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Elliptic Curves over Q

Interested in elliptic curves over Q

E/Q : y2 = x3 + ax + b,

a,b ∈ Q and 4a3 + 27b2 ̸= 0, and reduction mod p.

Use the Legendre symbol:

(
x
p

)
:=


1 if x is a non-zero square modulo p
0 if x ≡ 0 mod p
−1 otherwise.
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Hasse’s Theorem

Recall

E(Fp) := {(x , y) : y2 = x3 + ax + b}

#E(Fp) =
∑
x∈Fp

(
1 −

(
x3 + ax + b

p

))
+ 1

= p + 1 −
∑
x∈Fp

(
x3 + ax + b

p

)
.

Define the Frobenius trace as aE(p) := p + 1 −#E(Fp),
have Hasse bound |aE(p)| ≤ 2

√
p.
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Families and Moments

A one-parameter family of elliptic curves is given by

E : y2 = x3 + A(T )x + B(T )

where A(T ),B(T ) are polynomials in Z[T ].

Each specialization of T to an integer t gives an
elliptic curve E(t) over Q.

The r th moment (note not normalizing by 1/p) is

Ar ,E(p) =
∑

t mod p

aE(t)(p)r ,

where aE(t)(p) = p + 1 −#Et(Fp) is the Frobenius
trace of E(t).
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Negative Bias in the First Moment

First moment related to the rank of the elliptic curve family.

A1,E(p) and Family Rank (Rosen-Silverman)
Given technical assumptions (Tate’s conjecture) related to
L-functions associated with E ,

lim
X→∞

1
X

∑
p≤X

A1,E(p) log p
p

= −rank(E/Q).
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Bias Conjecture

The j(T )-invariant is j(T ) = 1728 4A(T )3

4A(T )3+27B(T )2 .

Second Moment Asymptotic (Michel)
For families with j(T ) non-constant, the second moment is

A2,E(p) = p2 + O(p3/2),

with lower order terms of sizes p3/2, p, p1/2, and 1.

In every family studied, observe:

Bias Conjecture
The largest lower term in the second moment expansion
which does not average to 0 is on average negative.
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Comments

Relation with Excess Rank
Lower order negative bias increases the bound for
average rank in families through statistics of zero
densities near the central point.

Unfortunately only a small amount, not enough to
explain observed excess rank.

Results to date
Very special families, Legendre sums computable, not
generic.

Confirmed for additional families by M. Kazalicki and
B. Naskrecki.
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Methods for Obtaining Explicit Formulas

For a family E : y2 = x3 + A(T )x + B(T ), we can write

aE(t)(p) = −
∑

x mod p

(
x3 + A(t)x + B(t)

p

)

where
(

·
p

)
is the Legendre symbol modp given by

(
x
p

)
=


1 if x is a non-zero square modulo p
0 if x ≡ 0 mod p
−1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

∑
x mod p

(
ax + b

p

)
= 0 if p ∤ a

∑
x mod p

(
ax2 + bx + c

p

)
=

−
(

a
p

)
if p ∤ b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac.

Average Values of Legendre Symbols

The value of
(

x
p

)
for x ∈ Z, when averaged over all

primes p, is 1 if x is a non-zero square, and 0 otherwise.
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a
p
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Small Rank
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Moderate Rank
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Rank 6 Family

Rational Surface of Rank 6 over Q(T ):

y2 = x3 + (2aT − B)x2 + (2bT − C)(T 2 + 2T − A + 1)x
+(2cT − D)(T 2 + 2T − A + 1)2

A = 8,916,100,448,256,000,000
B = −811,365,140,824,616,222,208
C = 26,497,490,347,321,493,520,384
D = −343,107,594,345,448,813,363,200
a = 16,660,111,104
b = −1,603,174,809,600
c = 2,149,908,480,000
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Constructing Rank 6 Family

Idea: can explicitly evaluate linear and quadratic
Legendre sums.

