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Elliptic Curves over Q

Interested in elliptic curves over Q

E/Q:y? = x*+ax+b,
a,b € Qand 4a® + 27b? # 0, and reduction mod p.
Use the Legendre symbol:

1 if x is a non-zero square modulo p

<{> =<0 ifx=0modp
P —1 otherwise.
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Hasse’s Theorem

Recall

E(F,) = {(x,y):y?=x®+ax + b}

ve - 3 (1- (52))
x€lFp

xX+ax+b

— 1-— SRR .

pri- 3 ()

Xe]Fp

Define the Frobenius trace as ag(p) := p+ 1 — #E(Fp),
have Hasse bound |as(p)| < 2,/p.
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Families and Moments

A one-parameter family of elliptic curves is given by
E:y% = X3+ A(Mx + B(T)
where A(T), B(T) are polynomials in Z[T].

e Each specialization of T to an integer t gives an
elliptic curve £(t) over Q.

e The r'" moment (note not normalizing by 1/p) is

Ace(P) = D asn(p),

t modp

where ag1)(p) = p + 1 — #&(IF,) is the Frobenius
trace of £(1).
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Negative Bias in the First Moment

First moment related to the rank of the elliptic curve family.

Ai ¢(p) and Family Rank (Rosen-Silverman)

Given technical assumptions (Tate’s conjecture) related to
L-functions associated with &,

. 1 A1’g |O
lim )—(ZM = —rank(£/Q).

X—
2 px p

L
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Bias Conjecture

The j(T)-invariantis j(T) = 1728%

Second Moment Asymptotic (Michel)
For families with j( T) non-constant, the second moment is

with lower order terms of sizes p®?, p, p'/?, and 1.
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Bias Conjecture

The j(T)-invariantis j(T) = 1728%

Second Moment Asymptotic (Michel)

For families with j( T) non-constant, the second moment is

with lower order terms of sizes p®?, p, p'/?, and 1.

In every family studied, observe:

Bias Conjecture

The largest lower term in the second moment expansion
which does not average to 0 is on average negative.

TS »HSSHHE
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Comments

Relation with Excess Rank

e Lower order negative bias increases the bound for
average rank in families through statistics of zero
densities near the central point.

e Unfortunately only a small amount, not enough to
explain observed excess rank.

Results to date
@ Very special families, Legendre sums computable, not
generic.

e Confirmed for additional families by M. Kazalicki and
B. Naskrecki.
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Methods for Obtaining Explicit Formulas

For a family € : y2 = x3 + A(T)x + B(T), we can write

. <x3+Ath+B(t))

X modp

where (5) is the Legendre symbol modp given by

1 if x is a non-zero square modulo p

(5) ~ {0 ifx=0modp
—1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums
ax + b) .
=0 ifpta
> (& Pt

X modp
3 (ax2+bx+c) _ {(ﬁ) if pt b? — 4ac

p (p—1)(g) if p| b2 — 4ac.

X modp




Ell Curve Prelims
[ ]

Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

Z (aX;b> =0 ifpta
P
> (ax2+—bx+0) _ {(g) if pt b2 — 4ac

p (p—1)(g) if p| b2 — 4ac.

X modp

Average Values of Legendre Symbols

The value of (g) for x € Z, when averaged over all
primes p, is 1 if x is a non-zero square, and 0 otherwise.
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Moderate Rank J
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Rank 6 Family

Rational Surface of Rank 6 over Q(T):

y2 = x>+ (2aT — B)x* + (2bT — C)(T? +2T — A+ 1)x
+(2¢T — D)(T? +2T — A+ 1)?

8,916, 100, 448, 256, 000, 000
811,365, 140, 824,616, 222, 208
26,497,490, 347, 321,493, 520, 384
343,107,594, 345, 448, 813, 363, 200
16,660,111,104

—1,603, 174,809, 600
2,149,908, 480, 000

OTLOTOTX
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Constructing Rank 6 Family

Idea: can explicitly evaluate linear and quadratic
Legendre sums.

Use: a and b are not both zero mod p and p > 2, then for
teZ

! (arcotie) [ 1p(7 -4
5 (2 pe) - {2, 06

p — (9 otherwise.

t=0 p.

Thus if p|(b? — 4ac), the summands are (-1°) = (2),
and the t-sum is large.
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Constructing Rank 6 Family

y2 = f(x,T) = x3T?+2g9(x)T — h(x)
gx) = x*+ax®+bx+c, c#0
h(x) = (A-1)x*+Bx*+Cx+D
Dr(x) = 9(x)?+ x3h(x).

