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Random Matrix Ensembles

A =


a11 a12 a13 · · · a1N
a12 a22 a23 · · · a2N
...

...
... . . . ...

a1N a2N a3N · · · aNN

 = AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [αij , βij ]) =
∏

1≤i≤j≤N

∫ βij

xij =αij

p(xij)dxij .

Want to understand eigenvalues of A. 3 / 58
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Eigenvalue Distribution

δ(x − x0) is a unit point mass at x0:∫
f (x)δ(x − x0)dx = f (x0).

To each A, attach a probability measure:

µA,N(x) =
1
N

N∑
i=1

δ

(
x − λi(A)

2
√

N

)
∫ b

a
µA,N(x)dx =

#
{
λi : λi (A)

2
√

N
∈ [a,b]

}
N

kth moment =

∑N
i=1 λi(A)k

2kN
k
2 +1

=
Trace(Ak )

2kN
k
2 +1

.
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law
N × N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N →∞

µA,N(x) −→

{
2
π

√
1− x2 if |x | ≤ 1

0 otherwise.
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McKay’s Law (Kesten Measure) with d = 3

Density of Eigenvalues for d-regular graphs

f (x) =

{
d

2π(d2−x2)

√
4(d − 1)− x2 |x | ≤ 2

√
d − 1

0 otherwise.

6 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

McKay’s Law (Kesten Measure) with d = 6

Fat Thin: fat enough to average, thin enough to get
something different than semi-circle (though as d →∞
recover semi-circle).
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The Ensemble of m-Block Circulant Matrices

Symmetric matrices periodic with period m on wrapped
diagonals, i.e., symmetric block circulant matrices.

8-by-8 real symmetric 2-block circulant matrix:

c0 c1 c2 c3 c4 d3 c2 d1
c1 d0 d1 d2 d3 d4 c3 d2
c2 d1 c0 c1 c2 c3 c4 d3
c3 d2 c1 d0 d1 d2 d3 d4
c4 d3 c2 d1 c0 c1 c2 c3
d3 d4 c3 d2 c1 d0 d1 d2
c2 c3 c4 d3 c2 d1 c0 c1
d1 d2 d3 d4 c3 d2 c1 d0


.

Choose distinct entries i.i.d.r.v.
7 / 58
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Results

Theorem: Koloğlu, Kopp and Miller
The limiting spectral density function fm(x) of the real
symmetric m-block circulant ensemble is given by

fm(x) =
e−

mx2
2

√
2πm

m∑
r=0

1
(2r)!

m−r∑
s=0

(
m

r + s + 1

)
(2r + 2s)!

(r + s)!s!

(
−1

2

)s

(mx2)r .

Fixed m equals m ×m GOE, as m→∞ converges to the
semicircle distribution.
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Results (continued)

Figure: Plot for f1 and histogram of eigenvalues of 100 circulant
matrices of size 400× 400.
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Results (continued)

Figure: Plot for f2 and histogram of eigenvalues of 100 2-block
circulant matrices of size 400× 400.
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Results (continued)

Figure: Plot for f3 and histogram of eigenvalues of 100 3-block
circulant matrices of size 402× 402.
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Results (continued)

Figure: Plot for f4 and histogram of eigenvalues of 100 4-block
circulant matrices of size 400× 400.
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Results (continued)

Figure: Plot for f8 and histogram of eigenvalues of 100 8-block
circulant matrices of size 400× 400.
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Results (continued)

Figure: Plot for f20 and histogram of eigenvalues of 100 20-block
circulant matrices of size 400× 400.
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Results (continued)

Figure: Plot of convergence to the semi-circle.

The Limiting Spectral Measure for Ensembles of Symmetric Block
Circulant Matrices (with Murat Koloǧlu, Gene S. Kopp, Frederick W.
Strauch and Wentao Xiong), Journal of Theoretical Probability 26
(2013), no. 4, 1020–1060. http://arxiv.org/abs/1008.4812
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Current Research, Broadly

Some topics of interest in random matrix theory:

I Universality: Many ensembles’ eigenvalues have
semicircular behavior.

I Study different classes of ensembles with
nonstandard behavior

I Methods to study different quantities: spectral
distribution, eigenvalue spacings, distribution of
largest eigenvalue, etc.