Use: a and b are not both zero mod p and p > 2, then for
t ∈ Z

p−1∑
t=0

(
at2 + bt + c

p

)
=

{
(p − 1)

(a
p

)
if p|(b2 − 4ac)

−
(a

p

)
otherwise.

Thus if p|(b2 − 4ac), the summands are
(a(t−t ′)2

p

)
=

(a
p

)
,

and the t-sum is large.
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Constructing Rank 6 Family

y2 = f (x ,T ) = x3T 2 + 2g(x)T − h(x)
g(x) = x3 + ax2 + bx + c, c ̸= 0
h(x) = (A − 1)x3 + Bx2 + Cx + D

DT (x) = g(x)2 + x3h(x).

DT (x) is one-fourth of the discriminant of the quadratic (in
T ) polynomial f (x ,T ).

E not in standard form, as the coefficient of x3 is T 2,
harmless. As y2 = f (x ,T ), for the fiber at T = t :

at(p) = −
∑
x(p)

(
f (x , t)

p

)
= −

∑
x(p)

(
x3t2 + 2g(x)t − h(x)

p

)
.
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Constructing Rank 6 Family

We study −pAE(p) =
∑p−1

x=0

∑p−1
t=0

(f (x ,t)
p

)
.

When x ≡ 0 the t-sum vanishes if c ̸≡ 0, as it is just∑p−1
t=0

(2ct−D
p

)
.

Assume now x ̸≡ 0. By the lemma on Quadratic
Legendre Sums

p−1∑
t=0

(
x3t2 + 2g(x)t − h(x)

p

)
=

{
(p − 1)

(x3

p

)
if p | Dt(x)

−
(x3

p

)
otherwise.

Goal:find coefficients a,b, c,A,B,C,D so that Dt(x) has
six distinct, non-zero roots that are squares.
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Constructing Rank 6 Family

Assume we can find such coefficients. Then

−pAE(p) =

p−1∑
x=0

p−1∑
t=0

(
f (x , t)

p

)
=

p−1∑
x=0

p−1∑
t=0

(
x3t2 + 2g(x)t − h(x)

p

)

=
∑
x=0

p−1∑
t=0

(
f (x , t)

p

)
+

∑
x :Dt (x)≡0

p−1∑
t=0

(
f (x , t)

p

)

+
∑

x :xDt (x) ̸≡0

p−1∑
t=0

(
f (x , t)

p

)

= 0 + 6(p − 1) −
∑

x :xDt (x )̸≡0

(
x3

p

)
= 6p.
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Constructing Rank 6 Family

We must find a, . . . ,D such that Dt(x) has six distinct,
non-zero roots ρ2

i :

Dt(x) = g(x)2 + x3h(x)
= Ax6 + (B + 2a)x5 + (C + a2 + 2b)x4

+ (D + 2ab + 2c)x3

+ (2ac + b2)x2 + (2bc)x + c2

= A(x6 + R5x5 + R4x4 + R3x3 + R2x2 + R1x + R0)

= A(x − ρ2
1)(x − ρ2

2)(x − ρ2
3)(x − ρ2

4)(x − ρ2
5)(x − ρ2

6).
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Constructing Rank 6 Family

Because of the freedom to choose B,C,D there is no
problem matching coefficients for the x5, x4, x3 terms. We
must simultaneously solve in integers

2ac + b2 = R2A
2bc = R1A

c2 = R0A.

For simplicity, take A = 64R3
0 . Then

c2 = 64R4
0 −→ c = 8R2

0
2bc = 64R3

0R1 −→ b = 4R0R1

2ac + b2 = 64R3
0R2 −→ a = 4R0R2 − R2

1 .
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Constructing Rank 6 Family

For an explicit example, take ri = ρ2
i = i2. For these

choices of roots,

R0 = 518400, R1 = −773136, R2 = 296296.

