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Introduction
°

Turbulent '60s: Goal is to (begin to) understand papers

@ Edward N. Lorenz, Deterministic nonperiodic flow, Journal
of Atmospheric Sciences 20 (1963), 130-141. http://
j ournal s.anet soc. org/ doi / pdf/10.1175/
1520- 0469%281963%29020%3C0130¥3ADNF¥BE2. 0.
CO/BB2.

@ Benoit Mandelbrot, How Long Is the Coast of Britain?
Statistical Self-Similarity and Fractional Dimension,
Science, New Series, Vol. 156, No. 3775 (May 5, 1967),
pp. 636—638. htt ps://cl asses. soe. ucsc. edu/
ans214/ W nt er 09/ f oundi ngpaper s/

Mandel br ot 1967. pdf andhttp://ww. j stor.org/
stabl e/ 17214277?0ori gi n=JSTOR- pdf &eq=1#
page_scan_t ab_contents.
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http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
https://classes.soe.ucsc.edu/ams214/Winter09/foundingpapers/Mandelbrot1967.pdf
https://classes.soe.ucsc.edu/ams214/Winter09/foundingpapers/Mandelbrot1967.pdf
https://classes.soe.ucsc.edu/ams214/Winter09/foundingpapers/Mandelbrot1967.pdf
http://www.jstor.org/stable/1721427?origin=JSTOR-pdf&seq=1#page_scan_tab_contents
http://www.jstor.org/stable/1721427?origin=JSTOR-pdf&seq=1#page_scan_tab_contents
http://www.jstor.org/stable/1721427?origin=JSTOR-pdf&seq=1#page_scan_tab_contents

Introduction
°

Lorenz Paper

From the conclusion: All solutions, and in particular the period
solutions, are found to be unstable. .... When our results
concerning the instability of nonperiodic flow are applied to the
atmosphere, which is ostensibly nonperiodic, they indicate that
prediction of the sufficiently distant future is impossible by any
method, unless the present conditions are known exactly. In
view of the inevitable inaccuracy and incompleteness of
weather observations, precise very-long range forecasting
would seem to be non-existent.
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Introduction
°

Mandelbrot Paper

From the abstract: Geographical curves are so involved in their
detail that their lengths are often infinite or, rather, undefinable.
However, many are statistically “self-similar,” meaning that each
portion can be considered a reduced-scale image of the whole.
In that case, the degree of complication can be described by a
guantity D that has many properties of a “dimension,” though it
is fractional; that is, it exceeds the value unity associated with
the ordinary, rectifiable, curves.

Examples of country dimensions from the paper: Britain 1.25,
Germany (land frontier in 1899) 1.15, Spain-Portugal (land
boundary) 1.14, Australia 1.13, South Africa (coastline) 1.02.
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Link

What is the link between the two papers?
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Introduction
°

Link

What is the link between the two papers?

Extreme sensitivity to initial conditions.
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Dimension
°

What is dimension?

Define dimension....




Dimension
°

What is dimension?

Define dimension....

Hausdorff Dimension
Let

S C R" := {(Xg,...,%n) : X; € R}

be a set. If dilating S by a factor of r yields ¢ copies of S, then
the dimension d of S satisfies rd = c.




Dimension
°

Example: Remember rd = c where d dimension, r dilation, ¢ copies

| | | |
[ [ [ |

Segment of length 1. We take r = 3 and get ¢ = 3 copies; thus
d=1as3!=3.




Dimension
°

Example: Remember rd = c where d dimension, r dilation, ¢ copies

Increasing the sides of a square by a factor of r = 3 increases
the area by a factor of 9 = 32; the dimension is 2 as 3% = 9.

A




Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0, 1], the unit interval.

@ Given C,, let C,,; 1 be the set formed by removing the
middle third of each interval in C.

C, ={0,1/3} U{2/3,1} and
C, = {0,1/9} U{2/9,3/9}U{2/3,7/9} U {8/9,1}.

Figure: The zeroth iteration of the construction of the Cantor set.
Image from Sarang (Wikimedia Commons). Thoughts on dimension?

AR




Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0, 1], the unit interval.
@ Given C,, let C,,; 1 be the set formed by removing the
middle third of each interval in C.