Dr(x) is one-fourth of the discriminant of the quadratic (in
T) polynomial f(x, T).

& not in standard form, as the coefficient of x3 is T2,
harmless. As y? = f(x, T), for the fiber at T = t:

ap) = - (@) _ _Z(X3t2+2gijx)t—h(x)>_

x(p) x(p)
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Constructing Rank 6 Family

We study —pAg(p) = >-5-g >0 (15Y).
When x = 0 the t-sum vanlshes if ;é 0, as it is just

Z (2ct D)

Assume now x # 0. By the lemma on Quadratic
Legendre Sums

2 (X3t2 +2g(x)t — h(x)) _ {(p— 1)(5) if p| Dy(x)

p - (X;f) otherwise.

Goal:find coefficients a, b, ¢, A, B, C, D so that Dy(x) has
six distinct, non-zero roots that are squares.
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Constructing Rank 6 Family

Assume we can find such coefficients. Then

p—1p-1 (,«();t)) _ ’X’;‘:; ()(3t2 +2gl(ox)t— h(X)>

P— p—1
f(x,t f
_ (1) , (1)
x=0 t=0 p x:Dy(x)=0 t=0 p

—PAs(p) =
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Constructing Rank 6 Family

We must find a, ..., D such that D;(x) has six distinct,
non-zero roots p?:

Di(x) = g(x)*+x°h(x)
= Ax® 4 (B+2a)x° + (C+ & +2b)x*
+ (D + 2ab + 2¢)x®
+ (2ac + b?)x® + (2bc)x + ¢?
= AX® + Rsx® 4 Ryx* + Rsx® + Rox® + Rix + Ry)
= A(x = p5)(x = p3)(x = p3)(x — p3)(x — pB)(Xx — ).
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Constructing Rank 6 Family

Because of the freedom to choose B, C, D there is no
problem matching coefficients for the x°, x*, x3 terms. We
must simultaneously solve in integers

2ac+b> = RA
2bc = RA
c® = RyA.

For simplicity, take A = 64R3. Then

2 = B4R — ¢ = 82
2bc = 64R8R1 — b = 4ROR1
2ac + > = 64R8R2 — a = 4ROR2 — R12




Moderate Rank
L

Constructing Rank 6 Family

For an explicit example, take r; = p? = i2. For these
choices of roots,

R, = 518400, Ry = —773136, R, = 296296.
Solving for a through D yields
A = B4RS = 8916100448256000000
c = 8R: = 2149908480000
b = 4RyRy = —1603174809600
a = 4RyR — R? = 16660111104
B = RsA—2a = —811365140824616222208
C = RA-2-2b = 26497490347321493520384
D = RsA—2ab-2c = —343107594345448813363200
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Constructing Rank 6 Family

We convert y? = f(x, t) to y?2 = F(x, T), which is in

i Yy
Weierstrass normal form. We send y — T AT

X — m, and then multiply both sides by
(T2 +2T — A+ 1)2. For future reference, we note that

T2+2T—A+1 = (T+1-VA(T+1+VA)
= (T-t)(T-t)
(T — 2985983999)( T + 2985984001).

We have

o, T) = T2+ @ +2a® +2bx+20)T— (A—1)x° = B2 —Cx— D
= (T2 +2T — A+ 1)x® + (2aT — B)x® + (2bT — C)x + (2¢T — D)
F(x,T) = x>+ (2aT — B)x? + (2bT — C)(T> + 2T — A+ 1)x
+(2¢T — D)(T? + 2T — A+ 1)2.

D




Moderate Rank
L

Constructing Rank 6 Family

We now study the —pAg(p) arising from y2 = F(x, T). It is enough to show
this is 6p + O(1) for all p greater than some py. Note that t, t, are the unique
roots of t* 42t — A+ 1 = 0 mod p. We find

p—1p—1
xt) Xt)
=0 x= tt; tp x=0 t=t;,tp x=0
Fort#t, t,sendx — (2 +2t—A+1)x. As (P +2t— A+ 1) #0,

(w) = 1. Simple algebra yields

—pPAe(p)

6p+0(1)+ 3 Z(ﬂ(x>+0 )

t=t;,t, x=0

6p+ O(1) +ZZ(2at— VX2 + (2bt — C)x+(20t—D)>.

t=t;,t, x=0 p
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Constructing Rank 6 Family

The last sum above is negligible (i.e., is O(1)) if
D(t) = (2bt — C)? — 4(2at — B)(2¢ct — D) # 0(p).