Solving for a through D yields

A = 64R3
0 = 8916100448256000000

c = 8R2
0 = 2149908480000

b = 4R0R1 = −1603174809600
a = 4R0R2 − R2

1 = 16660111104
B = R5A − 2a = −811365140824616222208
C = R4A − a2 − 2b = 26497490347321493520384
D = R3A − 2ab − 2c = −343107594345448813363200
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Constructing Rank 6 Family

We convert y2 = f (x , t) to y2 = F (x ,T ), which is in
Weierstrass normal form. We send y → y

T 2+2T−A+1 ,

x → x
T 2+2T−A+1 , and then multiply both sides by

(T 2 + 2T − A + 1)2. For future reference, we note that

T 2 + 2T − A + 1 = (T + 1 −
√

A)(T + 1 +
√

A)
= (T − t1)(T − t2)
= (T − 2985983999)(T + 2985984001).

We have

f (x, T ) = T 2x3 + (2x3 + 2ax2 + 2bx + 2c)T − (A − 1)x3 − Bx2 − Cx − D

= (T 2 + 2T − A + 1)x3 + (2aT − B)x2 + (2bT − C)x + (2cT − D)

F (x, T ) = x3 + (2aT − B)x2 + (2bT − C)(T 2 + 2T − A + 1)x

+(2cT − D)(T 2 + 2T − A + 1)2.
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Constructing Rank 6 Family

We now study the −pAE(p) arising from y2 = F (x ,T ). It is enough to show
this is 6p + O(1) for all p greater than some p0. Note that t1, t2 are the unique
roots of t2 + 2t − A + 1 ≡ 0 mod p. We find

−pAE(p) =

p−1∑
t=0

p−1∑
x=0

(
F (x , t)

p

)
=

∑
t ̸=t1,t2

p−1∑
x=0

(
F (x , t)

p

)
+
∑

t=t1,t2

p−1∑
x=0

(
F (x , t)

p

)
.

For t ̸= t1, t2, send x −→ (t2 + 2t − A + 1)x . As (t2 + 2t − A + 1) ̸≡ 0,(
(t2+2t−A+1)2

p

)
= 1. Simple algebra yields

−pAE(p) = 6p + O(1) +
∑

t=t1,t2

p−1∑
x=0

(
ft(x)

p

)
+ O(1)

= 6p + O(1) +
∑

t=t1,t2

p−1∑
x=0

(
(2at − B)x2 + (2bt − C)x + (2ct − D)

p

)
.
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Constructing Rank 6 Family

The last sum above is negligible (i.e., is O(1)) if

D(t) = (2bt − C)2 − 4(2at − B)(2ct − D) ̸≡ 0(p).

Calculating yields

D(t1) = 4291243480243836561123092143580209905401856
= 232 · 325 · 75 · 112 · 13 · 19 · 29 · 31 · 47 · 67 · 83 · 97 · 103

D(t2) = 4291243816662452751895093255391719515488256
= 233 · 312 · 7 · 11 · 13 · 41 · 173 · 17389 · 805873 · 9447850813.
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Constructing Rank 6 Family

Hence, except for finitely many primes (coming from factors of D(ti),
a, . . . ,D, t1 and t2), −AE(p) = 6p + O(1) as desired.

We have shown: There exist integers a,b, c,A,B, C,D so that the
curve E : y2 = x3T 2 + 2g(x)T − h(x) over Q(T ), with
g(x) = x3 + ax2 + bx + c and h(x) = (A − 1)x3 + Bx2 + Cx + D, has
rank 6 over Q(T ). In particular, with the choices of a through D
above, E is a rational elliptic surface and has Weierstrass form

y2 = x3 + (2aT − B)x2 + (2bT − C)(T 2 + 2T − A + 1)x

+ (2cT − D)(T 2 + 2T − A + 1)2
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Constructing Rank 6 Family

We show E is a rational elliptic surface by translating
x 7→ x − (2aT − B)/3, which yields
y2 = x3 + A(T )x + B(T ) with deg(A) = 3, deg(B) = 5.

