Completeness of Positive Linear Recurrence Sequences

Elżbieta Bołdyriew (eboldyriew@colgate.edu) John Haviland (havijw@umich.edu) Phuc Lam (plam6@u.rochester.edu) John Lentfer (jlentfer@hmc.edu) Fernando Trejos Suárez (fernando.trejos@yale.edu)

Joint work with Steven J. Miller

The Nineteenth International Conference on Fibonacci Numbers and Their Applications 07/21/2020

•00000

Introduction

Positive Linear Recurrence Sequences

Definition

A sequence $\{H_i\}_{i\geq 1}$ of positive integers is a **Positive** Linear Recurrence Sequence (PLRS) if the following properties hold:

Positive Linear Recurrence Sequences

Definition

A sequence $\{H_i\}_{i\geq 1}$ of positive integers is a **Positive** Linear Recurrence Sequence (PLRS) if the following properties hold:

• (Recurrence relation) There are non-negative integers L, c_1, \ldots, c_L such that

$$H_{n+1}=c_1H_n+\cdots+c_LH_{n+1-L}$$

with L, c_1 , c_L positive.

Positive Linear Recurrence Sequences

Definition

A sequence $\{H_i\}_{i>1}$ of positive integers is a **Positive** Linear Recurrence Sequence (PLRS) if the following properties hold:

 (Recurrence relation) There are non-negative integers L, c_1, \ldots, c_l such that

$$H_{n+1}=c_1H_n+\cdots+c_LH_{n+1-L}$$

with L, c_1, c_L positive.

• (Initial conditions) $H_1 = 1$, and for 1 < n < L,

$$H_{n+1} = c_1 H_n + \cdots + c_n H_1 + 1$$

000000

• We write
$$[c_1, ..., c_L]$$
 for $H_{n+1} = c_1 H_n + \cdots + c_L H_{n-L+1}$.

000000

- We write $[c_1, ..., c_L]$ for $H_{n+1} = c_1 H_n + \cdots + c_L H_{n-L+1}$.
- For example, for the Fibonacci numbers, we write [1, 1]. This definition gives initial conditions $F_1 = 1, F_2 = 2$.

- We write $[c_1, ..., c_L]$ for $H_{n+1} = c_1 H_n + \cdots + c_L H_{n-L+1}$.
- For example, for the Fibonacci numbers, we write [1, 1]. This definition gives initial conditions $F_1 = 1$, $F_2 = 2$.
- Despite satisfying positive linear recurrences, the Lucas and Pell numbers are not PLRS, since their initial conditions do not meet the definition.

Introduction to Completeness

Definition

A sequence $\{H_i\}_{i\geq 1}$ is called **complete** if every positive integer is a sum of its terms, using each term at most once.

Introduction to Completeness

Definition

A sequence $\{H_i\}_{i\geq 1}$ is called **complete** if every positive integer is a sum of its terms, using each term at most once.

 The sequence with the recurrence [1,3] is not complete. Its terms are {1,2,5,11,...}; you cannot get 4 or 9 as the sequence grows too quickly.

Introduction to Completeness

Definition

A sequence $\{H_i\}_{i\geq 1}$ is called **complete** if every positive integer is a sum of its terms, using each term at most once.

- The sequence with the recurrence [1, 3] is not complete. Its terms are {1, 2, 5, 11, ...}; you cannot get 4 or 9 as the sequence grows too guickly.
- The Fibonacci sequence $F_{n+1} = F_n + F_{n-1}$, with initial conditions $F_1 = 1$, $F_2 = 2$, is complete (follows from Zeckendorf's Theorem).

000000

The PLRS [2], which has the recurrence $H_{n+1} = 2H_n$, has terms $H_n = 2^{n-1}$ and is complete because every integer has a binary representation.

The Doubling Sequence

The PLRS [2], which has the recurrence $H_{n+1} = 2H_n$, has terms $H_n = 2^{n-1}$ and is complete because every integer has a binary representation.

Theorem (Brown)

The complete sequence with maximal terms is $H_n = 2^{n-1}$.

The Doubling Sequence

The PLRS [2], which has the recurrence $H_{n+1} = 2H_n$, has terms $H_n = 2^{n-1}$ and is complete because every integer has a binary representation.