10 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Current Research, Broadly

Some topics of interest in random matrix theory:

I Universality: Many ensembles’ eigenvalues have
semicircular behavior.

I Study different classes of ensembles with
nonstandard behavior

I Methods to study different quantities: spectral
distribution, eigenvalue spacings, distribution of
largest eigenvalue, etc.

10 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Current Research, Broadly

Some topics of interest in random matrix theory:

I Universality: Many ensembles’ eigenvalues have
semicircular behavior.

I Study different classes of ensembles with
nonstandard behavior

I Methods to study different quantities: spectral
distribution, eigenvalue spacings, distribution of
largest eigenvalue, etc.

10 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Current Research, Broadly

Some topics of interest in random matrix theory:

I Universality: Many ensembles’ eigenvalues have
semicircular behavior.

I Study different classes of ensembles with
nonstandard behavior

I Methods to study different quantities: spectral
distribution, eigenvalue spacings, distribution of
largest eigenvalue, etc.

10 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Previous Work

Capitaine, Donati-Martin and Féral study ensembles
where a Wigner ensemble is ‘deformed’ by adding
another ensemble, resulting in two separated families of
eigenvalues. They prove that

I Under fairly general conditions, the separated ‘blip’ of
eigenvalues converges in distribution to a that of a
finite GOE/GUE (universality).

I Otherwise, convergence is to eigendistribution of a
nonuniversal finite ensemble.

11 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Previous Work

Capitaine, Donati-Martin and Féral study ensembles
where a Wigner ensemble is ‘deformed’ by adding
another ensemble, resulting in two separated families of
eigenvalues. They prove that

I Under fairly general conditions, the separated ‘blip’ of
eigenvalues converges in distribution to a that of a
finite GOE/GUE (universality).

I Otherwise, convergence is to eigendistribution of a
nonuniversal finite ensemble.

11 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Previous Work

Capitaine, Donati-Martin and Féral study ensembles
where a Wigner ensemble is ‘deformed’ by adding
another ensemble, resulting in two separated families of
eigenvalues. They prove that

I Under fairly general conditions, the separated ‘blip’ of
eigenvalues converges in distribution to a that of a
finite GOE/GUE (universality).

I Otherwise, convergence is to eigendistribution of a
nonuniversal finite ensemble.

11 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Overview

1 Introduction

2 k -Checkerboard Ensembles

3 Computing Expected Moments

4 Almost-Sure Weak Convergence

5 Acknowledgements
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k -Checkerboard Ensembles
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Checkerboard Matrices

Definition
The N × N (k ,w)-checkerboard ensemble is the
ensemble of matrices M = (mij) given by

mij =

{
aij if i 6≡ j mod k
w if i ≡ j mod k

where the aij = aji are iid with mean 0, variance 1, and
finite higher moments, and w is constant.

14 / 58
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Example

A (3,w)-checkerboard matrix is of the form
w a0,1 a0,2 w a0,4 · · · a0,N−1

a1,0 w a1,2 a1,3 w · · · a1,N−1
a2,0 a2,1 w a2,3 a2,4 · · · w

...
...

...
...

... . . . ...
a0,N−1 a1,N−1 w a3,N−1 a4,N−1 · · · w



15 / 58
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Split Eigenvalue Distribution

Figure: Histogram of normalized eigenvalues for 500 100× 100
2-checkerboard matrices.
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Eigenvalue Regimes

Theorem
Let {AN}N∈N be a sequence of (k ,w)-checkerboard
matrices. Then almost surely as N →∞ the eigenvalues
of AN fall into two regimes: N − k of the eigenvalues are
O(N1/2+ε) and k eigenvalues are of magnitude
Nw/k + O(N1/2+ε).

17 / 58
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Normalized Empirical Spectral Measure

Definition
Given an N × N Hermitian matrix MN with eigenvalues
{λi}N

i=1, the normalized empirical spectral measure is

ν 1√
N

MN
(x) :=

1
N

N∑
i=1

δ(x − λi/
√

N)

Theorem
Let {MN}N∈N be a sequence of real N × N
k-checkerboard matrices. Then, the normalized empirical
spectral measures µ 1√

N
MN

converge weakly almost surely
to the semi-circle distribution.

