Bias: ECs

# Biases in Moments of Satake Parameters and Models for L-function Zeros

Steven J. Miller (Williams) and Kevin Yang (Harvard) sjm1@williams.edu, kevinyang@college.harvard.edu http://web.williams.edu/Mathematics/similler/public html/

> Maine-Québec Number Theory Conference Orono, Maine, October 3, 2015

Bias: ECs

## Bias Conjecture for Elliptic Curves

With Blake Mackall (Williams), Christina Rapti (Bard) and Karl Winsor (Michigan)

Emails: Blake.R.Mackall@williams.edu, cr9060@bard.edu, krlwnsr@umich.edu.

#### **Last Summer: Families and Moments**

Bias: ECs

A one-parameter family of elliptic curves is given by

$$\mathcal{E}: y^2 = x^3 + A(T)x + B(T)$$

where A(T), B(T) are polynomials in  $\mathbb{Z}[T]$ .

- Each specialization of T to an integer t gives an elliptic curve  $\mathcal{E}(t)$  over  $\mathbb{O}$ .
- The r<sup>th</sup> moment of the Fourier coefficients is

$$A_{r,\mathcal{E}}(p) = \sum_{t \mod p} a_{\mathcal{E}(t)}(p)^r.$$

### **Negative Bias in the First Moment**

Bias: ECs

# $A_{1,\mathcal{E}}(p)$ and Family Rank (Rosen-Silverman)

If Tate's Conjecture holds for  $\mathcal{E}$  then

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p< X}\frac{A_{1,\mathcal{E}}(p)\log p}{p}\ =\ -\mathrm{rank}(\mathcal{E}/\mathbb{Q}).$$

 By the Prime Number Theorem,  $A_{1,\mathcal{E}}(p) = -rp + O(1)$  implies rank $(\mathcal{E}/\mathbb{Q}) = r$ .

### **Bias Conjecture**

Bias: ECs

## **Second Moment Asymptotic (Michel)**

For families  $\mathcal{E}$  with j(T) non-constant, the second moment is

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}).$$

• The lower order terms are of sizes  $p^{3/2}$ , p,  $p^{1/2}$ , and 1.

### Bias Conjecture

Bias: ECs

## Second Moment Asymptotic (Michel)

For families  $\mathcal{E}$  with j(T) non-constant, the second moment is

$$A_{2,\mathcal{E}}(p) = p^2 + O(p^{3/2}).$$

• The lower order terms are of sizes  $p^{3/2}$ , p,  $p^{1/2}$ , and 1.

In every family we have studied, we have observed:

# **Bias Conjecture**

The largest lower term in the second moment expansion which does not average to 0 is on average **negative**.

## **Preliminary Evidence and Patterns**

Bias: ECs

Let  $n_{3,2,p}$  equal the number of cube roots of 2 modulo p, and set  $c_0(p) = \left[ \left( \frac{-3}{p} \right) + \left( \frac{3}{p} \right) \right] p$ ,  $c_1(p) = \left[ \sum_{x \bmod p} \left( \frac{x^3 - x}{p} \right) \right]^2$ ,  $c_{3/2}(p) = p \sum_{x(p)} \left( \frac{4x^3+1}{p} \right).$ 

 $y^2 = x^3 + Tx^2 - (T+3)x + 1$   $-2c_{p,1;4}p$   $p^2 - 4c_{p,1;6}p - 1$ where  $c_{p,a;m} = 1$  if  $p \equiv a \mod m$  and otherwise is 0.

### Lower order terms and average rank

$$\frac{1}{N} \sum_{t=N}^{2N} \sum_{\gamma_t} \phi\left(\gamma_t \frac{\log R}{2\pi}\right) = \widehat{\phi}(0) + \phi(0) - \frac{2}{N} \sum_{t=N}^{2N} \sum_{p} \frac{\log p}{\log R} \frac{1}{p} \widehat{\phi}\left(\frac{\log p}{\log R}\right) a_t(p) - \frac{2}{N} \sum_{t=N}^{2N} \sum_{p} \frac{\log p}{\log R} \frac{1}{p^2} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) a_t(p)^2 + O\left(\frac{\log \log R}{\log R}\right).$$

- $\phi(x) > 0$  gives upper bound average rank.
- Expect big-Oh term Ω(1/log R).