C, ={0,1/3} U{2/3,1} and
C, = {0,1/9} U{2/9,3/9}U{2/3,7/9} U {8/9,1}.

Figure: The first iteration of the construction of the Cantor set. Image
from Sarang (Wikimedia Commons). Thoughts on dimension?
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Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0, 1], the unit interval.
@ Given C,, let C,,; 1 be the set formed by removing the
middle third of each interval in C,.
C,=1{0,1/3}yuU{2/3,1} and
C, = {0,1/9}uU{2/9,3/9}U{2/3,7/9} U{8/9,1}.

Figure: The first two iterations of the construction of the Cantor set.
Image from Sarang (Wikimedia Commons). Thoughts on dimension?

T




Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0,1], the unit interval.
@ Given C,, let C,,; 1 be the set formed by removing the
middle third of each interval in C,.
C,={0,1/3}uU{2/3,1} and
C, = {0,1/9}uU{2/9,3/9} U{2/3,7/9} U{8/9,1}.

Figure: The first three iterations of the construction of the Cantor set.
Image from Sarang (Wikimedia Commons). Thoughts on dimension?
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Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0,1], the unit interval.
@ Given C,, let C,, 1 be the set formed by removing the
middle third of each interval in C,,.
C,=1{0,1/3}yuU{2/3,1} and
C, = {0,1/9}uU{2/9,3/9}U{2/3,7/9} U{8/9,1}.

Figure: The first four iterations of the construction of the Cantor set.
Image from Sarang (Wikimedia Commons). Thoughts on dimension?




Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0, 1], the unit interval.
@ Given C,, let Cy,, 1 be the set formed by removing the
middle third of each interval in C,,.
C,={0,1/3}uU{2/3,1} and
C, = {0,1/9}uU{2/9,3/9} U{2/3,7/9} U{8/9,1}.

Figure: The first five iterations of the construction of the Cantor set.
Image from Sarang (Wikimedia Commons). Thoughts on dimension?




Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0,1], the unit interval.
@ Given C,, let C,, 1 be the set formed by removing the
middle third of each interval in C,,.
C,=1{0,1/3}yuU{2/3,1} and
C, = {0,1/9}uU{2/9,3/9}U{2/3,7/9} U{8/9,1}.

Figure: The first six iterations of the construction of the Cantor set.
Image from Sarang (Wikimedia Commons). Thoughts on dimension?




Dimension
°

Cantor Set: r9 = ¢ where d dimension, r dilation, ¢ copies

@ Let Cy = [0,1], the unit interval.
@ Given C,, let C,,; 1 be the set formed by removing the
middle third of each interval in C.
C,={0,1/3}U{2/3,1} and
C, = {0,1/9}uU{2/9,3/9}U{2/3,7/9} U{8/9,1}.

Figure: The first six iterations of the construction of the Cantor set.
Image from Sarang (Wikimedia Commons). Thoughts on dimension?

Dilate by r = 3 and get ¢ = 2 copies, thus dimension d satisfies
39 =2 0ord = Iog§ 2 ~ 0.63093; note not an integer, but....
’




Dimension
°

Pascal’s Triangle

Pascal’s triangle: k™ entry in the n® rowis (}) = (727) + (", }).

1 3 31
1 46 41
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 3 35 21 7 1




Dimension
°

Pascal’s Triangle Modulo 2

Modify Pascal’s triangle: e if () is odd, blank if even.




Dimension
°

Pascal’s Triangle Modulo 2

Modify Pascal’s triangle: e if () is odd, blank if even.

If we have just one row we would see e, if we have four rows we
would see

Note: Often write a mod b for the remainder of a divided by b;
thus 15 mod 12 is 3.
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°

Pascal’s Triangle Modulo 2

Modify Pascal’s triangle: e if () is odd, blank if even.

For eight rows we find




Dimension
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Pascal mod 2 Plots

Figure: Plot of Pascal’s triangle modulo 2 for 24, 28 and 21° rows.

htt ps://ww. yout ube. com wat ch?v=tt4_4Yaj qRM
(start 1:35)



https://www.youtube.com/watch?v=tt4_4YajqRM

Dimension
°

Sierpinski Triangle: Remember r% = ¢ where d dimension, r
dilation, c copies

A A
A A A A
‘ k A‘fA ii
AAAA Al

A A A A
AAAA A dnAn L
Figure: The construction process leading to the Sierpinski triangle;
first four stages. Image from Wereon (Wikimedia Commons).

