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Fundamental Problem

General FormulationStudying some system, ob-
serve events at

t1 < to < it < -+

Question: what rules govern the distribution of
events?

Often normalize by average spacing.



Examples

e Spacings Between Energy Leveld-tdavy Nu-
clel.

e Spacings Between Eigenvalued.airge Matri-
ces.

e Spacings BetweeHigh Zeros of L-Functions.



Origins of Random Matrix Theory

Classical Mechanicst Body Problem Intractable.

Heavy nuclel like Uranium200+ protons / neu-
trons) even worse!

Fundamental Equation:

Hwn — Enwn

E,, are the energy levels

Approximate with finite matrix.



Statistical Mechanics

For each configuration, calculate quantity (say
pressure).

Average over all configurations.



Random Matrix Ensembles

( aip a2 a3 -+ ainN \
a a a e QA
B

\al.N GJQIN CLBIN a]\lfN)

Let p(x) be a probability density, often assume
moments finite.

k-moment = / 2Fp(z)dz.
R

Define

PFOdA)dA = H p(aij)daij.
1<i<g<N



Eigenvalue Questions

Density of Eigenvalues: How many eigenvalues
lie in an intervalla, b]?

Spacings between Eigenvaluesiow are the spac-
INngs between adjacent eigenvalues distributed?

Note: studynormalizedeigenvalues.



Eigenvalue Distribution

Key to Averaging:

TracdA") = ) " A(4A)

By the Central Limit Theorem:

N N
TracdA®) = > > ajaj
z;l j;l
- ZZ%
1=1 j=1
~ N?.1
N
> ON(A) ~ N
1=1

GivesNAve(\?(A)) ~ N?or )\i(A) ~ VN.



Eigenvalue Distribution (cont)
d(x — xo) IS @ unit point mass atj.

To eachA, attach a probability measure:

pan(x) = %EN:(; (:1; _ ;‘2\(/1%))

1=1
Obtain:

k'-moment = [ 2Fuy v(2)de

—

1 o= AN(A)
_ ﬁ; N

Trace A¥)

2kN§+1




Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v.
from a fixedp(x).

Semi-Circle Law: p mean0, variancel, other mo-
ments finite. With probability 1,

2
paN(@) — ;\/1—1}2 weakly

Expected value of'"-moment ofu 4 () is

/R o /R Tract 4 | [ plaij)das;

k
5+1
ok N2t i<
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Method of Proof

With probability 1,

A N(T) — Usemi-Circldr) weakly.

Will do this by showing
E[My(pan) — M(SC
and

— 0.

E[| My(pa n) — E[M(an)]|

11



Proof: 2"Y-Moment

N N N N
Trace{AQ) = ZZawaﬂ = ZZCLQ

1=1 =1 1=1 =1

Substituting:

22N2/ /Z aj; - plan)day - - - playy)dany

1,7=1

Integration factors as

/ Z]p a;;)da;; - H / plag)day = 1.
aijER CLMER
k<l

Have N2 summands, answeris

Key: Trace and Averaging Formulas.
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Random Matrix Theory: Semi-Circle Law

Distribution of eigenvalues——Gaussian, N=400, 500 matrices
0.025

0.02
0.015F
0.01F
0.005

500 Matrices: Gaussiafi0 x 400
1 —x?/2

p(z) = \/—2;6
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Random Matrix Theory: Semi-Circle Law

2500

The eigenvalues of the Cauchy
distribution are NOT semicirular.

2000

1500 -

1000 -

500

0
-300 —-200 -100 0 100 200 300

Cauchy Distr: Not-Semicircular (Infinite
Variance)

plz) = m
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GOE Conjecture

GOE Conjecture: N x N Real Symmetric, en-
tries iidrv. AsN — oo, the probability density of
the distance between two consecutive, normalize
eigenvalues universal.

Only known if entries chosen from Gaussian.

. : : 2
Consecutive spacings well approximateddue 5"
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Uniform Distribution: p(x) =

DO —

x 10*
3.5 T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.
3 -

25F

151

0.5

0

! ! !
0 0.5 1 15 2 25 3 3.5 4 4.5 5

5000: 300 x 300 uniform on|—1, 1]
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12000

35

25

15

0.5

Cauchy Distribution: p(x) =

T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

> 5000: 100 x 100 Cauchy

05

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.
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Fat Thin Families

Need a family FAT enough to do averaging.

Need a family THIN enough so that every-
thing isn’t averaged out.

Real Symmetric Matrices ha\%u\;—m Indepen-
dent entries.