Calculating yields

D(t) = 4291243480243836561123092143580209905401856
= 2%2.3%.75.112.13.19.29.31.47.67-83-97-103

D(t) = 4291243816662452751895093255391719515488256
= 2%.32.7.11.13.41-173-17389 - 805873 - 9447850813.
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Constructing Rank 6 Family

Hence, except for finitely many primes (coming from factors of D(;),
a,...,D, ty and k), —Ag(p) = 6p + O(1) as desired.

We have shown: There exist integers a, b, ¢, A, B, C, D so that the
curve & : y2 = x3T2 4 2g(x) T — h(x) over Q(T), with

g(x) = x®+ax® + bx + cand h(x) = (A—1)x% + Bx? + Cx + D, has
rank 6 over Q(T). In particular, with the choices of a through D
above, € is a rational elliptic surface and has Weierstrass form

y? = X*4(2aT —B)x* + (2bT — C)(T? + 2T — A+ 1)x
4+ (2cT = D)(T? +2T —A+1)?
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Constructing Rank 6 Family

We show £ is a rational elliptic surface by translating
X — x — (2aT — B)/3, which yields
y? = x3+ A(T)x + B(T) with deg(A) = 3, deg(B) = 5.

The Rosen-Silverman theorem is applicable, and as we
can compute A¢(p), we know the rank is exactly 6 (and
we never need to calculate height matrices). O
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1-Parameter Families J
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Preliminary Evidence and Patterns

Let ns» , equal the number of cube roots of 2 modulo p,
and set c(p) = [(——3) O] P e1(p) = [SCrmess 59
C3/2(P) = P2 uo (4X +1)

Famlly A1yg(p) Ag g
V2P=x3+Sx+T 0 P
Y2 = x® + 24(=3)3(9T + 1)? 0 4 p=2 mod 3
y? = x® £ 4(4T +2)x 0 2P P g—; ol
y2=x3 (T +1)x* + Tx 0 p 2p —
y2=x3 4+ x2 42T 4+ 1 0 p 2p — ( %)
Y2 =x3 4+ Tx® +1 -p P% — M3 2pp — 1+ C32(P)
y=x}-Tx+T° —2p p* —p— ci(p) — co(p)
yP=x"-Tx+T* -2p p? —p - ci(p) — co(p)
Y2P=x34+Tx® —(T+3)x+1 —2Cp14P p? —4cp1.6p — 1

where ¢, om = 1if p = a mod m and otherwise is 0.
TS
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Tools: Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

Z (aX;b> =0 ifpta
P
> (ax2+—bx+0) _ {(g) if pt b2 — 4ac

p (p—1)(g) if p| b2 — 4ac.

X modp

Average Values of Legendre Symbols

The value of (g) for x € Z, when averaged over all
primes p, is 1 if x is a non-zero square, and 0 otherwise.
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Lemma (SMALL ’14)

Consider a one-parameter family of elliptic curves of the form
£:y% = P()T +Q(x),

where P(x), Q(x) € Z[x] have degrees at most 3. Then the second

moment can be expanded as
[ ( P(x))
x(p) p

Az g(p) = L(X) ) (Q (x) )

o 2,50

A(x,y)=

2

where A(x,y) = (P(x)Q(y) — P(y)Q(x))>.

Kazalicki and Naskrecki proved Bias Conjecture for these
families.
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Second Moments of Linear-coefficient Families

We computed explicit formulas for the second moments of
some one-parameter families with linear coefficients in T:

):.

Family 2,¢(P)

(
p2—p<2 (p)) if ptad — 2bc
(pz—p)(H—(%‘)) if p| ad — 2bc
pz—p(1+(b2‘p4a°))—1 if pt b? — 4ac
p—1 if p| b® —4ac

y2 =(ax+b)(cx® +dx+ e+ T) {

y2=(ax* +bx+c)(dx +e+T) {

y? = x(ax® + bx + ¢ + dTx) -1 —p(@)

y? = x(ax + b)(cx + d + Tx) p—1
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Numerics for Higher Even Moments

Want to compute all higher moments; however, going
beyond the second leads to intractable Legendre sums.
Have some numerical results for higher moments.
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Biases in Lower Order Terms

Let ns» , equal the number of cube roots of 2 modulo p,

and set o (p) = [(‘—3) (%)] p; ci(p) = [ZX mod p (

Ca/2(p) = PZ (4X +1)

X3p_x)]2,

Famlly A1yg(p) Ag g
V2P=x3+Sx+T 0 P
Y2 = x® + 24(=3)3(9T + 1)? 0 4 p=2 mod 3
y? = x® £ 4(4T +2)x 0 2P P g—; ol
y2=x3 (T +1)x* + Tx 0 p 2p —
y2=x3 4+ x2 42T 4+ 1 0 p 2p — ( %)
Y2 =x3 4+ Tx® +1 -p P% — M3 2pp — 1+ C32(P)
y=x}-Tx+T° —2p p* —p— ci(p) — co(p)
yP=x"-Tx+T* -2p p? —p - ci(p) — co(p)
Y2P=x34+Tx® —(T+3)x+1 —2Cp14P p? —4cp1.6p — 1

where ¢, om = 1if p = a mod m and otherwise is 0.
QA
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Biases in Lower Order Terms

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p°.

