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Introduction
°

Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
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Introduction
°

Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:
Hwn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
U : energy eigenfunctions
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Random Matrix Ensembles

dj1 Az Az -+ AN
djp dp dpz -+ AN
A = . . . . = AT a; =a;
AN don A3Nn  cc AnN
Fix p, define
1<i<j<N
This means
Bu
Prob(A: & € [oy, 5]) = ][] / p(xij)dx;;.
1<i<j<N ¥ X =

Want to understand eigenvalues of A. 4/31
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

1< (A
pan(X) = N;(S(X_Z(—\/N))
b # N % S [a, b]
/ ,uA7N(X)dX = { \/_N }
oo SUAAK | Tracea)

kN 5+1 2KN3+L
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Wigner’'s Semi-Circle Law

Wigner's Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — ~©

v1-—x? if|x| <1

2
0 otherwise.

pan(X) — {
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Numerical examples

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
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Numerical examples

The eigenvalues of the Cauchy
distribution are NOT semicirular.
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Cauchy Distribution: p(x) = —t

|. Zakharevich, A generalization of Wigner’s law, Comm.
Math. Phys. 268 (2006), no. 2, 403—-414.

http://web.williams. edu/ Mat henatics/sjniller/public_htm/book/papers/innaz. pdf
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but choose the
matrix elements randomly and independently.

Eigenvalue Trace Lemma
Let A be an N x N matrix with eigenvalues \;(A). Then

Trace(A*) = > \(A)K,
where

Trace(AX)
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

N

By the Central Limit Theorem:

N N N N
Trace(A?) = D ayay = » ) af ~ N?
i—1 j—1 i—1 j—1
N
> A(AY ~ N?

Gives NAve( )\ (A)?) ~ NZ2or Ave()(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of jia n(X) is Trace(AK)/2¢NK/2+1,

Average k-th moment is
Trace(Ak
/ / 2kNk/2+1 Hp(aij)daij.

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second
Moment

Substituting into expansion gives

22N2 / / aji 'p(all)dall -+ p(ann )dann

Iljl

Integration factors as

[oe)
/ a?p(ay)day - H / p(ag)day = 1.
ajj=—00 (k,D( ) ay|=—00

k<l

Higher moments involve more advanced combinatorics
(Catalan numbers).
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SKETCH OF PROOF: Averaging Formula for Higher
Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

1
2ka/2+1/ / Z Zamz“'aikil'Hp(aij)daij-

=1 K= i<j

Main contribution when the a;,;,,,’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).

Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices (with Adam
Massey and John Sinsheimer), Journal of Theoretical Probability 20 (2007), no. 3, 637-662.

http://arxiv.org/abs/ nat h/ 0512146
8/31


http://arxiv.org/abs/math/0512146

Introduction
°

McKay’s Law (Kesten Measure) withd = 3

Density of Eigenvalues for d-regular graphs

() — {m\M(d—l)—xZ X| <2vd—1

0 otherwise.
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McKay’s Law (Kesten Measure) withd = 6

o ] \
| _J |

Fat Thin: fat enough to average, thin enough to get

something different than semi-circle (though as d — oo
recover semi-circle).
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The Ensemble of m-Block Circulant Matrices

Symmetric matrices periodic with period m on wrapped
diagonals, i.e., symmetric block circulant matrices.

8-by-8 real symmetric 2-block circulant matrix:

Co CL|Cr C3|Cys d3 Co dl
C1 do dl d2 d3 d4 Cs d2
Co dl Co CL|Cr C3|Cy d3
C3 d2 C1 do dl d2 d3 d4
Cy d3 Co dl Co Ci1|Cr C3
d3 d4 Cs d2 C1 do dl d2
Co, C3|Cy d3 Co dl Co C;
dl d2 d3 d4 C3 dz C1 do

Choose distinct entries i.i.d.r.v.
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Results

Theorem: Kologlu, Kopp and Miller

The limiting spectral density function f,,(x) of the real
symmetric m-block circulant ensemble is given by

e—mez AL N i m
fm(X)ng(Zr)!g(r+s+l)
(2r+2s) [ 1\, .,
troner (2) ™

Fixed m equals m x m GOE, as m — oo converges to the
semicircle distribution.