Examples of thin sub-families:

e Band Matrices
e Random Graphs
e Special Matrices (Toeplitz)
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Band Matrices

Example of a Band 1 Matrix:

(an aip 0 0 0 \
a2 az a3 0 ' 0
0 ag3 azz ayq - U
: : : : aN_LN
\ 00 0 - ay_1 N ann /

For Band O (Diagonal Matrices):

e Density of Eigenvaluesy(x)

e Spacings b/w eigenvalues: Poissonian.
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Random Graphs

Degree of a vertex= number of edges leaving
the vertex.

Adjacency matrix: a;; = number edges from
vertex: to vertexy.

(0()11\
0010
1102

\1020

These are Real Symmetric Matrices.
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Density of States fod-regular graphs

\/4 — 1) —2?
o - s

il 25 1=
815 -

a0 -

McKay’s Law (Kesten Measure)

2] < 2vd—1

otherwise
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McKay’s Law (Kesten Measure)

RER" s+ yws K L
— fit1

-G -4 -2 ]

d = 6.

|dea of proof:Trace lemma, combinatorics and counting, lo-
cally a tree.

Fat Thin: fat enough to average, thin enough to get some-
thing different than Semi-circle.
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d-Regular and GOE

3-Regular2000 Vertices: Graph courtesy of D. Jakobson, S. D. Miller,
Z. Rudnick, R. Rivin

23



Toeplitz Ensembles

A Toeplitz matrix is of the form

( bp by by .- bN—l\
b—1 by b - by
bo b1 by -+ bN_3

\51—N by N b3_N -+ Dy /

e Will consider Symmetric Toeplitz.
e Main diagonal zero)V independent parameters.

e Normalize Eigenvalues by'N.
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Eigenvalue Density Measure

The k' moment ofyu 4 v (z) is

N
1 k
Mi.(A,N) = A (A).
N’SH; Z
Let
Mk(N) = lim Mk(A,N)

N—o0

25



k =0,2andk odd
VN, My(N) = 1.
Fork = 2: aSCLZ']‘ — b|z—]\
1
2 2o B i)

1<iy,i9<N

1 )
N2 Z E<b|731—i2!)'

1<iy,i0<N

M>(N)

N? — N times getl, N times 0.
ThereforeMy(N) =1 — +-.

Trivial counting: odd moments— 0.
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Even Moments

1
Mop(N) = Nk+1 Z E(b\i1—i2\b|i2—i3| T b|i2k—i1|>'

]-Sila"' 7i2/{:§N
Main Term:b;s matched in pairs, say

Dlim—iir] = Olin—ipay  Tm = [t — imt1| = |t — Gl

Two possibilities:

I — im—l—l = 1y — in+1 or ity —1tpr1 = _<Zn - Zn+1)-

(2k — 1) ways to pair2"” choices of sign.
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Main Term: All Signs Neg

1
Moy(N) = Nk+1 Z IE<b\i1—i2\bliz—i?)l T blm—nl)-

1<iy -+ igpy <N
Letxy,...,x; be the values of thg; —i,,4|s.

Letey, ..., be the choices of sign.

Deﬁnefl = 11 — 19, 53'/2 =19 — 13, ...

o = 11 — X1

13 11— T1 — To

il = ’il—l’l—“'—ggk.
Therefore
k
T+ -+ Top = Z(l +e€¢njz; =0, n, = £1
j=1
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Even Moments: Summary

Main Term: paired, all signs negative.

M2k<N> < (2]6 — 1)” + O (%) .

Bounded by Gaussian.
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The Fourth Moment

M4<N) — m Z E<b|i1_i2|b‘iQ_i3‘b|i3_i4|b‘i4—i1’)
1<y i9,i3,14 <N

Let Tj = |Z] — ij+1‘.

Case One:xry = x9, 3 = 14!
i1—1ip = —(ig—13) and iz —iy = —(iy — 1)

11 = 13, 19 andiy are arbitrary.

Left with E[b2 b2 ].

L1723

N? — N times getl, N times getpy = E[b; |.
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Diophantine Obstruction

1
My(N) = N3 Z E<b|i1—i2|b\iz—i3\b|i3—i4|b\i4—i1!)

1<91,19,13,04 <N
Case Two:x; = x3 and x9 = 4.
i1—1i9 = —(ig—1iy4) and io —iz = —(ig — i)
This yields

i1 = i9+ 14— 13, 11,12,13,14 € {1,..., N}

If 35,44 > 2Y andis < &, 4, > N: at most(1 —
25 4 3 31 01

5-) N3 valid choices.
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Fourth Moment: Answer

Theorem: Fourth Moment: Letp, be the fourth
moment ofp. Then

2 1

500 Toeplitz Matrices400 x 400.

1500}
1250}
1000}
750}
500}
250!
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Higher Moments
Mg(N) = 11 (Gaussian’s ig5).
Mg(N) = 64+ (Gaussian’s i205).

For sixth moment, five configurations:

Occur (respectively), 6, 3, 3 and1 time.

