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Definitions

Definition

A number field is a finite extension of the field of rationals. For example:
Q(i), the Guassian rationals, or Q(

√
d), the quadratic fields for squarefree

d .

Definition

An algebraic integer is any root of a monic polynomial with integer
coefficients. The set of all algebraic integers in a number field forms a
ring, called the ring of integers in a number field.
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Definitions (cont’d.)

Definition

Let K be a number field. Define an equivalence relation ∼ on the
fractional ideals of K by I ∼ J if there exist non-zero α, β ∈ K such that
αI = βJ. The group formed by these equivalence classes of fractional
ideals (under the obvious multiplication: [IJ] = [I ][J]) is called the class
group of K .

Definition

If the class group is finite, then the order of the class group is called the
class number.
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Why should we care?

The structure of the class group has intimate connections with many areas
of algebra and number theory including, but not limited to:

Describing how badly a ring of integers in a number field fails to have
unique factorization

Class field theory and Galois theory

Dirichlet’s class number formula and primes in arithmetic progressions

Professor says I should care/pays my salary.
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Cyclicity of the 2-class group

Theorem (Prof. Siman Wong)

For any integer k > 1, there exist infinitely many complex quadratic fields
for which the Sylow 2-subgroups of their class groups are cyclic of order
≥ 2k .

Question: Can we construct quadratic fields with cyclic 2-class groups of
exact order 2k?
Wong shows that if, for any integer k > 1, we can find infinitely many
pairs of distinct, odd primes p1, p2 such that

1 p1 + p2 = 2w2k with w even,

2 p1 ≡ 1 (mod 4), and

3
(p1
w

)
= −1

then Q(
√
−p1p2) has the desired properties.
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An initial stab...

Take w = 2m2. Then
(p1
w

)
= −1 =⇒

(p1
2

)
= −1 =⇒ p1 ≡ ±3 mod 8.

Cue to study sums of pairs of primes in particular congruence classes.

Specifically, what can we prove about representing values of a
polynomial as the sum of two primes congruent to 3 and 5 mod 8?
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A useful theorem (simplified)

Theorem (Perelli, 1996)

If F ∈ Z[x ] takes on infinitely many even values, then every “short”
interval contains at least one x such that F (x) is a Goldbach number.

(“short” is approximately an interval of width about N1/3 around N)

Corollary (What we basically care about is. . . )

Infinitely many values of F can be written as the sum of two primes.
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The Circle Method

Want to study sums of d elements from a set A.

Waring’s problem: sums of s kth powers
Goldbach’s problem: sums of two or three primes

Define a generating function for our set:

f (x) =
∑
a∈A

e2πiax

The number of ways n can be represented as the sum of d elements
of A is the coefficient of e2πinx in f (x)d , which can be represented by
the integral ∫ 1

0
f (x)de−2πinx dx

Problem: this integral is hard to calculate.
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The Basics: Major and Minor Arcs

Observation: f takes on larger-than-average values near rational
numbers with small denominators.

Let M (the “major arcs”) be the union of small intervals centered at
these rational numbers, and m (the “minor arcs”) be the rest of the
unit interval.

The Circle Method: Estimate the integral on M with easier functions
that well approximate f on M, and show that the integral on m is
small.

Typically we only care about showing existence of at least one
representation; that is,∫

M
f (x)de−2πinx dx +

∫
m

f (x)de−2πinx dx ≥ 1

. Hence sloppy estimation acceptable encouraged!

Carlos Dominguez (Ohio State) The Circle Method and Class Groups of Quadratic Fields August 28, 2010 9 / 15



The Basics: Major and Minor Arcs

Observation: f takes on larger-than-average values near rational
numbers with small denominators.

Let M (the “major arcs”) be the union of small intervals centered at
these rational numbers, and m (the “minor arcs”) be the rest of the
unit interval.

The Circle Method: Estimate the integral on M with easier functions
that well approximate f on M, and show that the integral on m is
small.

Typically we only care about showing existence of at least one
representation; that is,∫

M
f (x)de−2πinx dx +

∫
m

f (x)de−2πinx dx ≥ 1

. Hence sloppy estimation acceptable encouraged!