Theorem (Brown)

The complete sequence with maximal terms is $H_n = 2^{n-1}$.

Any PLRS of the form [1, ..., 1, 2] has the same terms as [2], i.e., $H_n = 2^{n-1}$.

Brown's Criterion

Theorem (Brown)

A nondecreasing sequence $\{H_i\}_{i\geq 1}$ is complete if and only if $H_1=1$ and for every $n\geq 1$,

$$H_{n+1} \leq 1 + \sum_{i=1}^n H_i.$$

Brown's Criterion

Theorem (Brown)

A nondecreasing sequence $\{H_i\}_{i\geq 1}$ is complete if and only if $H_1=1$ and for every $n\geq 1$,

$$H_{n+1}\leq 1+\sum_{i=1}^n H_i.$$

Can we bound where a sequence must fail Brown's Criterion?

Brown's Criterion

Theorem (Brown)

A nondecreasing sequence $\{H_i\}_{i>1}$ is complete if and only if $H_1 = 1$ and for every n > 1,

$$H_{n+1}\leq 1+\sum_{i=1}^n H_i.$$

Can we bound where a sequence must fail Brown's Criterion? We think so!

Conjecture (SMALL 2020)

If a PLRS $H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L}$ incomplete, then it fails Brown's criterion before the 2L-th term.

Families of Sequences

Analyzing Families of Sequences

Theorem (SMALL 2020)

• $[1, \underbrace{0, \dots, 0}_{k}, N]$, is complete if and only if

$$N \leq \left\lfloor \frac{(k+2)(k+3)}{4} + \frac{1}{2} \right\rfloor.$$

 $[1,1,\underbrace{0,\ldots,0}_{k},N]$, is complete if and only if

$$N \leq \left| \frac{F_{k+6} - (k+5)}{4} \right|,$$

where F_k is the kth Fibonacci number.

Proof Sketch

Theorem (SMALL 2020)

① $[1,0,\ldots,0,N]$, with k zeros, is complete if and only if $N \le \left| \frac{(k+2)(k+3)}{4} + \frac{1}{2} \right|$.

Partial Proof. We sketch that if $N_{\text{max}} = \left\lfloor \frac{(k+2)(k+3)}{4} + \frac{1}{2} \right\rfloor$, then the sequence is complete. It is similar for $N < N_{\text{max}}$.

Proof Sketch

Theorem (SMALL 2020)

① $[1,0,\ldots,0,N]$, with k zeros, is complete if and only if $N \leq \left\lfloor \frac{(k+2)(k+3)}{4} + \frac{1}{2} \right\rfloor$.

Partial Proof. We sketch that if $N_{\text{max}} = \left\lfloor \frac{(k+2)(k+3)}{4} + \frac{1}{2} \right\rfloor$, then the sequence is complete. It is similar for $N < N_{\text{max}}$. With the recurrence relation and Brown's Criterion,

$$H_{n+1} = H_n + N_{\max} H_{n-k-1}$$

 $\leq H_n + (N_{\max} - 1)H_{n-k-1} + H_{n-k-2} + \dots + H_1 + 1$

By induction,
$$(N_{\max} - 1)H_{n-k-1} \le H_{n-1} + \cdots + H_{n-k-1}$$
, so $\le H_n + \cdots + H_1 + 1$.

By the previous theorem, [1, 0, 0, 0, 0, N] is complete for $N \le 11$.

By the previous theorem, [1, 0, 0, 0, 0, N] is complete for $N \le 11$.

Question

Does there exist a complete PLRS of length L=6 with N>11?

Here are the maximal last terms for preserving completeness for several other sequences of length L=6:

Here are the maximal last terms for preserving completeness for several other sequences of length L=6:

- [1, 0, 0, 0, 0, N] is complete for $N \le 11$.
- [1, 1, 0, 0, 0, N] is complete for $N \le 11$.
- [1, 0, 1, 0, 0, N] is complete for $N \le 12$.
- [1, 0, 0, 1, 0, N] is complete for $N \le 11$.
- [1, 0, 0, 0, 1, N] is complete for $N \le 10$.