Lemma: For2k > 4,limy_, o Mop(N) < (2k—
.
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Lower Bound of High Moments

unbounded support: a lower boutd; such that

hmk_mo 2\]{/ L2 — Q.

| N N
T | 2o 2 Vin—iafPlin—is) * Pling—in
| 11=1 191.=1

Matched ink pairs, matchings must occur with
negative signs.

Denote positive differences of,—i,, 1| by z, ..., zp.
Letx; =1i; —1i,,1; k are positive (negative)

k + 1 degrees of freedomk differencesz;, and
any index, say;.
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Lower Bound of High Moments (II)
iQ = il —51
lof, = 11 — T — -+ — Ty
Once specify; andzx; throughz,,., all indices are

determined.

If matched in pairs and eacéh e {1,..., N}, have
a valid configuration, contributes!.

Problem: a running suny — 21 — --- — oy, &
{1,...,N}

35



Lower Bound of High Moments (lll)
a€(3,1),I4=1{1,...,A} whereA = 3.

Choose each difference; from 1 4: AF ways, to
first order distinct.

Put half of positiver ;s and and non-matching neg-
atives in first half ¢, ..., x.).

Have not specified the order of the differences, jus
how many positive (negative) are in the first half /
second half.

Two differentk-tuples of differences; cannotgive

rise to the same configuration (if we assume the
differences are distinct).
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Lower Bound of High Moments (V)

Assume have ordered the positive differences ir
first half. There are(%)! ways to relatively order
corresponding negatives in second half.

If ordered the negatives in first ha@)! ways to
relatively order positives in second half.

Still have freedom on how to intersperse positives
and negatives in second half.

"Most" configurations can be made valid by Cen-
tral Limit Theorem.
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Lower Bound of High Moments (V)
Regard ther,s (z,,S) as iidrv from/ 4 (—14) with
mean~ %A (~ —%A) and standard deviatioxn
ﬁA.

CLT: sum of the% positive (negativey,s (x,S) In

the first block converges to Gaussian, meaﬁ%

(~ —*4) and standard deviatios y/%

LA
2v/3
N, k large, at least A* have positive sum in

kA VEA kA+\/EA'
4 276 4 26

(and similarly for negative sum).

Freedom to choose how to intersperse the positive
and negatives in the first and second halves. Kee
running sum small: can ensure at most

VEA
max <2A, 22—\/6> .

Intersperse same way in second half.
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Lower Bound of High Moments (VI)

If 1 € [g ]\il, Nll,all indices in{1,..., N}.
K72 kY2

Number of configurations giving 1 is at least

<§k5;> (- (5)4) -t

Divide by N*+1, recallA = £i;, main term:

1 N+ klog k_k 2 k3
0g 5— _ L (1—a)klogk
DN ] (67 ) 7\/27r(/€/2)> = ToioaE € gk

: l—a)logk :
2k root looks Ilkee(emz)gzg > O(k1~®), proving

the support is unboundedj!™" root of Gaussian
moment isé.
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Decay of Higher Moments

=t
O -
@ ar

O /’ .
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Poissonian Behavior?

0.8 -

0.6 r

0.4 -

0.2

Not rescaled. Looking at middlgl spacings, 1000 Toeplitz
matrices (000 x 1000), entries iidrv from the standard nor-
mal.
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Real Symmetric Palindromic Toeplitz

(0o by by by - by by by by
b1 by by by -+ by b3 by by
by by by by --- bs by b3 by
b by by by -+ bg bs by b3
b3 by bs bg -~ by by by b3
by b3 by bs --- by by by bo
b by b3 by -+ by by by by

\ by b1 by b3 -+ b3 by by by /

e Extra symmetry seems to fix Diophantine Ob-
structions.

e Always have eigenvalue at

42



Real Symmetric Palindromic Toeplitz (cont)

-4 2 2 4

500 Real Symmetric Palindromic Toeplitz,
1000 x 1000

Note the bump at the zeroth bin is due to the forcec
eigenvalues at O.
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Summary

Ensemble Degrees of Freedom Density | Spacings
Real Symm O(N?) Semi-Circle GOE
Diagonal O(N) p(x) Poisson
d-Regular O(dN) Kesten GOE
Toeplitz O(N) Toeplitz | Poisson
Palindromic Toeplitz O(N) Gaussian

Red is conjectured
Blue is new

Maroon: Partial Results (first 9 moments)
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Summary (Toeplitz)

e Converges (in some sense) to new universal dis
tribution, independent qf;

e Moments bounded by those of Gaussian;
e Ratio tends ta), but unbounded support;

e Can interpret as Diophantine Obstructions
(Hammond-Miller) or volumes of Euler solids
(Bryc-Dembo-Jiang).

e Real Symmetric Palindromic Toeplitz looks Gau
sian (Miller-Ramey-Sinsheimer-Teich).
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