-
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.
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Results (continued)

0.4

Figure: Plot for f, and histogram of eigenvalues of 100 2-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot for f3 and histogram of eigenvalues of 100 3-block
circulant matrices of size 402 x 402.

12/31



Introduction
.

Results (continued)

0.4

TR
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Figure: Plot for f; and histogram of eigenvalues of 100 4-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot for fg and histogram of eigenvalues of 100 8-block
circulant matrices of size 400 x 400.
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Results (continued)

0.4
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Figure: Plot for f,o and histogram of eigenvalues of 100 20-block
circulant matrices of size 400 x 400.

12/31



Introduction
.

Results (continued)

Figure: Plot of convergence to the semi-circle.

The Limiting Spectral Measure for Ensembles of Symmetric Block
Circulant Matrices (with Murat Kologlu, Gene S. Kopp, Frederick W.
Strauch and Wentao Xiong), Journal of Theoretical Probability 26
(2013), no. 4, 1020-1060. http://arxiv. org/ abs/1008. 4812
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k-Checkerboard Ensembles

k-Checkerboard Ensembles
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Checkerboard Matrices: N x N (k, w)-checkerboard
ensemble

Matrices M = (m;;) = MT with g; iidrv, mean 0, variance
1, finite higher moments, w fixed and

me a; ifi##]jmodk
! w ifi =] modKk.

Example: (3, w)-checkerboard matrix:

W dp1 dp2 W dg4 - QAoN-1
aio W di2 aA13 W cee AdiN-1

azo az 1 W az 3 e P W

doN-1 AiN-1 W aznNn-1 AgN-1 "¢ W
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Split Eigenvalue Distribution

fll. =i
| el

Figure: Histogram of normalized eigenvalues for 500 100 x 100
2-checkerboard matrices.

:
|
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Eigenvalue Regimes

Theorem

Let {An }nen be a sequence of (k, w)-checkerboard
matrices. Then almost surely as N — oo the eigenvalues
of Ay fall into two regimes: N — k of the eigenvalues are
O(N?Y/2+<) and k eigenvalues are of magnitude

Nw /k + O(N¥/2+e),
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Normalized Empirical Spectral Measure

Definition
Given an N x N Hermitian matrix My with eigenvalues
{\i}N,, the normalized empirical spectral measure is

Theorem

Let {My }nen be a sequence of real N x N

k-checkerboard matrices. Then, the normalized empirical

spectral measures H 3wy converge weakly almost surely
N

to the semi-circle distribution.

17/31
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Moment convergence theorem

Theorem (Moment Convergence Theorem)

Let 12 be a measure on R with finite moments (™ for all
m € Zso, and p1, 2, . .. a sequence of measures with
finite moments 1{™ such that limy_, z{™ = u(™ for all
m € Zso. If in addition the moments x(™ uniquely
characterize a measure (Carleman’s condition), then the

sequence u, converges weakly to .
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k-Checkerboard Ensembles
[ ]

Moment convergence theorem

Theorem (Moment Convergence Theorem)

Let 12 be a measure on R with finite moments (™ for all
m € Zso, and p1, 2, . .. a sequence of measures with
finite moments 1{™ such that limy_, z{™ = u(™ for all
m € Zso. If in addition the moments x(™ uniquely
characterize a measure (Carleman’s condition), then the

sequence u, converges weakly to .

Remark

If the moments converge almost-surely, then the
measures almost-surely converge weakly.
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Standard arguments

We wish to show m" moments Xmn Of empirical spectral
measure of N x N ensemble converge a.s. to desired M,
as N — oo.

Show

|xm,N - Mm| S |Xm,N - IFi‘f[xm,N“ + |E[Xm,N] - Mml .

converges a.s. to 0 as N — oo.

