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Elliptic Curves

An elliptic curve E over Q is the set of solutions (x , y) ∈ Q2 to
an equation of the form

E : y2 = x3 + ax2 + bx + c

with a,b, c ∈ Z. For primes p > 3 the elliptic curve Fourier
coefficients are

aE(p) = p −#{(x , y) ∈ F2
p : y2 = x3 + ax2 + bx + c}.

The associated Dirichlet series

L(E , s) =
∞∑

n=1

aE(n)
ns , R(s) >

3
2

can be analytically continued to an L-function on all of C.
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Families and Moments

A one-parameter family of elliptic curves is given by

E : y2 = x3 + A[T ]x2 + B[T ]x + C[T ]

with A[T ],B[T ],C[T ] ∈ Z[T ].

Each specialization of T to an integer t gives an elliptic
curve E(t) over Q.

The r th moment of the Fourier coefficients is

Ar ,E(p) =
p−1∑
t=0

aE(t)(p)r .
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Bias Conjecture

Second Moment Asymptotic [Michel]
For "nice" families E , the second moment of the Fourier
coefficients is equal to

A2,E(p) = p2 + O(p3/2).

The lower order terms are of sizes p3/2, p, p1/2, and 1.

In every family we have studied, we have observed:

Bias Conjecture
The largest lower term in the second moment expansion which
does not average to 0 is on average negative.
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One Interpretation

Sato-Tate Law for Families without CM

For large primes p, the distribution of aE(t)(p)√
p , t ∈ {0, . . . ,p − 1},

approaches the semicircular density F (x) = 1
2π

∫ x
−2

√
4− u2du

on [−2,2].

The Bias Conjecture can be interpreted as approaching
the limiting second moment from below, as p →∞.

Figure: aE(t)(p) for y2 = x3 + Tx + 1 at the 2014th prime
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Implications for Excess Rank

Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

More curves with rank than expected have been observed,
though this excess average rank vanishes in the limit.

Lower-order biases in the moments of families explain a
small fraction of this excess rank phenomenon.

16
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Negative Bias in the First Moment

The First Moment A1,E(p) and Family Rank
[Rosen-Silverman]

lim
X→∞

1
X

∑
p≤X

A1,E(p) log p
p

= −rank(E(Q[T ]))

By the Prime Number Theorem,
A1,E(p) = −rp + O(1) implies rank(E(Q[T ])) = r .

We can use this to study families of varying rank and
understand the relationship between A2,E(p) and
rank(E(Q[T ])).
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Methods for Obtaining Explicit Formulas

For a family E : y2 = x3 + A[T ]x2 + B[T ]x + C[T ], we can write

aE(t)(p) = −
p−1∑
x=0

(
x3 + A(t)x2 + B(t)x + C(t)

p

)

where
(
·
p

)
is the Legendre symbol, given by

(
x
p

)
=


1 if x is a nonzero square in Fp

0 if x = 0 in Fp

−1 if x is not a square in Fp
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

p−1∑
x=0

(
ax + b

p

)
= 0 if p - a

p−1∑
x=0

(
ax2 + bx + c

p

)
=

−
(

a
p

)
if p - b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac

Average Values of Legendre Symbols

The value of
(

x
p

)
for x ∈ Z, when averaged over all primes p, is

1 if x is a non-zero square, and 0 otherwise.
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Rank 0 Families

Theorem [MMRW’14]: Rank 0 Families Obeying the Bias
Conjecture

For families of the form E : y2 = x3 + ax2 + bx + cT + d ,

A2,E(p) = p2 − p
(

1 +

(
−3
p

)
+

(
a2 − 3b

p

))
.

The average bias in the size p term is −2 or −1, according
to whether a2 − 3b ∈ Z is a non-zero square.
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Families with Rank

Theorem [MMRW’14]: Families with Rank

For families of the form E : y2 = x3 + aT 2x + bT 2,

A2,E(p) = p2 − p
(

1 +
(
−3
p

)
+
(
−3a

p

))
−
(∑

x(p)

(
x3+ax

p

))2

These include families of rank 0, 1, and 2.

