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Classical
Random Matrix Theory
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H n = En n

H : matrix, entries depend on system
En : energy levels
 n : energy eigenfunctions
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Origins of Random Matrix Theory

Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

Average over all configurations – most configurations
close to system average.

Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric
A = AT , complex Hermitian A

T
= A).
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Random Matrix Ensembles

A =

⎛⎜⎜⎝
a11 a12 a13 ⋅ ⋅ ⋅ a1N
a12 a22 a23 ⋅ ⋅ ⋅ a2N
...

...
... . . . ...

a1N a2N a3N ⋅ ⋅ ⋅ aNN

⎞⎟⎟⎠ = AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [�ij , �ij ]) =
∏

1≤i≤j≤N

∫ �ij

xij=�ij

p(xij)dxij .

Want to understand eigenvalues of A.
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Eigenvalue Distribution

�(x − x0) is a unit point mass at x0:∫
ℝ f (x)�(x − x0)dx = f (x0).

To each matrix A, attach a probability measure:

�A,N(x) :=
1
N

N∑
i=1

�

(
x − �i(A)√

N

)
∫
ℝ

f (x)�AN (x)dx =
N∑

i=1

f
(
�i(A)√

N

)

Mn(A,N) := nth moment =
1

N
n
2+1

N∑
i=1

�i(A)n =
Trace(An)

N
n
2+1

.
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Eigenvalue Trace Formula

We want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N × N matrix with eigenvalues �i(A). Then

Trace(Ak) =
N∑

n=1

�i(A)k ,

where

Trace(Ak) =
N∑

i1=1

⋅ ⋅ ⋅
N∑

ik=1

ai1i2ai2i3 ⋅ ⋅ ⋅ aik i1 .
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Our ensemble:
m-Circulant Matrices
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m-Circulant Ensemble

We look at matrices A of the following form, which we call
m-circulant or m-doped palindromic Toeplitz.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,0 b1,1 b1,2 ⋅ ⋅ ⋅ b
1, N

2 −1
b

1, N
2

b
1, N

2 −1
⋅ ⋅ ⋅ b1,1

b1,1 b2,0 b2,1 ⋅ ⋅ ⋅ b
2, N

2 −1
b

2, N
2

b2,2

b1,2 b2,1 b3,0 ⋅ ⋅ ⋅
. . .

. . . b3,3

. . .
.
.
.

bm,0 bm,1 bm,2 ⋅ ⋅ ⋅ bm,m+1
.
.
.

.

.

.
.
.
. bm,1 b1,0 b1,1 ⋅ ⋅ ⋅ b1,m+2

bm,2 b1,1 b2,0 ⋅ ⋅ ⋅ b2,m+3
.
.
.

.

.

.
.
.
.

. . .
.
.
.

b1,1 b2,2 b3,3 ⋅ ⋅ ⋅ bm,m+1 b1,m+2 b2,m+3 ⋅ ⋅ ⋅ bm,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Matrices are real symmetric, becomes a probability space
when we choose the red entries independently from a fixed
distribution p of mean 0 and variance 1, and fill in the rest of the
matrix as per the structure defined.
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Averaging

Look at the expected value for the moments:

Mn(N) := E(Mn(A,N))

=
1

N
n
2+1

E(Trace(An))

=
1

N
n
2+1

∑
1≤i1,...,in≤N

E(ai1i2ai2i3 ⋅ ⋅ ⋅ ain i1).

As N →∞, these moments converge to the moments of
the limiting spectral distribution. A bounding arguments
involving Chebyshev’s inequality and the Borel-Cantelli
lemma shows that a “typical" m-circulant matrix of large
dimension has an eigenvalue distribution “close" to this
limiting density.
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Matchings

We rewrite our formula for the moments as

Mn(N) =
1

N
n
2+1

∑
∼

�(∼)md1(∼) ⋅ ⋅ ⋅mdl (∼).

where the sum is over equivalence relations on
{(1,2), (2,3), ..., (n,1)}. The dj(∼) denote the sizes of the
equivalence classes, and the md the moments of p.
Finally, the coefficient �(∼) is the number of solutions to
the system of Diophantine equations:
Whenever (s, s + 1) ∼ (t , t + 1),

is+1 − is ≡ it+1 − it (mod N) and is ≡ it (mod m), or
is+1 − is ≡ −(it+1 − it) (mod N) and is ≡ it+1 (mod m).
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Contributing Terms

As N →∞, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.

Therefore, the odd moments go to zero as N−1/2.
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Algebraic Topology

If we think of these pairings as topological identifications,
the contributing ones are precisely the ones that give rise
to orientable surfaces.

Figure: A three holed torus.

It turns out that the contribution from such a pairing is
m−2g, where g is the genus (number of holes) of the
surface. The proof is a combinatorial argument involving
Euler characteristic.
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Computing the Even Moments

Our formula for the even moments becomes

M2k =

⌊k/2⌋∑
g=0

"g(k)m−2g + Ok

(
1
N

)
,

with "g(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface. J. Harer and D.
Zagier (1986) gave generating functions for the "g(k).
Their results and a bit of analysis yield explicit formulas
for the limiting spectral density.
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Results

Theorem
The limiting spectral density function fm(x) of the real
symmetric m-circulant ensemble is given by the formula

fm(x) =
e−

mx2
2

√
2�m

m∑
l=1

l−1∑
s=0

(
m
l

)
(2s − 1)!!
(l − 1)!

(
2(l − 1)

2s

)
⋅
(
mx2)l−1−s

(−1)s.
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Results (continued)

Theorem
As m→∞, the limiting spectral densities approach the
semicircle distribution.

16



Classical RMT m-Circulant The Density Function Refs

Results (continued)
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Figure: Plots for f1, f2, f4, f8, f16 and the semicircle.
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Now that we have an explicit formula for the moments

M2k =

k/2∑
g=0

"g(k)m−2g

"g(k) =
(2k)!

(k + 1)!(k − 2g)!
×

(
Coefficientof x2g in

(
x/2

tanh(x/2)

)k+1
)

construct char. fn of limiting spectral distribution:

�(t) =
∞∑

k=0

1
(2k)!

(it)2kM2k

=
∞∑

k=0

k/2∑
g=0

"g(k)m−2g(−t2)k/(2k)!.
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Using (2k − 1)!! = (2k)!
2k k! , rewrite the characteristic function:

�(t) = m−1
∞∑

k=0

k/2∑
g=0

"g(k)mk+1−2g

(2k − 1)!!
(−t2/2m)k

k !

Now consider two functions

F (y) :=
∞∑

k=0

k/2∑
g=0

"g(k)mk+1−2g

(2k − 1)!!
y k

which Harer proves in his paper to be

=
1

2y

((
1 + y
1− y

)m

− 1
)

G(y) := ey =
∞∑

k=0

y k/k !.
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