate functional equation of Artin L-function

Assuming Artin’s conjecture, we can write the approximate
functional equation of L(1, σE ).
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L(s, ρ) =
∑
n

λρ(n)

ns
1

2πi

∫
(3)

(
n

X
√
q

)−u
G (u)

π−d(s+u)n/2 Γ
(
s+u

2

)d++2dr2

Γ
(
s+u+1

2

)d−+2dr2

π−d(s)n/2 Γ
(
s
2

)d++2dr2

Γ
(
s+1

2

)d−+2dr2

du

u
+ ε(ρ)q

1
2
−s

π−d(1−s)n/2 Γ
(

1−s
2

)d++2dr2

Γ
(

2−s
2

)d−+2dr2

π−d(s)n/2 Γ
(
s
2

)d++2dr2

Γ
(
s+1

2

)d−+2dr2

∑
n

λ̄ρ(n)

n1−s
1

2πi

∫
(3)

(
nX
√
q

)−u

G (u)
π−d(1−s+u)n/2 Γ

(
1−s+u

2

)d++2dr2

Γ
(

2−s+u
2

)d−+2dr2

π−d(1−s)n/2 Γ
(

1−s
2

)d++2dr2

Γ
(

2−s
2

)d−+2dr2

du

u
.
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Our work

Recall our form of the elliptic part of the trace formula∑
±pk

∑
tr(γ),...,tr(γn−1)

1

|sγ |
L(1, σE )|Dγ |1/2Orb(f∞; γ)

∏
q

Orb(fq; γ).

By applying the AFE and using some results of Shelstad on real
orbital integrals [Shelstad 1979], we get

Theorem 1

Assume Artin’s conjecture. Then

L(1, σE )|Dγ |1/2Orb(f∞; γ)

is smooth. This result is unconditional for n = 2, 3.
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What we’d like to do

Work with a general reductive group instead of GL(n).

Study the product of p-adic orbital integrals.

Apply Poisson summation to the resulting smooth expression.
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