### Implications for Excess Rank

- Katz-Sarnak's one-level density statistic is used to measure the average rank of curves over a family.
- More curves with rank than expected have been observed, though this excess average rank vanishes in the limit.
- Lower-order biases in the moments of families explain a small fraction of this excess rank phenomenon.

### Methods for Obtaining Explicit Formulas

For a family  $\mathcal{E}: y^2 = x^3 + A(T)x + B(T)$ , we can write

$$a_{\mathcal{E}(t)}(p) = -\sum_{\substack{x \mod p}} \left( \frac{x^3 + A(t)x + B(t)}{p} \right)$$

where  $\left(\frac{\cdot}{p}\right)$  is the Legendre symbol mod p given by

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \text{ is a non-zero square modulo } p \\ 0 & \text{if } x \equiv 0 \bmod p \\ -1 & \text{otherwise.} \end{cases}$$

### **Lemmas on Legendre Symbols**

# **Linear and Quadratic Legendre Sums**

$$\sum_{x \mod p} \left( \frac{ax + b}{p} \right) = 0 \quad \text{if } p \nmid a$$

$$\sum_{x \mod p} \left( \frac{ax^2 + bx + c}{p} \right) = \begin{cases} -\left(\frac{a}{p}\right) & \text{if } p \nmid b^2 - 4ac \\ (p - 1)\left(\frac{a}{p}\right) & \text{if } p \mid b^2 - 4ac \end{cases}$$

# **Average Values of Legendre Symbols**

The value of  $\left(\frac{x}{p}\right)$  for  $x \in \mathbb{Z}$ , when averaged over all primes p, is 1 if x is a non-zero square, and 0 otherwise.

#### Rank 0 Families

Bias: ECs

00000000000

# Theorem (MMRW'14): Rank 0 Families Obeying the Bias Conjecture

For families of the form  $\mathcal{E}: y^2 = x^3 + ax^2 + bx + cT + d$ .

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(1 + \left(\frac{-3}{p}\right) + \left(\frac{a^2 - 3b}{p}\right)\right).$$

• The average bias in the size p term is -2 or -1, according to whether  $a^2 - 3b \in \mathbb{Z}$  is a non-zero square.

#### Families with Rank

Bias: ECs

## Theorem (MMRW'14): Families with Rank

For families of the form  $\mathcal{E}: y^2 = x^3 + aT^2x + bT^2$ ,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(1 + \left(\frac{-3}{p}\right) + \left(\frac{-3a}{p}\right)\right) - \left(\sum_{x(p)} \left(\frac{x^3 + ax}{p}\right)\right)^2.$$

- These include families of rank 0. 1. and 2.
- The average bias in the size p terms is -3 or -2, according to whether  $-3a \in \mathbb{Z}$  is a non-zero square.

#### Families with Rank

Bias: ECs

# Theorem (MMRW'14): Families with Complex Multiplication

For families of the form  $\mathcal{E}: y^2 = x^3 + (aT + b)x$ ,

$$A_{2,\mathcal{E}}(p) = (p^2 - p) \left(1 + \left(\frac{-1}{p}\right)\right).$$

- The average bias in the size p term is -1.
- The size  $p^2$  term is not constant, but is on average  $p^2$ , and an analogous Bias Conjecture holds.

### Families with Unusual Distributions of Signs

# Theorem (MMRW'14): Families with Unusual Signs

For the family  $\mathcal{E}: y^2 = x^3 + Tx^2 - (T+3)x + 1$ ,

$$A_{2,\mathcal{E}}(p) = p^2 - p\left(2 + 2\left(\frac{-3}{p}\right)\right) - 1.$$

- The average bias in the size p term is -2.
- The family has an usual distribution of signs in the functional equations of the corresponding *L*-functions.

