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Last Summer: Families and Moments

A one-parameter family of elliptic curves is given by
E:y% = x>+ A(T)x + B(T)
where A(T), B(T) are polynomials in Z[T].

e Each specialization of T to an integer t gives an
elliptic curve £(t) over Q.

e The r'" moment of the Fourier coefficients is

As(P) = D an(p)

t modp
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Negative Bias in the First Moment

Ai ¢(p) and Family Rank (Rosen-Silverman)
If Tate’s Conjecture holds for £ then

lim %ZM — —rank(£/Q).

X—00 p

p<X

@ By the Prime Number Theorem,
A1 e(p) = —rp+ O(1) implies rank(£/Q) = r.
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families £ with j( T) non-constant, the second moment
is
Aze(p) = P*+ O(p%?).

@ The lower order terms are of sizes p®2, p, p'/2, and 1.

OGS —-—s—s
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families £ with j( T) non-constant, the second moment

IS
Aze(p) = P*+ O(p%?).

@ The lower order terms are of sizes p®2, p, p'/2, and 1.
In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion
which does not average to 0 is on average negative.




Bias: ECs
[ ]

Preliminary Evidence and Patterns

Let n3 >, equal the number of cube roots of 2 modulo p,
and set c(p) = [(‘—3) ©)] . e1(0) = [Srmosn (5]
C3/2(P) = P Xy (U5 5

Family A1e(p) Az .
VP=x®4+Sx+T 0 0° -
y2=x3+24(=8)%(9T + 1) 0 2p* —2*’ i
y2=x®+4(4T +2)x 0 2" -2 ‘;_; mod 4
y2 =x +(T+1)x + Tx 0 p 2p —
y2—x +x2 42T +1 0 p 2p — ( %)

y? = x + Tx%+1 -p P% — Ma2pp — 1+ C32(P)
yP=x>—T?x+T¢ —2p pi —p—ci(p) — co(p)
yP=x*-Tx+T* —2p p* —p —ci(p) — co(p)
y2P=x34+Tx® — (T+3)x+1 —2Cp 1.4P p? —4cp1.6p — 1

where ¢, ».m = 1 if p= amod m and otherwise is 0.
TS »HH
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Lower order terms and average rank

1 & log R 0 logp 1~/ logp
N (b(% on ) 9(0) +9(0) - szlong (IogF?) a(p)
2 logp 1 ~/2logp 2 loglog R
N ; p2¢<logf?>a’(p) +O< log AR )

@ ¢(x) > 0 gives upper bound average rank.

@ Expect big-Oh term Q(1/log R).




Bias: ECs
[ ]

Implications for Excess Rank

e Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

@ More curves with rank than expected have been
observed, though this excess average rank vanishes
in the limit.

e Lower-order biases in the moments of families explain
a small fraction of this excess rank phenomenon.
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Methods for Obtaining Explicit Formulas

For a family £ : y2 = x® + A(T)x + B(T), we can write

3
aol®) - — 3 (x +A(t)x+B(t))

x mod p p

where (;) is the Legendre symbol modp given by

1 if x is a non-zero square modulo p

({) =<¢0 ifx=0modp
—1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

> <ax;b) -0 ifpta

X mod p

ax®* +bx+c\ —(§> if pt b? — 4ac
xmzodp< p ) B {(pp1)(g) if p | b? — dac

Average Values of Legendre Symbols

The value of (g) for x € Z, when averaged over all
primes p, is 1 if x is a non-zero square, and 0 otherwise.
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Rank 0 Families

Theorem (MMRW’14): Rank 0 Families Obeying the
Bias Conjecture

For families of the form &£ : y? = x3 + ax? + bx + cT + d,

i -0 (2)(452)

@ The average bias in the size ptermis —2 or —1,
according to whether a2 — 3b € Z is a non-zero
square.
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Families with Rank

Theorem (MMRW’14): Families with Rank
For families of the form & : y?> = x® + aT?x + bT?,

fecp) = = (14 () + () - (S (%))

@ These include families of rank 0, 1, and 2.