Here are the maximal last terms for preserving completeness for several other sequences of length L=6:

- [1, 0, 0, 0, 0, N] is complete for $N \le 11$.
- [1, 1, 0, 0, 0, N] is complete for $N \le 11$.
- [1, 0, 1, 0, 0, N] is complete for $N \le 12$.
- [1, 0, 0, 1, 0, N] is complete for $N \le 11$.
- [1, 0, 0, 0, 1, N] is complete for $N \le 10$.

Introduction

Why is [1, 0, 1, 0, 0, 12] complete, but [1, 0, 0, 0, 0, 12] is not complete?

• [1, 0, 0, 0, 0, 12] has terms {1, 2, 3, 4, 5, 6, 18, 42, ...} and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see $\{2, 4, 7, 11, 16, 22, 40, \dots\}$

Introduction

- [1,0,0,0,0,12] has terms {1,2,3,4,5,6,18,42,...} and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see {2,4,7,11,16,22,40,...}
- [1,0,1,0,0,12] has terms $\{1,2,3,5,8,12,29,61,\dots\}$ and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see $\{2,4,7,12,20,32,61,\dots\}$

- [1,0,0,0,0,12] has terms $\{1,2,3,4,5,6,18,42,\dots\}$ and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see $\{2,4,7,11,16,22,40,\dots\}$
- [1,0,1,0,0,12] has terms {1,2,3,5,8,12,29,61,...} and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see {2,4,7,12,20,32,61,...}
- [1,1,1,0,0,12] has terms $\{1,2,4,8,15,28,63,\dots\}$ and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see $\{2,4,8,16,31,59,\dots\}$

- [1,0,0,0,0,12] has terms $\{1,2,3,4,5,6,18,42,\dots\}$ and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see $\{2,4,7,11,16,22,40,\dots\}$
- [1,0,1,0,0,12] has terms {1,2,3,5,8,12,29,61,...} and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see {2,4,7,12,20,32,61,...}
- [1,1,1,0,0,12] has terms $\{1,2,4,8,15,28,63,\dots\}$ and so computing the sums $\sum_{i=1}^{n} H_i + 1$ we see $\{2,4,8,16,31,59,\dots\}$

Sequences of Initial Ones

Theorem (SMALL 2020)

If a sequence $[\underbrace{1,\ldots,1}_{m},\underbrace{0,\ldots,0}_{k},N]$ is complete with

 $m \ge 3$, then

$$N \leq \frac{1}{2} \left(1 + \sum_{i=1}^{k+1} F_i^{(m)} + \sum_{i=1}^{k+1-m} F_i^{(m)} + \dots + \sum_{i=1}^{(k+1) \bmod m} F_i^{(m)} \right)$$

where $F_i^{(m)}$ is the m-bonacci sequence, $[1, \ldots, 1]$.

Theorem on Adding Ones

Theorem (SMALL 2020)

- For $L \ge 6$, consider the sequence $\{H_n\}$ given by $[1,0,\ldots,0,1,0,\ldots,0,M]$. Then, if M is maximal such that $\{H_n\}$ is complete, and N is maximal such that $[1,0,\ldots,0,N]$ is complete, we have $M \ge N$.
- For a fixed length L, the sequence $[1, \underbrace{0, \dots, 0}_{k}, \underbrace{1, \dots, 1}_{m}, N]$ with m ones has a lower bound on N than the sequence $[1, \underbrace{0, \dots, 0}_{k}, \underbrace{1, \dots, 1}_{m}, N]$.

In particular, if $m < \frac{L}{2}$, the bound is precisely

$$N \leq \left| \frac{(L-m)(L+m+1)}{4} + \frac{1}{48}m(m+1)(m+2)(m+3) + \frac{1-2m}{2} \right|.$$

Modifying Coefficients of a PLRS

When studying a PLRS, what modifications to the recurrence coefficients preserve completeness or incompleteness?

Modifying Coefficients of a PLRS

When studying a PLRS, what modifications to the recurrence coefficients preserve completeness or incompleteness?