# The Size $p^{3/2}$ Term

Bias: ECs

## Theorem (MMRW'14): Families with a Large Error

For families of the form

$$\mathcal{E}: y^2 = x^3 + (T+a)x^2 + (bT+b^2-ab+c)x - bc,$$

$$A_{2,\mathcal{E}}(p) = p^2 - 3p - 1 + p \sum_{x \mod p} \left( \frac{-cx(x+b)(bx-c)}{p} \right)$$

- The size  $p^{3/2}$  term is given by an elliptic curve coefficient and is thus on average 0.
- The average bias in the size p term is -3.

#### **General Structure of the Lower Order Terms**

## The lower order terms appear to always

- have no size p<sup>3/2</sup> term or a size p<sup>3/2</sup> term that is on average 0;
- exhibit their negative bias in the size p term;
- be determined by polynomials in p, elliptic curve coefficients, and congruence classes of p (i.e., values of Legendre symbols).

# Bias Conjecture for Elliptic Curves

With Megumi Asada and Eva Fourakis (Williams)

Emails: maa2@williams.edu, erf1@williams.edu.

### **Summary of Results**

- Dirichlet characters of prime level: bias +1.
- Holomorphic cusp forms: bias -1/2.
- $r^{\text{th}}$  Symmetric Power  $\mathcal{F}_{r,X,\delta,q}$ : bias +1/48.

## Dirichlet Family $\mathcal{F}_{a}$

Bias: ECs

### **Definition**

Prime  $q \in \mathbb{Z}$  and  $\mathcal{F}_q = \{\chi \neq \chi_0(q)\}$  is the family of nontrivial Dirichlet characters of conductor q. The second moment at p is

$$M_2(\mathcal{F}_q; p) := \sum_{\chi \in \mathcal{F}_q} \chi^2(p).$$

Goal: Compute asymptotics for the sum

$$\mathit{M}_{2,\mathit{X}}(\mathcal{F}_q) = \sum_{\mathit{p}<\mathit{X}} \mathit{M}_2(\mathcal{F}_q;\mathit{p}) = \sum_{\mathit{p}<\mathit{X}} \sum_{\chi \in \mathcal{F}_q} \chi^2(\mathit{p}).$$

# Results for $\mathcal{F}_q$

Bias: ECs

### **Theorem**

Family  $\mathcal{F}_q$  has positive bias in the second moment of +1.

# Results for $\mathcal{F}_a$

Bias: ECs

#### Theorem

Family  $\mathcal{F}_a$  has positive bias in the second moment of +1.

Have  $M_2(\mathcal{F}_q; p) := \sum_{\gamma \in \mathcal{F}_q} \chi^2(p)$ .

From orthogonality relations:

$$M_2(\mathcal{F}_q; p) = \begin{cases} q-2 & \text{if } p \equiv \pm 1(q); \\ -1 & \text{if } p \not\equiv \pm 1(q), \end{cases}$$

Thus

$$\sum_{p < X} \; \textit{M}_{2}(\mathcal{F}_{q}; p) \; = \; \sum_{\substack{p < X \\ p \equiv \pm 1(q)}} (q - 2) \; - \; \sum_{\substack{p < X \\ p \not\equiv \pm 1(q)}} 1 \, .$$

Main term size  $\pi(X)$ .

### **Cuspidal Newforms**

Bias: ECs

Fix level q = 1. For weight k, consider an orthonormal basis  $\mathcal{B}_{k,q}(\chi_0)$  of  $\mathcal{H}_{k,q}(\chi_0)$ , the space of holomorphic cusp forms on the surface  $\Gamma_0 \setminus \mathfrak{h}$  of level k and trivial nebentypus.