@ The average bias in the size p terms is —3 or —2,
according to whether —3a € Z is a non-zero square.
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Families with Rank

Theorem (MMRW’14): Families with Complex
Multiplication

For families of the form £ : y2 = x3 + (aT + b)x,
1
Aze(p) = (P*—p) (1 + (?D.

@ The average bias in the size ptermis —1.

e The size p? term is not constant, but is on average p?,
and an analogous Bias Conjecture holds.
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Families with Unusual Distributions of Signs

Theorem (MMRW’14): Families with Unusual Signhs
For the family £ : y2 = x3 + Tx® — (T + 3)x + 1,

Ase(p) = pz—p(2+2 <%3>) —1.

e The average bias in the size p term is —2.

e The family has an usual distribution of signs in the
functional equations of the corresponding L-functions.
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The Size p°/2 Term

Theorem (MMRW’14): Families with a Large Error

For families of the form
E:y2=x3+ (T +a)x?*+ (bT + b? — ab+ c)x — bc,

Are(p) = PP —3p—1+p —cx(x + b)(bx — c)
X ;od p ( P >

v

e The size p®? term is given by an elliptic curve
coefficient and is thus on average O.

@ The average bias in the size p term is —3.
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General Structure of the Lower Order Terms

The lower order terms appear to always
@ have no size p°/? term or a size p®/? term that is on
average 0;
@ exhibit their negative bias in the size p term;

@ be determined by polynomials in p, elliptic curve
coefficients, and congruence classes of p (i.e., values
of Legendre symbols).
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Bias Conjecture for Elliptic Curves

With Megumi Asada and Eva Fourakis (Williams)

Emails: maa2@williams.edu, erfi@williams.edu.
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Summary of Results

e Dirichlet characters of prime level: bias +1.
@ Holomorphic cusp forms: bias —1/2.

o r'" Symmetric Power F; x s 4: bias +1/48.
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Dirichlet Family 7,

Definition

Prime g € Z and 7, = {x # xo0(q)} is the family of
nontrivial Dirichlet characters of conductor q. The second
moment at p is

Mx(F4; p) ZX

XEFq

Goal: Compute asymptotics for the sum

Mox(Fq) = > Ma(Fip) =D > X*(p)

p<X p<X xEFq
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Results for 7,

Family F, has positive bias in the second moment of +1.
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Results for 7,

Family F, has positive bias in the second moment of +1.

Have My(Fq: p) := 32 c 5, X*(P)-

From orthogonality relations:

—2 ifp=+1(9);
Ms(Fq; p) = { 21 :fg%i'lgg;,

Thus
> My(Fgip) = > (-2 — > 1.
p<X pzpﬁiq) pip;)iq)

Main term size 7(X). O
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Cuspidal Newforms

Fix level g = 1. For weight k, consider an orthonormal
basis Bk q(x0) of Hk q(x0), the space of holomorphic cusp
forms on the surface I'p\h of level k and trivial
nebentypus.

Family
Fx = U By g=1(x0)-

k<X
k=0(2)
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An Important Tool: Petersson Trace Formula

Forany n,m > 1, we have

e S e = syt 3 S0Py (40

k—1 c
(4mP) ™ Bt c=0(q)

where \¢(n) is the n-th Hecke eigenvalue of f,
d(m, n) is Kronecker’s delta,

Sc¢(m, n) is the classical Kloosterman sum, and
Jk—1(t) is the k-Bessel function.
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Cusp Newform: F_x

We gain asymptotic control over J,_+(t) by averaging over
even weights K.
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Cusp Newform: F_x

We gain asymptotic control over J,_+(t) by averaging over
even weights K.