Note that except for our family y? = x® + Tx? + 1, all the families £ have
Az ¢(p) = p? — h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mg > 0.

Note ci(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p #Z 3 mod 4, and zero for
p =1 mod 4 (send x — —x mod p and note (*71) =—1).

It is somewhat remarkable that all these families have a correction to the
main term in Michel’s theorem in the same direction, and we analyze the
consequence this has on the average rank. For our family which has a p®/2
term, note that on average this term is zero and the p term is negative.

eSS
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Lower order terms and average rank

log log R
logR )~
If ¢ is non-negative, we obtain a bound for the average rank in
the family by restricting the sum to be only over zeros at the

central point. The error O ('°g 'g"g R) comes from trivial
estimation and ignores probable cancellation, and we expect
0] (@) or smaller to be the correct magnitude. For most
families log R ~ log N@ for some integer a.

|
no
=[]
o
@
©
‘—L
)
R
no
o
@
©
~——
=
+
e}
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Lower order terms and average rank (cont)

The main term of the first and second moments of the
ar(p) give r¢(0) and —3¢(0).

Assume the second moment of a;(p)? is p? — mgp + O(1),
me > 0.

We have already handled the contribution from p?, and
—mgp contributes

-2 logp~ (. logp\ 1 N B
Se N |ogF1’¢ (zlogR> FE( mep)
o 2mg logp \ logp
N Iogﬂggb(zlogl?) p?

Thus there is a contribution of size 1/ log R.

e
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Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of
Iwaniec-Luo-Sarnak (ILS)) is the Fourier pair

sin®(27%x) i) — 0_4|“‘ if lu <o
(2nx)2 0 otherwise.

o(x) =

2~

Note ¢(0) = %, ¢(0) = ¢ = ?© and evaluating the prime
sum gives

.986 2.966 me
Se ( o o2 log Fn’) log R 4(0)
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Lower order terms and average rank (cont)

Let r; denote the number of zeros of E; at the central point (i.e., the analytic
rank). Then up to our O ('°g '°gn> errors (which we think should be smaller),

we have
2N

] 4(0) 1 986 2966 \ me

aa < == 5

N ;mﬁ(o) < S (r+ 2) #(0) + ( - 2|ogR> |0gH¢(O)

1 1, (.98 2966 \ me
< 1 .

Ave Rankpy oy (€) < + r+3 2 + ( o o?log F?) log R

o =1, me = 1: for conductors of size 10'2, the average rank is bounded by
14 r+ 31 +4.03=r+ % +1.03. This is significantly higher than Fermigier’s
observed r + 1 + .40.

o = 2: lower order correction contributes .02 for conductors of size 102, the
average rank bounded by % +r+ % +.02=r+ % +.52. Now in the ballpark
of Fermigier's bound (already there without the potential correction term!).

Qe
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Thank you!

Questions?
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Constant j( T)—invariant families

Question: What happens in families with constant j(T)?
@ &(T):y?=x3+ A(T)x has j(T) =1728,VT € Z.
@ &(T):y2=x%+B(T) has j(T) = 0.

For these families we can compute any moment.

Computation is fast when j(T) is constant.
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j =0 Curves

Consider € : y? = x3 + B over F,,.

If p=2 (mod 3), then ag(p) = 0. ]

Gauss’ Six-Order Theorem

If p=1 (mod 3), can write p = & + 3b%, a= 2 (mod 3),
b> 0, and

—2a B is a sextic residue in [,
2a B cubic, non-sextic residue
a+3b B quadratic, non-sextic
—a+ 3b B non-quadratic, non-cubic.

aeg(p) =

A
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Moments of One-Parameter j = 0 Families

For r > 0, compute k™ moment of £7 : y? = x3 — AT".