Family

$$\mathcal{F}_X := \bigcup_{\substack{k < X \\ k \equiv 0(2)}} \mathcal{B}_{k,q=1}(\chi_0).$$

#### **An Important Tool: Petersson Trace Formula**

For any  $n, m \ge 1$ , we have

$$\frac{\Gamma(k-1)}{(4\pi\rho)^{k-1}} \sum_{f \in B_{k,q}(\chi_0)} |\lambda_f(p)|^2 = \delta(p,p) + 2\pi i^{-k} \sum_{c \equiv 0(q)} \frac{S_c(p,p)}{c} J_{k-1}\left(\frac{4\pi p}{c}\right)$$

where  $\lambda_f(n)$  is the *n*-th Hecke eigenvalue of f,  $\delta(m,n)$  is Kronecker's delta,  $S_c(m,n)$  is the classical Kloosterman sum, and  $J_{k-1}(t)$  is the k-Bessel function.

### Cusp Newform: $\mathcal{F}_{< X}$

Bias: ECs

We gain asymptotic control over  $J_{k-1}(t)$  by averaging over even weights k.

### Cusp Newform: $\mathcal{F}_{< X}$

Bias: ECs

We gain asymptotic control over  $J_{k-1}(t)$  by averaging over even weights k.

$$M_2(\mathcal{F}_X; p) = \sum_{k^* < X} M_2(H_{k,1}(\chi_0); p) = \sum_{k^* < X} \sum_{f \in \mathcal{B}_{k,1}(\chi_0)} |\lambda_f(p)|^2$$

where  $\sum_{k^* < X}$  denotes summing over even k.

### Cusp Newform: $\mathcal{F}_{< X}$

Bias: ECs

We gain asymptotic control over  $J_{k-1}(t)$  by averaging over even weights k.

$$M_2(\mathcal{F}_X; p) = \sum_{k^* < X} M_2(H_{k,1}(\chi_0); p) = \sum_{k^* < X} \sum_{f \in \mathcal{B}_{k,1}(\chi_0)} |\lambda_f(p)|^2$$

where  $\sum_{k^* < X}$  denotes summing over even k.

#### **Theorem**

Let  $\varphi \in C_0^\infty(\mathbb{R}_{>0})$  be real-valued, and let X>1. Then

$$4\sum_{k=0(2)} \varphi\left(\frac{k-1}{X}\right) J_{k-1}(t) = \varphi\left(\frac{t}{X}\right) + \frac{t}{6X^3} \varphi^{(2)}\left(\frac{t}{X}\right)$$

97

## Cusp Newform: $\mathcal{F}_{<X}$

Bias: ECs

To handle  $S_c(m, n)$ , we instead compute

$$M_2(\mathcal{F}_X; \delta) = \sum_{p < X^{\delta}} M_2(\mathcal{F}_X; p) \cdot \log p.$$

After several substitutions and iterations of integration by parts,

$$M_2(\mathcal{F}_X;\delta) = \frac{1}{2}X^{1+\delta} - \frac{X^{1+\delta}}{2\log^2 X^{\delta}} + O\left(\frac{X^{1+\delta}}{\log^3 X^{\delta}}\right)$$

yields a bias of -1/2.

### Varying the Level: $\mathcal{F}_X$ ; $\delta$ ; $\epsilon$

Bias: ECs

### Can also vary the level:

$$\begin{split} M_2(\mathcal{F}_X; \delta; \varepsilon) &= \sum_{q < X^{\varepsilon}} M_2(\mathcal{F}_{q,X}; \delta) \\ &= \sum_{q < X^{\varepsilon}} \sum_{p < X^{\delta}} \sum_{k^* < X} \sum_{f \in B_{k,q}(\chi_0)} |\lambda_f(p)|^2 \cdot \log p \\ &= \frac{1}{2} X^{1+\delta+\varepsilon} - \frac{X^{1+\delta+\varepsilon}}{2 \log^2 X^{\delta}} + O\left(\frac{X^{1+\delta+\varepsilon}}{\log^3 X^{\delta}}\right). \end{split}$$

## Symmetric Lift Family

Bias: ECs

Fix a square-free level q and study for  $\delta > 0$ 

$$\mathcal{F}_{r,X,\delta,q} = \bigcup_{k < X^{\delta}} \operatorname{Sym}^{r} \left[ \operatorname{H}_{k,q}^{*}(\chi_{0}) \right].$$