18 / 58
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Notion of Convergence

Definition
A sequence of random measures {µN}N∈N converges
weakly almost-surely to a fixed measure µ if, with
probability 1 over the (infinite) product probability space,
we have

lim
N→∞

∫
f dµN =

∫
f dµ

for all continuous and bounded f .

19 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Method of Moments

I Let X be a random variable characterized uniquely by
its moments E[X m] (Carleman’s condition).

I If {XN}N∈N is a sequence of random variables and, for
all m, the moments converge E[X m

N ]→ E[X m] as
N →∞, then {XN}N∈N converges in distribution to X .

I Compute expected moments of ensemble’s empirical
spectral distribution and show convergence to desired
moments.
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Bulk Distribution: Obstructions

I There are N − k eigenvalues of order O(N1/2+ε) in the
bulk.

I Recall that there are k eigenvalues of magnitude
Nw/k + O(N1/2+ε).

I Because of these high magnitude eigenvalues, the
limiting expected moments of the normalized ESD do
not exist.

I This obstructs the standard application of the method
of moments.
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Perturbation Theorem

Theorem (Tao)

Let {AN}N∈N be a sequence of random Hermitian matrix
ensembles such that {νAN ,N}N∈N converges weakly almost
surely to a limit ν. Let {ÃN}N∈N be another sequence of
random matrix ensembles such that 1

N rank(ÃN)
converges almost surely to zero. Then {νAN +ÃN ,N}N∈N
converges weakly almost surely to ν.

22 / 58
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Circumventing Obstructions

I Using the perturbation theorem, we can study only
k -checkerboard matrices with w = 0.

I Because w = 0, the blip eigenvalues are centered at
zero.

I This avoids the divergence of limiting expected
moments of the normalized ESD.
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Examining the Blip I

I To understand the limiting distribution of the blip, we
localize our measure to the blip regime.

I To do this, define a new empirical spectral measure
by

µA,N :=
1
k

∑
λ eigenvalue of A

f
(

kλ
N

)
δ

(
x −

(
λ− N

k

))
with f a function ≈ 0 on the bulk and ≈ 1 on the blip.
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Examining the Blip II

I Candidates for f must be roughly 1 near the blip and
0 over the bulk of eigenvalues.

I Candidates for f must be amenable to
Eigenvalue-Trace Lemma arguments (so we must
either choose a polynomial or deal with Taylor series
convergence).

I Any given polynomial does not vanish to a high
enough order at x = 0 as N →∞, so we choose
family of polynomials.
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The Weighting Function

The weighting function used is

fn(x) = x2n(x − 2)2n.

Figure: fn(x) plotted for n = 1 to n = 4.
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The New Spectral Measure I

Using the weighting function fn(x) we form a new
empirical spectral measure.

Definition
The empirical blip spectral measure associated to an
N × N k -checkerboard matrix A is

µA,N :=
1
k

∑
λ eigenvalue of A

fn(N)

(
kλ
N

)
δ

(
x −

(
λ− N

k

))
where n(N) is a function for which there exists some ε so
that Nε � n(N)� N1−ε.

27 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Computing Expected Moments

28 / 58
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Classically, the mth moment of empirical spectral measure

ν 1√
N

MN
(x) :=

1
N

N∑
i=1

δ(x − λi/
√

N)

is

E[

∫
R

xmdν 1√
N

MN
] =

1
N1+m/2E[

N∑
i=1

λm
i ] =

1
N1+m/2E Tr Mm

N .
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The expected mth moment of the blip empirical spectral
measure

µA,N :=
1
k

∑
λ eigenvalue of A

fn(N)

(
kλ
N

)
δ

(
x −

(
λ− N

k

))
is

E[µ
(m)
A,N ]

=
1
k

(
k
N

)2n 2n∑
j=0

(
2n
j

) m+j∑
i=0

(
m + j

i

)(
−N

k

)m−i

E Tr A2n+i .
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Sorting Cyclic Products

Recall:

E Tr Mn =
∑

1≤i1,...,in≤N

E[mi1i2mi2i3 · · ·min i1].

Problem: sort cyclic products into similar groups by
structure.

31 / 58
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Blocks & Configurations

Definition

I An `-block is a set of ` adjacent a’s surrounded by
w ’s in a cyclic product.