Have Ax(p) = 0 when p = 3(4), and moments determined only by r

(mod 6):
0 k is odd
=1,5(6) : A =
r=1,5(6) : Ap) {”1 ((2a)* + (a—3b)* + (a+3b)*) kis even
r=2,4(6) : Ac(p) =
p% (- 2a)k (a—3b)“ + (a+3b)")  Aquadratic residue
”’ ((2a —a—3b) +(-a+ 3b)k) A quadratic nonresidue

r=3:Acp) = p% ((—2a)" + (2a)") A cubic residue
221 ((a£3b)* + (—aF3b)¥) A cubic nonresidue.
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j = 1728 Curves

Consider € : y? = x3 — Ax over F,,.

If p=3 (mod 4), then ag(p) = 0. J

Gauss’ Four-Order Theorem

If p=1 (mod 4), then write p = a2 + b?, where b is even
and a+ b =1 (mod 4). We have:

2a  Ais a quartic residue
ag(p) = { —2a A quadratic, non-quartic residue
+2b A not a quadratic residue.

A
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Moments of One-Parameter j = 1728 Families

For r > 0, consider £(T) : y?> = x> — AT"x. When p = 3 (mod 4), all

moments are 0. Have
k is odd

. _Jo
r=1,3(4) : Ap) = {(p —1)2" (& + b*) kiseven

0 k is odd
r=2(4) : A(p) =1 (p—1)(2a)" A quadratic residue, k is even
(p—1)(2b)¥ A quadratic nonresidue, k is even

For r = 0(4), we get similar but more elaborate results.
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Bias in L-functions of Cuspidal Newforms J
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Cuspidal Newforms

Definition (Holomorphic Form of Weight k, level N)

A holomorphic function f(z) : H — C, of moderate
growth, for which

f(az+b ab

> = (cz+ d)kf(z), v <c d) € To(N) where

cz+d

Fo(N) = {<i Z) €SLy(Z) : c=0 (mod N)}.

Modular forms are periodic and have a Fourier expansion, if constant
term equals O called a cusp form. A cuspidal newform of level N is a
cusp form that cannot be reduced to a cusp form of level M, where
M| N.

BO)
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Averaging over Weights

Let Fx s~ be the family of cuspidal newforms of weights
smaller than some positive X° of a square-free level N.

Averaging over primes less than X?, define the r'"
moment of the family Fx s y as:

Mr,a(-FX,éN - X‘T Z 1H* Z Z )\
Zk<X5‘

p<X0 k<X5 feH; (N)

;
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Averaging over Weights

Let Fx s~ be the family of cuspidal newforms of weights
smaller than some positive X° of a square-free level N.

Averaging over primes less than X?, define the r'"
moment of the family Fx s y as:

Mr,a(-FX,éN - X‘T Z 1H* Z Z )\
Zk<X5‘

p<X0 k<X5 feH; (N)

Study the asymptotic behavior of the moments as N — oc:

M: -(Fxs) = N'inoo M: (Fxsn)-

;
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Averaging over Weights

Theorem (SMALL ‘17)

Let Fx s.n be the family of cuspidal newforms of weights k < X° of a
square-free level N, and M; ,(Fx,s) the limiting r'" moment of the
family as the level N — co. Then

Crj2 + Crjz—1 Ioi&go))(g even r
Mr,a(]:X,zS) = +0 (% s %)
0 odd r,

where C,, = ,,1?(2””) is the n" Catalan number.

Bias for cuspidal newforms is a positive integer, instead of
the negative bias in elliptic curve families.

eSS -
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An Important Tool: Petersson Trace Formula

Petersson Trace Formula
For any n.m > 1, we have

W > )P = oo pyrenit Yo FRL, (‘“TCP

feHy n(xo) c=0(N)

where \¢(n) is the n-th Hecke eigenvalue of f,
d(m, n) is Kronecker’s delta,

Sc(m, n) is the classical Kloosterman sum, and
Jk—1(t) is the k-Bessel function.
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An Important Tool: Petersson Trace Formula

[ILS] gives the following bound for the Petersson Trace Formula:

Spoit eM nd < kA NT
3 /\f(n)z{ S T (GRS
feH; (N) 0 else

where level N and n are square-free, (n, N?) | N, and ¢(n) denotes
the Euler totient function.

We also find the following relation that allows us to compute higher
moments of cuspidal newform families.

MP) =Y Cr—1LOM(P™)

0<I<r/2
where C(n, k) = ("¥) — (7%) are numbers in the Catalan’s Triangle.

L
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Questions for Further Study

@ Does the Bias Conjecture hold for elliptic families with
constant j-invariant?

@ Are there cuspidal newform families with negative
biases in their moments?

@ Does the average bias always occur in the terms of
size por1?

e How is the Bias Conjecture formulated for all higher
even moments? Can they be modeled by
polynomials?

@ What other families obey the Bias Conjecture?
Kloosterman sums? Higher genus curves?

;
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