Carlos Dominguez (Ohio State) The Circle Method and Class Groups of Quadratic Fields August 28, 2010 9 / 15



The Basics: Major and Minor Arcs

Observation: f takes on larger-than-average values near rational
numbers with small denominators.

Let M (the “major arcs”) be the union of small intervals centered at
these rational numbers, and m (the “minor arcs”) be the rest of the
unit interval.

The Circle Method: Estimate the integral on M with easier functions
that well approximate f on M, and show that the integral on m is
small.

Typically we only care about showing existence of at least one
representation; that is,∫

M
f (x)de−2πinx dx +

∫
m

f (x)de−2πinx dx ≥ 1

. Hence sloppy estimation acceptable encouraged!

Carlos Dominguez (Ohio State) The Circle Method and Class Groups of Quadratic Fields August 28, 2010 9 / 15



The Basics: Major and Minor Arcs

Observation: f takes on larger-than-average values near rational
numbers with small denominators.

Let M (the “major arcs”) be the union of small intervals centered at
these rational numbers, and m (the “minor arcs”) be the rest of the
unit interval.

The Circle Method: Estimate the integral on M with easier functions
that well approximate f on M, and show that the integral on m is
small.

Typically we only care about showing existence of at least one
representation; that is,∫

M
f (x)de−2πinx dx +

∫
m

f (x)de−2πinx dx ≥ 1

. Hence sloppy estimation acceptable encouraged!

Carlos Dominguez (Ohio State) The Circle Method and Class Groups of Quadratic Fields August 28, 2010 9 / 15



The Prime Case: Major Arcs

Define the weighted prime generating function

f (α) =
∑
p≤n

(log p)e2πipα

Lemma

Let

v(β) =
n∑

m=1

e2πiβm.

Then there is a positive constant C such that, for all α in a major arc
around a/q ((a, q) = 1),

f (α) =
µ(q)

φ(q)
v(α− a/q) + O(n exp(−C (log n)1/2)).
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Things get nicer . . .

Now to study sums of two primes, we want to look at coefficients of
f (α)2. But we now have that

f (α)2 − µ(q)2

φ(q)2
v(α− a/q)2 � n2 exp(−C (log n)1/2)

Estimating integrals with f (α)2 is now much easier:

v is a much easier function to study.

does not depend on prime sums. Primes are hard.
Exponentials: easy to integrate.

µ and φ are easily bounded
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The Singular Series

(The minor arc calculation is a rather tedious application of Weyl’s
inequality; we’ll skip it for brevity.)

Summing and integrating our estimates naturally gives rise to the
so-called “singular series”:

S(m) =

∏
p-m

(1− (p − 1)−2)

∏
p|m

(1 + (p − 1)−1)


Theorem

n∑
m=1

|R(m)−mS(m)|2 � n3(log n)−A

where R(m) is the coefficient of e2πimα in f (α)2 – that is, the number of
ways of writing m as the sum of two primes – and A is a large integer.
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Some functions

Definition

We restrict f by the function

f2(α) =
∑
p≤n

(log p)e2πipα,

where the primes are restricted to those congruent to those congruent to 3
or 5 mod 8.

Definition

To estimate f2, we define a function µ2 by

µ2(q) = µ(q)/2 whenever 8 - q

µ2(8) = −
√

2, and

µ2(8q) =
(q
2

)
|µ(q)|

√
2 for q > 1.
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Generalization Results

Lemma (D– 2010)

f2(α)2 − µ2(q)2

φ(q)2
v(α− a/q)2 � n2 exp(−C (log n)1/2),

where α is in the major arc around a/q.

Theorem (D– 2010)

n∑
m=1

|R(m)−mS2(m)|2 � n3(log n)−A

where R2(m) is the coefficient of e2πimα in f2(α)2, and S2 is a similar
series to S2, usually equal to S/4 or S/2.
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Theorem (D– 2010)

If F ∈ Z[x ] takes on infinitely many even values not congruent to 4 mod 8,
then there are infinitely many x such than F (x) can be written as the sum
of two primes congruent to 3 and 5 mod 8.

Back on the algebraic side of things, we can take F (x) = 2(2x2)2
k

in the
above theorem to finally prove:

Theorem (D– 2010)

Given any integer k > 1, there exist infinitely many complex quadratic
fields with cyclic 2-class group of order exactly 2k .
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