The Rosen-Silverman theorem is applicable, and as we
can compute AE(p), we know the rank is exactly 6 (and
we never need to calculate height matrices). □
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1-Parameter Families
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Preliminary Evidence and Patterns

Let n3,2,p equal the number of cube roots of 2 modulo p,
and set c0(p) =

[(−3
p

)
+
(3

p

)]
p, c1(p) =

[∑
x mod p

(x3−x
p

)]2
,

c3/2(p) = p
∑

x(p)

(4x3+1
p

)
.

Family A1,E(p) A2,E(p)
y2 = x3 + Sx + T 0 p3 − p2

y2 = x3 + 24(−3)3(9T + 1)2 0
{

2p2−2p p≡2 mod 3
0 p≡1 mod 3

y2 = x3 ± 4(4T + 2)x 0
{

2p2−2p p≡1 mod 4
0 p≡3 mod 4

y2 = x3 + (T + 1)x2 + Tx 0 p2 − 2p − 1
y2 = x3 + x2 + 2T + 1 0 p2 − 2p −

(−3
p

)
y2 = x3 + Tx2 + 1 −p p2 − n3,2,pp − 1 + c3/2(p)
y2 = x3 − T 2x + T 2 −2p p2 − p − c1(p)− c0(p)
y2 = x3 − T 2x + T 4 −2p p2 − p − c1(p)− c0(p)

y2 = x3 + Tx2 − (T + 3)x + 1 −2cp,1;4p p2 − 4cp,1;6p − 1
where cp,a;m = 1 if p ≡ a mod m and otherwise is 0.
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Tools: Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

∑
x mod p

(
ax + b

p

)
= 0 if p ∤ a

∑
x mod p

(
ax2 + bx + c

p

)
=

−
(

a
p

)
if p ∤ b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac.

Average Values of Legendre Symbols

The value of
(

x
p

)
for x ∈ Z, when averaged over all

primes p, is 1 if x is a non-zero square, and 0 otherwise.
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Lemma (SMALL ’14)

Consider a one-parameter family of elliptic curves of the form

E : y2 = P(x)T + Q(x),

where P(x),Q(x) ∈ Z[x ] have degrees at most 3. Then the second
moment can be expanded as

A2,E(p) = p

 ∑
P(x)≡0

(
Q(x)

p

)2

−

∑
x(p)

(
P(x)

p

)2

+ p
∑

∆(x,y)≡0

(
P(x)P(y)

p

)

where ∆(x , y) = (P(x)Q(y)− P(y)Q(x))2.

Kazalicki and Naskrecki proved Bias Conjecture for these
families.
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Second Moments of Linear-coefficient Families

We computed explicit formulas for the second moments of
some one-parameter families with linear coefficients in T :

Family A2,E(p)

y2 = (ax + b)(cx2 + dx + e + T )

p2 − p
(

2 +
(

−1
p

))
if p ∤ ad − 2bc

(p2 − p)
(

1 +
(

−1
p

))
if p | ad − 2bc

y2 = (ax2 + bx + c)(dx + e + T )

{
p2 − p

(
1 +

(
b2−4ac

p

))
− 1 if p ∤ b2 − 4ac

p − 1 if p | b2 − 4ac

y2 = x(ax2 + bx + c + dTx) −1 − p
(

ac
p

)
y2 = x(ax + b)(cx + d + Tx) p − 1
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Numerics for Higher Even Moments

Want to compute all higher moments; however, going
beyond the second leads to intractable Legendre sums.
Have some numerical results for higher moments.
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Applications
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Biases in Lower Order Terms

Let n3,2,p equal the number of cube roots of 2 modulo p,
and set c0(p) =

[(−3
p

)
+
(3

p

)]
p, c1(p) =

[∑
x mod p

(x3−x
p

)]2
,

c3/2(p) = p
∑

x(p)

(4x3+1
p

)
.