Second moment: for  $\varepsilon > 0$ :

$$M_{2,\varepsilon}(\mathcal{F}_{r,X,\delta,q}) = \frac{1}{\varphi(q)} \sum_{\rho < X^{\varepsilon}} \sum_{k < X^{\delta}} \left( \sum_{f \in H_{k,q}^{*}(\chi_{0})} \lambda_{\operatorname{Sym}^{r}f}^{2}(\rho) \right),$$

find bias of +1/48 in

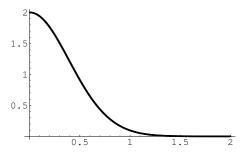
$$M_{2,\varepsilon}(\mathcal{F}_{r,X,\delta}) = \lim_{\substack{q \to \infty \ q \text{ sign-free}}} M_{2,\varepsilon}(\mathcal{F}_{r,X,\delta,q}).$$

#### Finite Conductor Models at Central Point

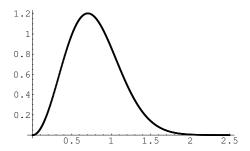
With Owen Barrett and Blaine Talbut (Chicago) and Gwyn Moreland (Michigan)

**Emails:** owen.barrett@yale.edu, gwynm@umich.edu, blainetalbut@gmail.com.

Excised Orthogonal Ensemble joint with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith. Numerical experiments ongoing with Nathan Ryan.



1st normalized evalue above 1: SO(even)



1st normalized evalue above 1: SO(odd)

#### Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

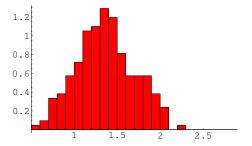


Figure 4a: 209 rank 0 curves from 14 rank 0 families,  $log(cond) \in [3.26, 9.98], median = 1.35, mean = 1.36$ 

#### Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

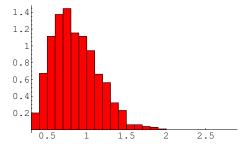


Figure 4b: 996 rank 0 curves from 14 rank 0 families,  $log(cond) \in [15.00, 16.00], median = .81, mean = .86.$ 

## Spacings b/w Norm Zeros: Rank 0 One-Param Families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- $z_i = \text{imaginary part of } i^{\text{th}}$  normalized zero above the central point;
- 863 rank 0 curves from the 14 one-param families of rank 0 over ℚ(T);
- 701 rank 2 curves from the 21 one-param families of rank 0 over  $\mathbb{O}(T)$ .

|                    | 863 Rank 0 Curves | 701 Rank 2 Curves | t-Statistic |
|--------------------|-------------------|-------------------|-------------|
| Median $z_2 - z_1$ | 1.28              | 1.30              |             |
| Mean $z_2 - z_1$   | 1.30              | 1.34              | -1.60       |
| StDev $z_2 - z_1$  | 0.49              | 0.51              |             |
| Median $z_3 - z_2$ | 1.22              | 1.19              |             |
| Mean $z_3 - z_2$   | 1.24              | 1.22              | 0.80        |
| StDev $z_3 - z_2$  | 0.52              | 0.47              |             |
| Median $z_3 - z_1$ | 2.54              | 2.56              |             |
| Mean $z_3 - z_1$   | 2.55              | 2.56              | -0.38       |
| StDev $z_3 - z_1$  | 0.52              | 0.52              |             |

# Spacings b/w Norm Zeros: Rank 2 one-param families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- $z_i = \text{imaginary part of the } i^{\text{th}} \text{ norm zero above the central point;}$
- 64 rank 2 curves from the 21 one-param families of rank 2 over ℚ(T);
- 23 rank 4 curves from the 21 one-param families of rank 2 over ℚ(T).