What'’s its dimension?




Dimension

Sierpinski Triangle: Remember r% = ¢ where d dimension, r
dilation, c copies

A

AA
AAAA Al
ACTA AT
AA  AA AL AdA

Figure: The construction process leading to the Slerpmskl triangle;
first four stages. Image from Wereon (Wikimedia Commons).

What'’s its dimension?

If double get three copies; soinrd =c haver = 2,¢ = 3 and

thus d = log, 3 ~ 1.58496 (note exceeds 1, less than 2).
7




Dimension
°

More Pascal

Question: What would be a good way to generalize what we've
done?

Some links....
@ https://ww. yout ube. com wat ch?v=wcxndi uYj hk

@ https://ww. yout ube. coml wat ch?v=b2CGEQPZQx kO
@ https://ww. yout ube. com wat ch?v=XM i WI'v PXHI

@ https://ww. yout ube. com wat ch?v=QBTi qi | i RpQ



https://www.youtube.com/watch?v=wcxmdiuYjhk
https://www.youtube.com/watch?v=b2GEQPZQxk0
https://www.youtube.com/watch?v=XMriWTvPXHI
https://www.youtube.com/watch?v=QBTiqiIiRpQ

Dimension

Generalization: Pascal mod 3
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Generalization: Pascal mod 5
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Coastline
[ ]

Coastline Dimension

Coastline paradox: measured length of a coastline changes
with the scale of measurement.

Led to L(G) = CG'~9 where C is a constant, G is the scale of
measurement, d the dimension.

N e AV

Figure: Measuring British coastline. Image from ht t p: / / davi s.
wpi . edu/ ~matt/ courses/fractal s/intro. htnl.



http://davis.wpi.edu/~matt/courses/fractals/intro.html
http://davis.wpi.edu/~matt/courses/fractals/intro.html

Coastline
L]

British Coastline

L(G) = CG~9 where C is a constant, G is the scale of
measurement, d the dimension.

[rm— — =
Unit = 200 km, Unit = 100 km, Unit = 50 km,
Length = 2400 km (approx.) Length = 2800 km (approx.) Length = 3400 km (approx.)

Figure: How Long is the Coastline of the Law (D. Katz, posted 10/18/10).



Koch Snowflake

Coastline
[ ]

s

Stage 0

Stage1

Stage 2

Stage 3

Stage 4

Gontinue _.

Koch snowflake (showing 1 of 3 sides)

Draw an equilateral triangle in the middle, remove bottom.

Repeat on each line segment. Lather, rinse, repeat....

Length at stage n+1 is 4/3 length at stage n; length goes to infinity.
Exercise to show area is bounded.

—a

Dimension: As rd = ¢, since r=3 yields ¢=4, d = log 4 / log 3.

Thus dimension is approximately 1.26186.
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Finding roots

Much of math is about solving equations.




Finding roots

Much of math is about solving equations.

Example: polynomials:

® ax +b =0, rootx = —b/a.
@ ax? +bx +c¢ =0, roots (—b & v/b? — 4ac)/2a.

@ Cubic, quartic: formulas exist in terms of coefficients; not
for quintic and higher.

In general cannot find exact solution, how to estimate?




Chaos
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Cubic: For fun, here’s the solutionto  ax3 + bx? + ¢

Solve[ax”3 + bx"2 + cx +d = 0, x]

b 23 [-p?:3ac
X=-— - - - -
3a { 3 2 f 2 3 3 2 1213
3a -2b°-9abc-27a d—\“\““—b -3ac| -‘»—2b -9abc—27a‘d‘ )
[-2b%:9abc-27a%d=+/4 [-b*=3ac)®+ [-2b*-9abc-27a%d)>
3 213, I
b ‘_-bz-Bac_
AT R 13
33 3 2233 2b%-9abc-27a%d=-+[4 [-b?-3ac) - [-2b7-9abc-27a%d)? |
= | 2 f 2 2 13
(1-i+/3) [-2b°-9abc-27a’d-+/4 [-b?=3ac)®- [-2b°=9abc-27a%d)? |
6 213a M
b (-b*=3ac]
s LT 13
33 3 [-b*+3ac)®+ [-2b°-9abc-27a%d)? |
— f = 1/3
(1-i+/3) [-2b°-9abc-27a’d-+/4 [-b?®=3ac)®+ [-2b°=9abc-27a%d)? |