Family A1,E(p) A2,E(p)
y2 = x3 + Sx + T 0 p3 − p2

y2 = x3 + 24(−3)3(9T + 1)2 0
{

2p2−2p p≡2 mod 3
0 p≡1 mod 3

y2 = x3 ± 4(4T + 2)x 0
{

2p2−2p p≡1 mod 4
0 p≡3 mod 4

y2 = x3 + (T + 1)x2 + Tx 0 p2 − 2p − 1
y2 = x3 + x2 + 2T + 1 0 p2 − 2p −

(−3
p

)
y2 = x3 + Tx2 + 1 −p p2 − n3,2,pp − 1 + c3/2(p)
y2 = x3 − T 2x + T 2 −2p p2 − p − c1(p)− c0(p)
y2 = x3 − T 2x + T 4 −2p p2 − p − c1(p)− c0(p)

y2 = x3 + Tx2 − (T + 3)x + 1 −2cp,1;4p p2 − 4cp,1;6p − 1
where cp,a;m = 1 if p ≡ a mod m and otherwise is 0.
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Biases in Lower Order Terms

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p3.

Note that except for our family y2 = x3 + Tx2 + 1, all the families E have
A2,E(p) = p2 − h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mE > 0.

Note c1(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p ̸≡ 3 mod 4, and zero for
p ≡ 1 mod 4 (send x 7→ −x mod p and note

(−1
p

)
= −1).

It is somewhat remarkable that all these families have a correction to the
main term in Michel’s theorem in the same direction, and we analyze the
consequence this has on the average rank. For our family which has a p3/2

term, note that on average this term is zero and the p term is negative.
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Lower order terms and average rank

1
N

2N∑
t=N

∑
γt

ϕ

(
γt
logR
2π

)
= ϕ̂(0) + ϕ(0)− 2

N

2N∑
t=N

∑
p

log p
logR

1
p
ϕ̂

(
log p
logR

)
at(p)

− 2
N

2N∑
t=N

∑
p

log p
logR

1
p2 ϕ̂

(
2 log p
logR

)
at(p)2 + O

(
log logR
logR

)
.

If ϕ is non-negative, we obtain a bound for the average rank in
the family by restricting the sum to be only over zeros at the
central point. The error O

(
log logR
logR

)
comes from trivial

estimation and ignores probable cancellation, and we expect
O
(

1
logR

)
or smaller to be the correct magnitude. For most

families logR ∼ logNa for some integer a.
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Lower order terms and average rank (cont)

The main term of the first and second moments of the
at(p) give rϕ(0) and −1

2ϕ(0).

Assume the second moment of at(p)2 is p2 − mEp + O(1),
mE > 0.

We have already handled the contribution from p2, and
−mEp contributes

S2 ∼ −2
N

∑
p

log p
logR

ϕ̂

(
2
log p
logR

)
1
p2

N
p
(−mEp)

=
2mE

logR

∑
p

ϕ̂

(
2
log p
logR

)
log p
p2 .

Thus there is a contribution of size 1/ logR.
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Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of
Iwaniec-Luo-Sarnak (ILS)) is the Fourier pair

ϕ(x) =
sin2(2π σ

2 x)
(2πx)2 , ϕ̂(u) =

{
σ−|u|

4 if |u| ≤ σ

0 otherwise.

Note ϕ(0) = σ2

4 , ϕ̂(0) = σ
4 = ϕ(0)

σ
, and evaluating the prime

sum gives

S2 ∼
(
.986
σ

− 2.966
σ2 logR

)
mE

logR
ϕ(0).
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Lower order terms and average rank (cont)

Let rt denote the number of zeros of Et at the central point (i.e., the analytic
rank). Then up to our O

(
log log R
log R

)
errors (which we think should be smaller),

we have

1
N

2N∑
t=N

rtϕ(0) ≤ ϕ(0)
σ

+

(
r +

1
2

)
ϕ(0) +

(
.986
σ

− 2.966
σ2 logR

)
mE

logR
ϕ(0)

Ave Rank[N,2N](E) ≤ 1
σ
+ r +

1
2
+

(
.986
σ

− 2.966
σ2 logR

)
mE

logR
.