The average bias in the size p terms is −3 or −2,
according to whether −3a ∈ Z is a non-zero square.
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Families with Complex Multiplication

Theorem [MMRW’14]: Families with Complex Multiplication

For families of the form E : y2 = x3 + (aT + b)x ,

A2,E(p) = (p2 − p)
(

1 +

(
−1
p

))
.

The average bias in the size p term is −1.

The size p2 term is not constant, but is on average p2, and
an analogous Bias Conjecture holds.
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Families with Unusual Distributions of Signs

Theorem [MMRW’14]: Families with Unusual Signs

For the family E : y2 = x3 + Tx2 − (T + 3)x + 1,

A2,E(p) = p2 − p
(

2 + 2
(
−3
p

))
− 1.

The average bias in the size p term is −2.

The family has an unusual distribution of signs in the
functional equations of the corresponding L-functions.
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The Size p3/2 Term

Theorem [MMRW’14]: Families with a Large Error
For families of the form
E : y2 = x3 + (T + a)x2 + (bT + b2 − ab + c)x − bc,

A2,E(p) = p2 − 3p − 1 + p
p−1∑
x=0

(
−cx(x + b)(bx − c)

p

)

The size p3/2 term is given by an elliptic curve coefficient
and is thus on average 0.

The average bias in the size p term is −3.
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General Structure of the Lower Order Terms

The lower order terms in the second moment expansions
appear to always...

have no size p3/2 term or a size p3/2 term that is on
average 0;

exhibit their negative bias in the size p term;

be determined by polynomials in p, elliptic curve
coefficients, and values of Legendre symbols.
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Largest Error Term

In general, determining the lower order terms of A2,E is
intractable.

Possible approach: numerically measure the average
value of the lower-order terms by averaging

A2,E(p)− p2

p3/2 or
A2,E(p)− p2

p

over large ranges of primes.
Problem: the p3/2 normalization averages to 0; the p
normalization does not appear to converge.
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Higher Genus Sato-Tate

We believe that when Michel’s estimate is sharp, the size
p3/2 term is given by Fourier coefficients of some
L-function.

A generalized Sato-Tate conjecture due to Sutherland
predicts the limiting distributions of hyperelliptic curve
coefficients.

We can compute an approximate distribution for A2,E(p)−p2

p3/2

and compare it with the Fourier coefficient distribution of
some hyperelliptic curve.
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Distribution of Error Terms: Example 1

Denote c3/2(p) =
A2,E(p)−p2

p3/2 . Consider the family

E : y2 = 4x3 + 5x2 + (4T − 2)x + 1

Figure: Distribution of c3/2(p) over the first 10000 primes

Approx. moments: 1, 0, 1, 0, 2, 0, 5, 0, 14, ...
Hyperelliptic curve: y2 = x3 + x + 1
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Distribution of Error Terms: Example 2

Denote c3/2(p) =
A2,E(p)−p2

p3/2 . Consider the family

E : y2 = 4x3 + (4T + 1)x2 + (−4T − 18)x + 49

Figure: Distribution of c3/2(p) over the first 10000 primes

Approx. moments: 1, 0, 1, 0, 3, 0, 14, 0, 84, ...
Hyperelliptic curve: y2 = x5 − x + 1
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Distribution of Error Terms: Example 3

Denote c3/2(p) =
A2,E(p)−p2

p3/2 . Consider the family

E : y2 = x3 + 2x3 − 4T 2x + T 2

Figure: Distribution of c3/2(p) over the first 10000 primes

Approx. moments: 1, 0, 2, 0, 6, 0, 10, 0, 70, ...
Hyperelliptic curve: y2 = x6 + x2 + 1
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Summary of Error Term Investigations

Larger error terms that average to 0 prevent us from
numerically measuring average biases that arise in the
size p terms.

In every case we studied, the size p3/2 error term appeared
to be governed by (hyper)elliptic curve coefficients.

We do not have a general way of identifying the
hyperelliptic curve coefficient associated to the error term
of a given family.
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We do not have a general way of identifying the
hyperelliptic curve coefficient associated to the error term
of a given family.
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Questions for Further Study

Does the Bias Conjecture hold similarly for all higher even
moments?

What other (families of) objects obey the Bias Conjecture?
Kloosterman sums? Cusp forms of a given weight and
level? Higher genus curves?

How does the second moment bias relate to other
properties of the family?
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