6 2133




Chaos
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One of three solutions to quartic  ax* +bx® +cx?+dx +e =0

Solve[ax"4 + bx*3 + cx*2 + dx + e = 0, x]

2c®-9bcd«27ad = 27b e -72ace+ [ -4 (*-3bd-12ae)’+ (2 -9bcd+27ad - 27b e~ 72ace ‘ ‘7

-4(c*-3bd-12ae)’+ [2c¢®-9bcd=27a

242 ‘Ba 9bcd-27ad*~27b%e-72ace~ [ -4 (P -3bd-12ae)’
N s
ﬁ‘Ztsfabcd-ﬂadz-27hze—72a<e -4(c*-3bd-12ae)’ - (2 -9bcd-27ad’ = 27b% e~ 72ace)’ -
3 27,
4bc 8d) [ b 2c s
B A N e 3bd-12ae
a“ a |4a° 3a
A
|52 2 2 2 3 3 2 2 2 1
35‘2(‘79h(d-27ad <27b°e-72ace-~ -4 (c"-3bd-12ae|” - [2c"-9bcd-27ad" - 27b"e-72ace e
3
1
‘Zc"th(d~27ad:~27b:ef725ce |-a(c?-3bd-12ae)®+ (2c-9bcd+27ad - 27b%e - 72ace 3‘ ‘H,

A
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Divide and Conquer

Divide and Conquer

Assume f is continuous, f(a) < 0 < f(b). Then f has a root
between a and b. To find, look at the sign of f at the midpoint
f (252); if sign positive look in [252, b] and if negative look in

[a, aer] Lather, rinse, repeat.

A7



Divide and Conquer

Divide and Conquer

Assume f is continuous, f(a) < 0 < f(b). Then f has a root
between a and b. To find, look at the sign of f at the midpoint
f (252); if sign positive look in [252, b] and if negative look in
[a, aer] Lather, rinse, repeat.

Example:
@ f(0) = —1,f(1) = 3, look at f(.5).

AR




Divide and Conquer

Divide and Conquer

Assume f is continuous, f(a) < 0 < f(b). Then f has a root
between a and b. To find, look at the sign of f at the midpoint
f (252); if sign positive look in [252, b] and if negative look in
[a, aer] Lather, rinse, repeat.

Example:
@ f(0) = —1,f(1) = 3, look at f(.5).
@ f(.5) =2, solook at f(.25).

A




Divide and Conquer

A

Divide and Conquer

Assume f is continuous, f(a) < 0 < f(b). Then f has a root
between a and b. To find, look at the sign of f at the midpoint
f (252); if sign positive look in [252, b] and if negative look in
[a, aer] Lather, rinse, repeat.

Example:
@ f(0)=-1,f(1) = 3, look at f(.5).
@ f(.5) =2, solook at f(.25).
@ f(.25) = —.4, so look at f(.375).




Divide and Conquer (continued)

How fast? Every 10 iterations uncertainty decreases by a factor

of 210 = 1024 ~ 1000.

Thus 10 iterations essentially give three decimal digits.

f(x) =xA2- 3, sqrt(3) 1.732051

n left right

1 1 2
2 1.5 2
3 1.5 1.75
4 1.625 1.75
5 1.6875 1.75
6 1.71875 1.75
7 1.71875 1.734375
8 1.726563 1.734375
9 1.730469 1.734375

10 1.730469 1.732422

Figure: Approximating v/3 ~ 1.73205080756887729352744634151.

f(left)

-2

-0.75
-0.75
-0.35938
-0.15234
-0.0459
-0.0459
-0.01838
-0.00548
-0.00548

f(right)

1

1

0.0625
0.0625
0.0625
0.0625
0.008057
0.008057
0.008057
0.001286

0.732051
0.232051
0.232051
0.107051
0.044551
0.013301
0.013301
0.005488
0.001582
0.001582

left error right error

-0.26795
-0.26795
-0.01795
-0.01795
-0.01795
-0.01795
-0.00232
-0.00232
-0.00232
-0.00037




Newton’s Method

Newton’s Method

Assume f is continuous and differentiable. We generate a
sequence hopefully converging to the root of f(x) = 0 as
follows. Given x,, look at the tangent line to the curve y = f(x)
at xn; it has slope f/(x,) and goes through (x,, f(x,)) and gives
liney —f(xn) = f'(xn)(X — Xp). This hits the x-axis at

f(Xn

y = 0,X = Xp11, and yields X, 11 = Xn — %

A7




Newton’s Method

A




Newton’s Method

_/‘; X Xo

For example, f(x) = x? — 3 after algebra get
Xn+1 = % (Xn + %).