I A configuration is the set of all cyclic products for
which it is specified
(a) how many blocks there are, and of what lengths,
and
(b) in what order these blocks appear.

Example
w · · ·waaaaw · · ·waaw · · ·waw · · ·w
w · · ·waaw · · ·waaaaw · · ·waw · · ·w

32 / 58
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Classes

Definition

Two configurations in the same class must have the same
block sizes but they may be ordered differently and have
different numbers of w ’s between them.

Example
w · · ·waaaaw · · ·waaw · · ·waw · · ·w
w · · ·waaw · · ·waaaaw · · ·waw · · ·w
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Indexings & Matchings

Look at all ways to index a’s in a configuration such that
expectation is nonzero.

Definition

A matching is an equivalence relation ∼ on the a’s which
constrains the ways of indexing the a’s by forcing some to
have the same indices (in either order).

Example
For ai1i2wi2i3ai3i4wi4i5ai5i6wi6i7ai7i8wi8i1, if ai1i2 ∼ ai5i6 then
{i1, i2} = {i5, i6}.
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Indexings

Definition

Given a configuration, matching, and length of the cyclic
product, an indexing is a choice of
I the (positive) number of w ’s between each pair of

adjacent blocks (in the cyclic sense), and
I the integer indices of each a and w in the cyclic

product.

The definitions of class, configuration, and matching do
not fix the length of the cyclic product, but indexings do.

35 / 58
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Cyclic Product Recap

E Tr Aη =
∑

S-classes
C

∑
configurations

C∈C

∑
matchings M

∑
indexings

I given M,C ,η

E[Π]

where Π is the cyclic product given by the choice of
indexing.

36 / 58
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Which Classes Contribute?

Lemma

In the limit as N →∞, the only classes which contribute
are those with only 1- or 2-blocks, 1-blocks are matched
with exactly one other 1-block, and both a’s in any 2-block
are matched with their adjacent entry and no others.

Proof. Fix number of a’s. Big blocks or more matchings
force indices of a’s to be the same so number of indexings
is a lower power of N which disappears in the limit.
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Computing a class’s contribution

Compute the total contribution to E Tr Aη of a class C
with s blocks, v 1-blocks and (s − v) 2-blocks.

I
(s

v

)
ways to order the blocks.

I p(η) = ηs

s!
+ O(ηs−1) ways to place them among the

w ’s (just choosing vertices on a polygon).

38 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Computing a class’s contribution

Compute the total contribution to E Tr Aη of a class C
with s blocks, v 1-blocks and (s − v) 2-blocks.

I
(s

v

)
ways to order the blocks.

I p(η) = ηs

s!
+ O(ηs−1) ways to place them among the

w ’s (just choosing vertices on a polygon).

38 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

Computing a class’s contribution

Compute the total contribution to E Tr Aη of a class C
with s blocks, v 1-blocks and (s − v) 2-blocks.

I
(s

v

)
ways to order the blocks.

I p(η) = ηs

s!
+ O(ηs−1) ways to place them among the

w ’s (just choosing vertices on a polygon).

38 / 58



Introduction k -Checkerboard Ensembles Computing Expected Moments Almost-Sure Weak Convergence Acknowledgements

How can we choose congruence classes of entries?

Recall: wij ’s have both indices congruent mod k , aij ’s have
indices non-congruent mod k .

I Congruence classes ‘propagate’ through strings of
w ’s.

I 2-blocks have a’s matched aijaji so congruence class
propagates through.

I Each 1-block has non-congruent indices and these
therefore determine all other congruence classes
(except inner index of 2-blocks).
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Hollow GOE

I Fixing congruence classes [i1], . . . , [iv ]

I Number of ways to match

a[i1][i2]w . . .wa[i2][i3]w . . .wa[iv ][i1]w . . .

I This is the same as

E[bi1i2bi2i3 · · · biv i1]

with each bij ∼ N (0,1) iid. and bij = bji and bii = 0.
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Hollow GOE

Definition

The hollow Gaussian Orthogonal Ensemble is given by
B = (bij) = BT with

bij =

{
NR(0,1) if i 6= j
0 if i = j .
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Continuing to count indexings

I Once we have chosen matching, (k − 1)s−v choices
of congruence classes mod k for indices.