σ = 1, mE = 1: for conductors of size 1012, the average rank is bounded by
1 + r + 1

2 + .03 = r + 1
2 + 1.03. This is significantly higher than Fermigier’s

observed r + 1
2 + .40.

σ = 2: lower order correction contributes .02 for conductors of size 1012, the
average rank bounded by 1

2 + r + 1
2 + .02 = r + 1

2 + .52. Now in the ballpark
of Fermigier’s bound (already there without the potential correction term!).
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References
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Thank you!
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Families with Constant j(T )
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Constant j(T )−invariant families

Question: What happens in families with constant j(T )?
E(T ) : y2 = x3 + A(T )x has j(T ) = 1728, ∀T ∈ Z.
E(T ) : y2 = x3 + B(T ) has j(T ) = 0.

For these families we can compute any moment.

Computation is fast when j(T ) is constant.
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j = 0 Curves

Consider E : y2 = x3 + B over Fp.

If p ≡ 2 (mod 3), then aE(p) = 0.

Gauss’ Six-Order Theorem
If p ≡ 1 (mod 3), can write p = a2 + 3b2, a ≡ 2 (mod 3),
b > 0, and

aE(p) =


−2a B is a sextic residue in Fp

2a B cubic, non-sextic residue
a ± 3b B quadratic, non-sextic
−a ± 3b B non-quadratic, non-cubic.
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Moments of One-Parameter j = 0 Families

For r ≥ 0, compute k th moment of ET : y2 = x3 − AT r .

Have Ak (p) = 0 when p ≡ 3(4), and moments determined only by r
(mod 6):

r ≡ 1, 5(6) : Ak (p) =

{
0 k is odd
p−1

3

(
(2a)k + (a − 3b)k + (a + 3b)k) k is even

r ≡ 2, 4(6) : Ak (p) ={
p−1

3

(
(−2a)k + (a − 3b)k + (a + 3b)k) A quadratic residue

p−1
3

(
(2a)k + (−a − 3b)k + (−a + 3b)k) A quadratic nonresidue

r ≡ 3 : Ak (p) =

{
p−1

2

(
(−2a)k + (2a)k) A cubic residue

p−1
2

(
(a ± 3b)k + (−a ∓ 3b)k) A cubic nonresidue.
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j = 1728 Curves

Consider E : y2 = x3 − Ax over Fp.

If p ≡ 3 (mod 4), then aE(p) = 0.

Gauss’ Four-Order Theorem
If p ≡ 1 (mod 4), then write p = a2 + b2, where b is even
and a + b ≡ 1 (mod 4). We have:

aE(p) =


2a A is a quartic residue
−2a A quadratic, non-quartic residue
±2b A not a quadratic residue.
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Moments of One-Parameter j = 1728 Families

For r ≥ 0, consider E(T ) : y2 = x3 − AT r x . When p ≡ 3 (mod 4), all
moments are 0. Have

r ≡ 1, 3(4) : Ak (p) =

{
0 k is odd
(p − 1)2k−1(ak + bk ) k is even

r ≡ 2(4) : Ak (p) =


0 k is odd
(p − 1)(2a)k A quadratic residue, k is even
(p − 1)(2b)k A quadratic nonresidue, k is even

For r ≡ 0(4), we get similar but more elaborate results.
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Bias in L-functions of Cuspidal Newforms
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Cuspidal Newforms

Definition (Holomorphic Form of Weight k , level N)
A holomorphic function f (z) : H → C, of moderate
growth, for which

f
(

az + b
cz + d

)
= (cz + d)k f (z), ∀

(
a b
c d

)
∈ Γ0(N) where

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Modular forms are periodic and have a Fourier expansion, if constant
term equals 0 called a cusp form. A cuspidal newform of level N is a
cusp form that cannot be reduced to a cusp form of level M, where
M | N.