A




Newton’s Method

n x[n] 1.8 x[n] Sgrt[3] - x[n]

] 2 2. -0.267949192431122706472553658494127633657
7

1 2 1.75 -0.017949192431122706472553658494127633057
97

2 %6 1.7321428571428572062984585500089451670665 -0.000092049573979849329696515636984775914
18817 .

3 10864 1.7320568100147276042690691610914655029774 -2.445856246973296035519164451908 x 10

Sqrt[3] = 1.7320508075688772935274463415058723669428
x[5]

1.73208508075688772935274463415058723678037

x[4] =

1.73208508075688772952543539468721719142351

V3 = 1.7320508075688772935274463415058723669428

Xs = 1.7320508075688772935274463415058723678037
X5 — 1002978273411373057
579069776145402304 *




Newton Method: x2—-3=0

Consider x?2 —1 = (x —1)(x +1) = 0.

Roots are 1, -1; if we start at a point X, do we approach a root?
If so which?

Recall Xn11 = 3 (xn + %)

-1 0 1
$ :




Newton Method: x2—-3=0

Consider x2 —1 = (x —1)(x +1) = 0.

Roots are 1, -1; if we start at a point X, do we approach a root?
If so which?

Recall Xp 11 = 3 (xn + %)

$

-1 0 1
(|
'




Newton Fractal: x3 —1 = 0:

What are the roots to x2 — 1 = 0?

Here comes Complex Numbers!
C={x+iy:x,y eR)i =+v-1}.



https://www.youtube.com/watch?v=ZsFixqGFNRc
https://www.youtube.com/watch?v=ZsFixqGFNRc

Newton Fractal: x3 —1 = 0:

What are the roots to x2 — 1 = 0?

Here comes Complex Numbers!
C={x+iy:x,y eR)i =+v-1}.

x3—1 = (x—1)(x*+x+1)

-1+V12-4.1-1 -1-v/12-4.1-1
(x—-1)-(x— > S x = 5

= (x1)~<x1%‘/_3>-<xlf\/_3>

_ (X_l).<x_—1%iﬁ>.<x_—l%ﬁ>_

Rootsare 1, —1/2 +iv/3/2, —1/2 —i\/3/2.



https://www.youtube.com/watch?v=ZsFixqGFNRc
https://www.youtube.com/watch?v=ZsFixqGFNRc

Newton Fractal: x3 —1 = 0:

If start at (x,y), what root do you iterate to?



https://www.youtube.com/watch?v=ZsFixqGFNRc
https://www.youtube.com/watch?v=ZsFixqGFNRc

Newton Fractal: x3 —1 = 0:

If start at (x,y), what root do you iterate to? Guess



https://www.youtube.com/watch?v=ZsFixqGFNRc
https://www.youtube.com/watch?v=ZsFixqGFNRc

Chaos

Newton Fractal: x3 —1 = 0:



https://www.youtube.com/watch?v=ZsFixqGFNRc
https://www.youtube.com/watch?v=ZsFixqGFNRc

Mandelbrot Set:

Definition: Set of all complex numbersc =x +iy (i = v—1)
such that if fo(u) = u? + ¢ then the sequence

z; = fc(0), zz = fe(z1) = fe(fc(0)), -+, Zni1 = fe(zn)

7z =¢C, 2z, =c®+c, z3 = (c?+c)?+c,

remains bounded as n — oo.



https://www.youtube.com/watch?v=0jGaio87u3A
https://www.youtube.com/watch?v=0jGaio87u3A

Mandelbrot Set:

Definition: Set of all complex numbersc =x + iy (i = v—1)
such that if fo(u) = u? + c then the sequence

z; = 1c(0), zp = fe(z1) = fc(fc(0)), -+, zZpi1 = fe(zn)
remains bounded as n — oo.
MandelbrotSetPlot]]



https://www.youtube.com/watch?v=0jGaio87u3A
https://www.youtube.com/watch?v=0jGaio87u3A

Mandelbrot Set:

Definition: Set of all complex numbersc =x + iy (i = v—1)
such that if fo(u) = u? + c then the sequence

z; = f(0), zo = fc(z1) = fc(fc(0)), -, Zny1 = fe(zn)
remains bounded as n — oo.