Mo (Fx; p) Z Mo (Hi.1(x0); Z Z |Ar(p

k*<X k*<X fEBk1(X0)

where ) ,._, denotes summing over even K.
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Cusp Newform: F_x

We gain asymptotic control over J,_+(t) by averaging over
even weights K.

Mo (Fx; p) Z Mo (Hi.1(x0); Z Z |Ar(p

k<X k*<X fEBk1(X0)

where ) ,._, denotes summing over even K.

Let p € C3°(R~o) be real-valued, and let X > 1. Then

‘2 (p(k%) Ja(t) = 90()—2) + G_)t(s(p(z) ()_f()
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Cusp Newform: F_x

To handle S.(m, n), we instead compute

Mo (Fx:0) = > M (Fx;p)-logp.

p<X®

After several substitutions and iterations of integration by
parts,

‘ B 1 s X1+5 X1+6
Mo(Fx;d) = EX —2|092X5 + O log® X0

yields a bias of —1/2.
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Varying the Level: Fyx; ;¢

Can also vary the level:

My(Fx;d0,e) = Z Mo (Fq.x; 6)

g<Xe

= D> > > > Mp)P-logp

q<Xe p<XS k*<X feByq4(x0)

B 1X1+5+5 - X1+0+e . O(X1+6+s>
2 2log? X? log®> X3/
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Symmetric Lift Family
Fix a square-free level g and study for 6 > 0

«Fr,X,é,q = U Symr [Hlt,q(XO)} :
k<X$

Second moment: for ¢ > 0:
Mo (Frxsq) = Z Z Z )\gym P |-
p<Xe k<X \feH; ,(xo)
find bias of +1/48 in
Mo (Frxs) = lim Mo (Fr x.5.q)-

q sq—free
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Finite Conductor Models at Central Point

With Owen Barrett and Blaine Talbut (Chicago)
and Gwyn Moreland (Michigan)

Emails: owen.barrett@yale.edu, gwynm@umich.edu,
blainetalbut@gmail.com.

Excised Orthogonal Ensemble joint with Eduardo Dueriez, Duc
Khiem Huynh, Jon Keating and Nina Snaith. Numerical experiments
ongoing with Nathan Ryan.
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RMT: Theoretical Results (N — o)

0.5 1 1.5 2

1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results (N — o)

0.5 1 1.5 2 2.5

1st normalized evalue above 1: SO(odd)
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

o o o o
N o Oy 0 N

1 1.5 2 2.5

Figure 4a: 209 rank 0 curves from 14 rank 0 families,
log(cond) € [3.26,9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

-

o o O o

0.5 1 1.5 2 2.5

Figure 4b: 996 rank 0 curves from 14 rank 0 families,
log(cond) € [15.00, 16.00], median = .81, mean = .86.
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ z = imaginary part of /" normalized zero above the central point;

@ 863 rank 0 curves from the 14 one-param families of rank 0 over Q(T);
@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T).

863 Rank 0 Curves | 701 Rank 2 Curves || t-Statistic
Median 2z, — z 1.28 1.30
Mean 2z — z 1.30 1.34 -1.60
StDev 2z, — z 0.49 0.51
Median zz3 — 2 1.22 1.19
Mean 2z;— 2z 1.24 1.22 0.80
StDev 2z — 2 0.52 0.47
Median z; — z 2.54 2.56
Mean 2z — z 2.55 2.56 -0.38
StDev 2z — 0.52 0.52

QAR
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T)

@ All curves have log(cond) € [15, 16];

@ z = imaginary part of the /" norm zero above the central point;

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T);
@ 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

64 Rank 2 Curves | 23 Rank 4 Curves || t-Statistic
Median z, — z 1.26 1.27
Mean 2z — z 1.36 1.29 0.59
StDev z — z 0.50 0.42
Median z; — 2 1.22 1.08
Mean 2z — 2 1.29 1.14 1.35
StDev 73 — 2 0.49 0.35
Median z; — z 2.66 2.46
Mean 2z — z 2.65 2.43 2.05
StDev z3 — z 0.44 0.42

YT
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ z = imaginary part of the /" norm zero above the central point;

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T);
@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T).