19/31



k-Checkerboard Ensembles
[ ]

Bulk Distribution: Obstructions

@ There are N — k eigenvalues of order O(N*/2*<) in the
bulk.
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k-Checkerboard Ensembles
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Bulk Distribution: Obstructions

@ There are N — k eigenvalues of order O(N*/2*<) in the
bulk.

@ Recall that there are k eigenvalues of magnitude
Nw /k + O(N/2Fe),

@ Because of these high magnitude eigenvalues, the
limiting expected moments of the normalized ESD do
not exist.
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Bulk Distribution: Obstructions

@ There are N — k eigenvalues of order O(N*/2*<) in the
bulk.

@ Recall that there are k eigenvalues of magnitude
Nw /k + O(N/2Fe),

@ Because of these high magnitude eigenvalues, the
limiting expected moments of the normalized ESD do
not exist.

@ This obstructs the standard application of the method
of moments.
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Perturbation Theorem

Theorem (Tao)

Let { A\ }nen be a sequence of random Hermitian matrix
ensembles such that {4, n }nen CONverges weakly almost
surely to a limit v. Let {AN}NGN be another sequence of
random matrix ensembles such that & rank(Ay)
converges almost surely to zero. Then {v,_, z. n}nen
converges weakly almost surely to v.
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Examining the Blip |

@ To understand the limiting distribution of the blip, we
localize our measure to the blip regime.
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k-Checkerboard Ensembles
[ ]

Examining the Blip |

@ To understand the limiting distribution of the blip, we
localize our measure to the blip regime.

@ To do this, define a new empirical spectral measure
by

b 2 t(5)i(- (-5))

A eigenvalue of A

with f a function ~ 0 on the bulk and =~ 1 on the blip.
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Examining the Blip Il

@ Candidates for f must be amenable to
Eigenvalue-Trace Lemma arguments (SO we must
either choose a polynomial or deal with Taylor series
convergence).
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Examining the Blip Il

@ Candidates for f must be amenable to
Eigenvalue-Trace Lemma arguments (SO we must
either choose a polynomial or deal with Taylor series
convergence).

@ Any given polynomial does not vanish to a high

enough order at x = 0 as N — oo, so we choose
family of polynomials.

23/31
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The Weighting Function

Use weighting function f,(x) = x2"(x — 2)?".

Figure: f,(x) plotted forn = 1 to n = 4.
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The New Spectral Measure |

Using the weighting function f,(x) we form a new
empirical spectral measure.

Definition

The empirical blip spectral measure associated to an
N x N k-checkerboard matrix A is

1 KA N
UAN = E | Z fn(N) (W) 1) (X = ()\ = F))
A eigenvalue of A

where n(N) is a function for which there exists some ¢ so
that N < n(N) < N1,
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Main theorem

Definition
The hollow Gaussian Orthogonal Ensemble is given by
B = (bij) = BT with

bj = Mr(0,1)(1 — )

Theorem

We have 1

NlianE[ngTh]] = LB TrB™,
where ﬁ{”) is the centered moments of the empirical blip
spectral measure of the N x N k-checkerboard ensemble
and B is in the hollow GOE.

v
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Main Result

Issue: Can’t look at blip of just one matrix as only fixed
number eigenvalues; average over g(N) such matrices.

Theorem

Let g : N — N be such that there exists an § > 0O for which
g(N) = w(N?). Then, as N — oo, the averaged empirical
spectral measures sy , z of the k-checkerboard ensemble
converge weakly almost-surely to the measure with
moments My m = —Ek Tr [B™M].
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Spectral distribution of hollow GOE

Figure: Hist. of eigenvals of 32000 (Left) 2 x 2 hollow GOE matrices,
(Right) 3 x 3 hollow GOE matrices.

— 00 —

Figure: Hist. of eigenvals of 32000 (Left) 4 x 4 hollow GOE matrices,
(Right) 16 x 16 hollow GOE matrices.
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