I
((

N
k

)η−s
+ O

((
N
k

)η−s−1
))

choices of indices in these
congruence classes.
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Putting this all together

Proposition
The total contribution to E Tr Aη of a class with s blocks,
v 1-blocks and (s − v) 2-blocks

p(η)

(
s
v

)
(k − 1)s−vEk Tr Bv

((
N
k

)η−s

+O

((
N
k

)η−s−1
))

where
p(η) =

ηs

s!
+ O(ηs−1)

and the expectation Ek Tr Bv is taken over the k × k
hollow GOE.
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Main theorem

Theorem

Denote the centered moments of the empirical blip
spectral measure of the N × N k-checkerboard ensemble
by µ(m)

A,N . Then

lim
N→∞

E[µ
(m)
A,N ] =

1
k
Ek Tr Bm.
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Extensions

Theorem
If the aij are changed to complex (resp. quaternion),
ceteris paribus, we have that the expected mth centered
moments satisfy

lim
N→∞

E[µ
(m)
A,N ] =

1
k
Ek Tr Bm

where Bm is the complex (resp. quaternion) analogue of
the hollow GOE.
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Almost-Sure Weak Convergence
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Moment convergence theorem

Theorem (Moment Convergence Theorem)

Let µ be a measure on R with finite moments µ(m) for all
m ∈ Z≥0, and µ1, µ2, . . . a sequence of measures with
finite moments µ(m)

n such that limn→∞ µ
(m)
n = µ(m) for all

m ∈ Z≥0. If in addition the moments µ(m) uniquely
characterize a measure (Carleman’s condition), then the
sequence µn converges weakly to µ.

Remark
If the moments converge almost-surely, then the
measures almost-surely converge weakly.
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Standard arguments and their ultimate downfall

We wish to show mth moments Xm,N of empirical spectral
measure of N × N ensemble converge a.s. to desired Mm
as N →∞.

Show

|Xm,N −Mm| ≤ |Xm,N − E[Xm,N ]|+ |E[Xm,N ]−Mm| .

converges a.s. to 0 as N →∞.
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Standard arguments and their ultimate downfall

Usual approach to show Xm,N → E[Xm,N ] a.s.:

Chebyshev:

Pr(|Xm,N−E[Xm,N ]| > ε) ≤
E
[
(Xm,N − E[Xm,N ])r]

εr = O
(

1
N2

)
Apply Borel-Cantelli to show

Pr (∃m such that Xm,N 6= E[Xm,N ] for infinitely many N) = 0.
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Standard arguments and their ultimate downfall

I With many eigenvalues, all empirical spectral
measures look alike.

I With a finite number in the blip, empirical spectral
measures look different.

I Hence variance (and higher moments) over ensemble
of empirical spectral measure’s moments does not
go to 0.
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Solution: Averaged Blip Empirical Spectral Measure

Definition

Fix a function g : N→ N. The averaged empirical blip
spectral measure associated to A ∈ ΩN is

µN,g,A :=
1

g(N)

g(N)∑
i=1

µA(i)
N ,N

,

where Ω =
∏∞

N=1 ΩN and ΩN is the probability space of
N × N k -checkerboard matrices.
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Main Result

Theorem

Let g : N→ N be such that there exists an δ > 0 for which
g(N) = ω(Nδ). Then, as N →∞, the averaged empirical
spectral measures µN,g,A of the k-checkerboard ensemble
converge weakly almost-surely to the measure with
moments Mk ,m = 1

kEk Tr [Bm].
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Proof Sketch

I Because g(N) is growing, by LLN arguments each
random centered moment E[(µ

(m)

N,g,A
− E[µ

(m)

N,g,A
])r ]

converges to 0 at some rate.

I For higher moments of r.v. these converge faster.

I Choose r sufficiently high so that

E[(µ
(m)

N,g,A
− E[µ

(m)

N,g,A
])r ] = O

(
1

N2

)
.
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Spectral distribution of hollow GOE
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Figure: Hist. of eigenvals of 32000 (Left) 2× 2 hollow GOE matrices,
(Right) 3× 3 hollow GOE matrices.
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Figure: Hist. of eigenvals of 32000 (Left) 4× 4 hollow GOE matrices,
(Right) 16× 16 hollow GOE matrices.
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Questions?
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