701 Rank 2 Curves | 64 Rank 2 Curves || t-Statistic
Median 2z, — z 1.30 1.26
Mean 2z — z 1.34 1.36 0.69
StDev 2z, — z 0.51 0.50
Median zz3 — 2 1.19 1.22
Mean 2z3 — 2 1.22 1.29 1.39
StDev z3 — 2 0.47 0.49
Median z; — z 2.56 2.66
Mean 2z — z 2.56 2.65 1.93
StDev 2z — 0.52 0.44

e OGS -——
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New Model for Finite Conductors

@ Replace conductor N with Ngecgive-
o Arithmetic info, predict with L-function Ratios Con;.
© Do the number theory computation.

@ Excised Orthogonal Ensembles.
o L(1/2, E) discretized.
o Study matrices in SO(2Ney) with [Aa(1)] > ceV.

@ Painlevé VI differential equation solver.
< Use explicit formulas for densities of Jacobi ensembles.
o Key input: Selberg-Aomoto integral for initial conditions.
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Modeling lowest zero of Lg,, (s, x4) with 0 < d < 400,000

0.8

0.6 |-

04t |

0.2 M
0

05

Lowest zero for Lg,, (S, xq) (bar chart), lowest eigenvalue
of SO(2N) with N, (solid), standard N, (dashed).

15
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Modeling lowest zero of Lg,, (s, x4) with 0 < d < 400,000

0.2 ~‘7
0
0.5

Lowest zero for Lg,, (S, xq) (bar chart); lowest eigenvalue
of SO(2N): N, = 2 (solid) with discretisation, and
N, = 2.32 (dashed) without discretisation.

15
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Effective Matrix Size: Families with Unitary Symplectic Monodromy

e L-function attached to quadratic Dirichlet character.
o L(x,8) = Tpewe (1 = x(PIP~)™".

@ L[-function attached to symmetric power.
o L(Sym'f,s) = [lp<o Lp(Sym'f, s).

@ Compute 1-level Density: Study distribution of zeros
oDy (F) = #F - Srer Yot jaiiy ¢l 29)
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Integral Representation of One-Level Density

We bound conductors of families by a parameter X
¢ For quadratic Dirichlet characters, we have:

Theorem
The One-Level Density is represented by the integral kernel

sin(2n) 1 — cos(27T) 1
K(r) =1 —
™) 2nr A=Tlog X log? X

for A < 0.

Similarly for the family of quadratic twists of Sym'f.
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Deducing Effective Matrix Size

e Matching with integral kernel of matrix groups.

o % - Ko uspan (t) = 1 — 2 4 I=08Em0
o % - Kisoens+1)(t), same leading term.
e Note
T 1 — cos(2rt)

T (K _K B ~
N (K1,so2n+1) 1,USp(2(—N))) 5N

e Unitary Symplectic Families behave like SO(2N + 1)
for bounded X.

e Similarly for quadratic twists of Sym?f.
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Excised Orthogonal Ensemble

@ As before, let F be those quadratic twists of L(E, s).
e Idea: interpret L(E, } + it) as an integral kernel.
e Taylor Series expansion:

1 o1 1
L(E,s) = L(E, §) + L'(E, §)(s — 5) +...
e Goal: match power series coefficients with that of

chy(e”?).
e Amalgamate integral kernels together: attach to F a
product distribution [T » [;° L(E. } + it)at.

A
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Excised Orthogonal Ensemble (continued)

We deduce

Let Fx be those quadratic twists of an elliptic curve E/Q of
conductor N < X. Ifsup, (‘L(”)(E, 1) - ch(”)(1)D < 6, then

HDL]"X - D1»MN(X) , TE

L
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