50



Ell Curve Prelims Small Rank Moderate Rank 1-Param Families Applications Refs Constant j(T ) Cusp forms

Averaging over Weights

Let FX ,δ,N be the family of cuspidal newforms of weights
smaller than some positive X δ of a square-free level N.

Averaging over primes less than X σ, define the r th

moment of the family FX ,δ,N as:

Mr ,σ(FX ,δ,N) =
1

π(X σ)

∑
p<Xσ

1∑
k<Xδ |H∗

k (N)|
∑

k<Xδ

∑
f∈H∗

k (N)

λr
f (p).

Study the asymptotic behavior of the moments as N → ∞:

Mr ,σ(FX ,δ) = lim
N→∞

Mr ,σ(FX ,δ,N).
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Averaging over Weights

Let FX ,δ,N be the family of cuspidal newforms of weights
smaller than some positive X δ of a square-free level N.

Averaging over primes less than X σ, define the r th

moment of the family FX ,δ,N as:

Mr ,σ(FX ,δ,N) =
1

π(X σ)

∑
p<Xσ

1∑
k<Xδ |H∗

k (N)|
∑

k<Xδ

∑
f∈H∗

k (N)

λr
f (p).

Study the asymptotic behavior of the moments as N → ∞:

Mr ,σ(FX ,δ) = lim
N→∞

Mr ,σ(FX ,δ,N).
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Averaging over Weights

Theorem (SMALL ‘17)
Let FX ,δ,N be the family of cuspidal newforms of weights k ≤ X δ of a
square-free level N, and Mr ,σ(FX ,δ) the limiting r th moment of the
family as the level N → ∞. Then

Mr ,σ(FX ,δ) =


Cr/2 + Cr/2−1

log log Xσ

π(Xσ) even r

+O
(

1
X 2δ + 1

π(Xσ)

)
0 odd r ,

where Cn = 1
n+1

(2n
n

)
is the nth Catalan number.

Bias for cuspidal newforms is a positive integer, instead of
the negative bias in elliptic curve families.
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An Important Tool: Petersson Trace Formula

Petersson Trace Formula
For any n,m ≥ 1, we have

Γ(k − 1)
(4πp)k−1

∑
f∈H∗

k,N (χ0)

|λf (p)|2 = δ(p,p)+2πi−k
∑

c≡0(N)

Sc(p,p)
c

Jk−1

(
4πp

c

)

where λf (n) is the n-th Hecke eigenvalue of f ,
δ(m,n) is Kronecker’s delta,
Sc(m,n) is the classical Kloosterman sum, and
Jk−1(t) is the k -Bessel function.
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An Important Tool: Petersson Trace Formula

[ILS] gives the following bound for the Petersson Trace Formula:

∑
f∈H∗

k (N)

λf (n) =

{
δn,□

k−1
12

φ(N)√
n n

9
7 ≤ k

16
21 N

6
7

0 else
+ O

(
(n,N)−

1
2 n

1
6 k

2
3 N

2
3

)
where level N and n are square-free, (n,N2) | N, and φ(n) denotes
the Euler totient function.

We also find the following relation that allows us to compute higher
moments of cuspidal newform families.

λf (p)r =
∑

0≤l≤r/2

C(r − l , l)λf (pr−2l)

where C(n, k) =
(n+k

k

)
−
(n+k

k−1

)
are numbers in the Catalan’s Triangle.
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Questions for Further Study

Does the Bias Conjecture hold for elliptic families with
constant j-invariant?

Are there cuspidal newform families with negative
biases in their moments?

Does the average bias always occur in the terms of
size p or 1?

How is the Bias Conjecture formulated for all higher
even moments? Can they be modeled by
polynomials?

What other families obey the Bias Conjecture?
Kloosterman sums? Higher genus curves?
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