MandelbrotSetPlot[-1.5- .1 1,-1.3 + .1 1]

0.10 [



https://www.youtube.com/watch?v=0jGaio87u3A
https://www.youtube.com/watch?v=0jGaio87u3A

Chaos

Mandelbrot Set:

Definition: Set of all complex numbersc =x +iy (i = v—1)
such that if f;(u) = u? + c then the sequence

z; = fc(0), zo = fe(z1) = fe(fc(0)), -+, zny1 = fe(zn)

remains bounded as n — oo.
Zooming in....

¢



https://www.youtube.com/watch?v=0jGaio87u3A
https://www.youtube.com/watch?v=0jGaio87u3A

Chaos

Mandelbrot Set:

Definition: Set of all complex numbersc = x + iy (i = v—1)
such that if fo(u) = u? + c then the sequence

2y = 1(0), z2 = fe(z1) = fc(f(0)), ---, Zny1 = fc(zn)
remains bounded as n — oo.
Extreme zoom!



https://www.youtube.com/watch?v=0jGaio87u3A
https://www.youtube.com/watch?v=0jGaio87u3A

Mandelbrot Links: Especially

htt ps
htt ps
htt ps
htt ps

htt ps

/[ www. yout ube.
:/ / www. yout ube.
[ [ wwww. yout ube.
:/ / www. yout ube.

:/ / www. yout ube.

conm wat ch?v=0j Gai 087u3A
com wat ch?v=9j 2yVinLCEl
com wat ch?v=ZsFi xgG-NRc
com wat ch?v=PD2XgQOy CCk

conm wat ch?v=vfteii Tf EOc

¢



http://www.hpdz.net/index.htm
https://www.youtube.com/watch?v=0jGaio87u3A
https://www.youtube.com/watch?v=9j2yV1nLCEI
https://www.youtube.com/watch?v=ZsFixqGFNRc
https://www.youtube.com/watch?v=PD2XgQOyCCk
https://www.youtube.com/watch?v=vfteiiTfE0c
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Why do we care?
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Consequences

Why do we care?

If such small changes can lead to such wildly different behavior,
what happens when we try to solve the equations governing
our world?




aos (from Wikipedia)

Lorenz equations:

In 1963, Edward Lorenz developed a simplified mathematical model for atmospheric
convection.[ The model is a system of three ordinary differential equations now known as
the Lorenz equations:

& =oly-a)
y=z(p—2)—y
z=xy— Bz

The equations relate the properties of a two-dimensional fluid layer uniformly warmed from
below and cooled from above. In particular, the equations describe the rate of change of
three quantities with respect to time: & is proportional to the rate of convection, ¥ to the
horizontal temperature variation, and z to the vertical temperature variation 2! The
constants o, p, and 3 are system parameters proportional to the Prandtl number, Rayleigh
number, and certain physical dimensions of the layer itself ]

The Lorenz equations also arise in simplified models for lasers,[*] dynamos, %]

thermosyphons,[€! brushless DC motors,[”! electric circuits,!®! chemical reactions®! and
forward osmosis.[10]




Lorenz equations and chaos (from Wikipedia)

¢

Sensitive dependence on the initial condition

Time t=1 (Enlarge) Time t=2 (Enlarge) Time t=3 (Enlarge)

These figures — made using p=28, o = 10 and p = 8/3 — show three time segments of the 3-D evolution of 2 trajectories
(one in blue, the other in yellow) in the Lorenz attractor starting at two initial points that differ only by 1075 in the x-
coordinate. Initially, the two trajectories seem coincident (only the yellow one can be seen, as it is drawn over the blue one)
but, after some time, the divergence is obvious.
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Takeaways

Math is applicable!
Similar behavior in very different systems.

Extreme sensitivity challenges.

RO
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