Theorem (SMALL 2020)

Introduction

- If a sequence [c₁,..., c_{L-1}, c_L] is complete, then so is [c₁,..., c_{L-1}, d_L] for any d_L ≤ c_L.
 Remark. This is not true for c_i in any position.
- If a sequence $[\underbrace{1,\ldots,1}_m,\underbrace{0,\ldots,0}_k,c_L]$ is complete and $c_L=2^{k+1}-1,\underbrace{[1,\ldots,1}_m,\underbrace{0,\ldots,0}_k,c_L+j]$ is incomplete for any positive integer j.

Modifying Lengths of a PLRS

Theorem (SMALL 2020)

- If a sequence $[c_1, \ldots, c_L]$ is incomplete, then so is $[c_1, \ldots, c_{L-1} + c_L]$.
- If a sequence $[c_1, \ldots, c_L]$ is incomplete, then so is $[c_1, \ldots, c_L, c_{L+1}]$ for any $c_{L+1} > 0$.

Theorem (SMALL 2020)

Introduction

- If a sequence $[c_1, \ldots, c_L]$ is incomplete, then so is $[c_1,\ldots,c_{L-1}+c_l].$
- If a sequence $[c_1, \ldots, c_L]$ is incomplete, then so is $[c_1,\ldots,c_l,c_{l+1}]$ for any $c_{l+1}>0$.

Conjecture (SMALL 2020)

If a sequence $[1, \ldots, 1, 0, \ldots, 0, c_L]$ is complete, then so is $[1,\ldots,1,0,\ldots,0,c_L]$ for any positive integer j. m+i

Principal Roots

Introduction

Theorem (Binet's Formula)

If $r_1, ..., r_k$ are the distinct roots of the characteristic polynomial of a PLRS $\{H_n\}$, then there exist polynomials $q_1, ..., q_k$ such that $H_n = q_1(n)r_1^n + \cdots + q_k(n)r_k^n$.

Principal Roots

Theorem (Binet's Formula)

If $r_1, ..., r_k$ are the distinct roots of the characteristic polynomial of a PLRS $\{H_n\}$, then there exist polynomials $q_1, ..., q_k$ such that $H_n = q_1(n)r_1^n + \cdots + q_k(n)r_k^n$.

For PLRS, the characteristic polynomial has a unique positive root r_1 which is the largest in absolute value, called the *principal root*.

Principal Roots

Theorem (Binet's Formula)

If $r_1, ..., r_k$ are the distinct roots of the characteristic polynomial of a PLRS $\{H_n\}$, then there exist polynomials $q_1, ..., q_k$ such that $H_n = q_1(n)r_1^n + \cdots + q_k(n)r_k^n$.

For PLRS, the characteristic polynomial has a unique positive root r_1 which is the largest in absolute value, called the *principal root*.

Theorem (SMALL 2020)

If H_n is a complete PLRS and r_1 is its principal root, then $r_1 \leq 2$.

Introduction

• If a sequence is complete, $r_1 \leq 2$.

Bounding Principal Roots

- If a sequence is complete, $r_1 \leq 2$.
- There exists a second bound $1 < B_L < 2$ on the principal roots, so that if a sequence is incomplete, the its principal root r_1 satisfies $r_1 \ge B_L$. This bound is dependent on the length of the generating sequence $[c_1, \ldots, c_L]$. We conjecture the following:

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

Introduction

- If a sequence is complete, $r_1 \leq 2$.
- There exists a second bound $1 < B_l < 2$ on the principal roots, so that if a sequence is incomplete. the its principal root r_1 satisfies $r_1 > B_1$. This bound is dependent on the length of the generating sequence $[c_1, \ldots, c_l]$. We conjecture the following:

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

• If this holds, then for large L, we would have $B_l \approx (L/2)^{2/L}$. In particular, $\lim_{L\to\infty} B_L = 1$.

Introduction

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

Suppose $[c_1, \ldots, c_L]$ is an incomplete sequence.

Case 1:
$$\sum_{k=1}^{L} c_k \ge 2 + \left\lceil \frac{L(L+1)}{4} \right\rceil$$

We combine the following two invariant arguments:

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

Suppose $[c_1, \ldots, c_L]$ is an incomplete sequence.

Case 1:
$$\sum_{k=1}^{L} c_k \ge 2 + \left\lceil \frac{L(L+1)}{4} \right\rceil$$

We combine the following two invariant arguments:

• The principal root of $[c_1, \ldots, c_L]$ is strictly greater than that of $[c_1, \ldots, c_k - 1, \ldots, c_L + 1]$, for any k.