|                    | 64 Rank 2 Curves | 23 Rank 4 Curves | t-Statistic |
|--------------------|------------------|------------------|-------------|
| Median $z_2 - z_1$ | 1.26             | 1.27             |             |
| Mean $z_2 - z_1$   | 1.36             | 1.29             | 0.59        |
| StDev $z_2 - z_1$  | 0.50             | 0.42             |             |
| Median $z_3 - z_2$ | 1.22             | 1.08             |             |
| Mean $z_3 - z_2$   | 1.29             | 1.14             | 1.35        |
| StDev $z_3 - z_2$  | 0.49             | 0.35             |             |
| Median $z_3 - z_1$ | 2.66             | 2.46             |             |
| Mean $z_3 - z_1$   | 2.65             | 2.43             | 2.05        |
| StDev $z_3 - z_1$  | 0.44             | 0.42             |             |



### Rank 2 Curves from Rank 0 & Rank 2 Families over $\mathbb{Q}(T)$

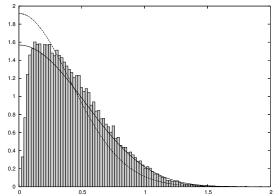
- All curves have log(cond) ∈ [15, 16];
- $z_i = \text{imaginary part of the } i^{\text{th}} \text{ norm zero above the central point;}$
- 701 rank 2 curves from the 21 one-param families of rank 0 over ℚ(T);
- 64 rank 2 curves from the 21 one-param families of rank 2 over  $\mathbb{Q}(T)$ .

|                    | 701 Rank 2 Curves | 64 Rank 2 Curves | t-Statistic |
|--------------------|-------------------|------------------|-------------|
| Median $z_2 - z_1$ | 1.30              | 1.26             |             |
| Mean $z_2 - z_1$   | 1.34              | 1.36             | 0.69        |
| StDev $z_2 - z_1$  | 0.51              | 0.50             |             |
| Median $z_3 - z_2$ | 1.19              | 1.22             |             |
| Mean $z_3 - z_2$   | 1.22              | 1.29             | 1.39        |
| StDev $z_3 - z_2$  | 0.47              | 0.49             |             |
| Median $z_3 - z_1$ | 2.56              | 2.66             |             |
| Mean $z_3 - z_1$   | 2.56              | 2.65             | 1.93        |
| StDev $z_3 - z_1$  | 0.52              | 0.44             |             |

#### New Model for Finite Conductors

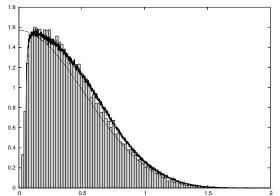
- Replace conductor N with N<sub>effective</sub>.
  - ♦ Arithmetic info, predict with *L*-function Ratios Conj.
  - Do the number theory computation.
- Excised Orthogonal Ensembles.
  - $\diamond L(1/2, E)$  discretized.
  - $\diamond$  Study matrices in SO(2 $N_{eff}$ ) with  $|\Lambda_A(1)| > ce^N$ .
- Painlevé VI differential equation solver.
  - Use explicit formulas for densities of Jacobi ensembles.
  - Key input: Selberg-Aomoto integral for initial conditions.

# Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000



Lowest zero for  $L_{E_{11}}(s, \chi_d)$  (bar chart), lowest eigenvalue of SO(2N) with  $N_{\rm eff}$  (solid), standard  $N_0$  (dashed).

# Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000



Lowest zero for  $L_{E_{11}}(s, \chi_d)$  (bar chart); lowest eigenvalue of SO(2N):  $N_{\rm eff} = 2$  (solid) with discretisation, and  $N_{\rm eff} = 2.32$  (dashed) without discretisation.

## Effective Matrix Size: Families with Unitary Symplectic Monodromy

L-function attached to quadratic Dirichlet character.

$$\diamond L(\chi, s) = \prod_{p < \infty} (1 - \chi(p)p^{-s})^{-1}.$$

L-function attached to symmetric power.

$$\diamond L(\operatorname{Sym}^r f, s) = \prod_{p < \infty} L_p(\operatorname{Sym}^r f, s).$$

Compute 1-level Density: Study distribution of zeros

$$\diamond D_{1,\varphi}(\mathcal{F}) = \#\mathcal{F}^{-1} \cdot \sum_{f \in \mathcal{F}} \sum_{\rho_f = 1/2 + i\gamma_f} \varphi(\gamma_f \cdot \frac{\log Q}{2\pi})$$

#### Integral Representation of One-Level Density

We bound conductors of families by a parameter X For quadratic Dirichlet characters, we have:

#### Theorem

Bias: ECs

The One-Level Density is represented by the integral kernel

$$K(\tau) = 1 - \frac{\sin(2\pi\tau)}{2\pi\tau} + \frac{1 - \cos(2\pi\tau)}{\Lambda^{-1}\log X} + O\left(\frac{1}{\log^2 X}\right)$$

for  $\Lambda < 0$ .

Similarly for the family of quadratic twists of Sym<sup>r</sup> f.

# **Deducing Effective Matrix Size**

Matching with integral kernel of matrix groups.

$$\diamond \frac{\pi}{N} \cdot K_{1,USp(2N)}(t) = 1 - \frac{\sin(2\pi t)}{2\pi t} + \frac{1 - \cos(2\pi t)}{2N} + \dots$$
 
$$\diamond \frac{\pi}{N} \cdot K_{1,SO(2N+1)}(t), \text{ same leading term.}$$

Note

$$\frac{\pi}{N} \cdot (K_{1,SO(2N+1)} - K_{1,USp(2(-N))}) \sim \frac{1 - \cos(2\pi t)}{2N}$$

- Unitary Symplectic Families behave like SO(2N + 1)for bounded X.
- Similarly for quadratic twists of Svm<sup>2</sup>f.

# **Excised Orthogonal Ensemble**

- As before, let  $\mathcal{F}$  be those quadratic twists of L(E,s).
- Idea: interpret  $L(E, \frac{1}{2} + it)$  as an integral kernel.
- Taylor Series expansion:

$$L(E,s) = L(E,\frac{1}{2}) + L'(E,\frac{1}{2})(s-\frac{1}{2}) + \dots$$

- Goal: match power series coefficients with that of  $ch_{\mathcal{H}}(e^{i\theta}).$
- Amalgamate integral kernels together: attach to  $\mathcal{F}$  a product distribution  $\prod_{E \in \mathcal{F}} \int_0^\infty L(E, \frac{1}{2} + it) dt$ .

## **Excised Orthogonal Ensemble (continued)**

#### We deduce

#### **Theorem**

Bias: ECs

Let  $\mathcal{F}_X$  be those quadratic twists of an elliptic curve  $E/\mathbb{Q}$  of conductor N < X. If  $\sup_n \left( \left| L^{(n)}(E, \frac{1}{2}) - ch^{(n)}(1) \right| \right) < \delta$ , then  $\left|D_{1,\mathcal{F}_X}-D_{1,\mathcal{M}_{N(X)}}\right|_{L^2}<\varepsilon.$ 

References

#### References

Bias: ECs

#### Biases:

- 1 and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica 140 (2004), 952-992, http://arxiv.org/pdf/math/0310159.
- Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada 27 (2005), no. 4, 111-120. http://arxiv.org/abs/math/0506461.
- Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15 (2006), no. 3, 257-279. http://arxiv.org/pdf/math/0508150.
- Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137 (2009), 51-98. http://arxiv.org/pdf/0704.0924v4.
- Moments of the rank of elliptic curves (with Siman Wong), Canad. J. of Math. 64 (2012), no. 1, 151–182. http://web.williams.edu/Mathematics/sjmiller/public html/math/papers/ mwMomentsRanksEC812final.pdf

#### References

Bias: ECs

#### Central:

- Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15 (2006), no. 3, 257-279. http://arxiv.org/pdf/math/0508150.pdf.
- The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with Eduardo Dueñez, Duc Khiem Huvnh, Jon Keating and Nina Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010) 405204 (27pp). http://arxiv.org/pdf/1005.1298v2.
- Models for zeros at the central point in families of elliptic curves (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp). http://arxiv.org/pdf/1107.4426.pdf.