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

Suppose $[c_1, \ldots, c_L]$ is an incomplete sequence.

Case 1:
$$\sum_{k=1}^{L} c_k \ge 2 + \left\lceil \frac{L(L+1)}{4} \right\rceil$$

We combine the following two invariant arguments:

- The principal root of $[c_1, \ldots, c_L]$ is strictly greater than that of $[c_1, \ldots, c_k 1, \ldots, c_L + 1]$, for any k.
- The principal root of [1, 0, ..., 0, S] is strictly greater than that of [1, 0, ..., 0, S 1].

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

Suppose $[c_1, \ldots, c_L]$ is an incomplete sequence.

Case 1:
$$\sum_{k=1}^{L} c_k \ge 2 + \left\lceil \frac{L(L+1)}{4} \right\rceil$$

We combine the following two invariant arguments:

- The principal root of $[c_1, \ldots, c_L]$ is strictly greater than that of $[c_1, \ldots, c_k 1, \ldots, c_l + 1]$, for any k.
- The principal root of [1, 0, ..., 0, S] is strictly greater than that of [1, 0, ..., 0, S 1].

Combining these two, any sequence with large sum can be "reduced" to $[1,0,\ldots,0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1]$.

Case 2:
$$\sum_{k=1}^{L} c_k \leq 1 + \left\lceil \frac{L(L+1)}{4} \right\rceil$$

It can be shown any "counterexample" would fulfill:

• $\forall 1 \le k \le L + 1$,

$$\sum_{i=2}^k c_i \leq \left\lceil \frac{k(k+1)}{4} \right\rceil.$$

• $\sum_{i=2}^{L} c_i \left(\lambda_{L+1}^{L+1-i} - \lambda_L^{L-i} \right) < \frac{L+2}{2}$, where λ_L is the root of $[1,0,\ldots,0,\lceil L(L+1)/4 \rceil + 1$.

This forces the coefficients of $[c_1, \ldots, c_L]$ to be small enough to force a contradiction; for example, an analytical argument shows the first 32.5% or so must be 0.

Introduction

• Extend analysis of the bound of N in $[1, \ldots, 1, 0, \ldots, 0, N]$, which involves the m-bonacci numbers, defined by $[1, \ldots, 1]$.

m

- Extend analysis of the bound of N in [1,...,1,0,...,0,N], which involves the m-bonacci numbers, defined by [1,...,1].
- Find the bound N for arbitrary coefficients c_2, \ldots, c_{L-1} in $[1, c_2, \ldots, c_{L-1}, N]$.

- Extend analysis of the bound of N in [1,...,1,0,...,0,N], which involves the m-bonacci numbers, defined by [1,...,1].
- Find the bound N for arbitrary coefficients c_2, \ldots, c_{L-1} in $[1, c_2, \ldots, c_{L-1}, N]$.
- Prove the conjectures made in this presentation.

Bibliography

- Thomas C. Martinez, Steven J. Miller, Clay Mizgerd, and Chenyang Sun. Generalizing Zeckendorf's Theorem to Homogeneous Linear Recurrences, 2020
- Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Steven J. Miller, and Philip Tosteson. The Average Gap Distribution for Generalized Zeckendorf Decompositions, Dec 2012.
- J. L. Brown. Note on complete sequences of integers. *The American Mathematical Monthly*, 68(6):557, 1961.

Acknowledgements

- Thank you. Any questions?
- This research was conducted as part of the 2020 SMALL REU program at Williams College. This work was supported by NSF Grant DMS1947438, Williams, Yale, and Rochester.

- Previous work on PLRS relates to legal decompositions, which are another way to write integers as sums of sequence terms.
- Given any PLRS, there is a legal decomposition of every positive integer. Does this mean that all PLRS are complete?
- No. For legal decompositions, sequence terms can be used more than once. This is not allowed for completeness decompositions.

Example

Introduction

The PLRS [1, 3] has terms 1, 2, 5, 11, The unique *legal* decomposition for 9 is 5 + 2(2), where the term 2 is used twice. However, no *complete* decomposition for 9 exists.