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@ Previous results: Zeckendorf’s and Lekkerkerker’s
theorems.

@ New approach: View as combinatorial problem.

@ Thanks: Ed Burger and SMALL REU students.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
Fl:]-a F2:2, F3:3, F4:5....

Zeckendorf's Theorem

Every positive integer can be written in a unique way as a
sum of non-consecutive Fibonacci numbers.

Example: 2010 = 1597+377+34+2 = F15 + F13 + Fg + Fo.

Lekkerkerker's Theorem

The average number of non-consecutive Fibonacci
summands in the Zeckendorf decomposition for integers

in [Fn, Fny1) tends to # ~ .276n, where ¢ = ”—2\/5 is the
golden mean.
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Main Results

Lemma: Application of Cookie Counting

The ‘probability’ (ie, percentage of the time) an integer in
[Fn, Fni1) has exactly k + 1 non-consecutive Fibonacci
summands is (") /Fa_1.

The above lemma yields Zeckendorf’'s Theorem,
Lekkerkerker's Theorem, and will (hopefully) yield

An Erdos-Kac Type Theorem: SMALL 2010

As n — oo, the distribution of the number of
non-consecutive Fibonacci summands in the Zeckendorf
decomposition for integers in [F,, Fn.1) is Gaussian.




Properties of Fibonacci Numbers
and needed Combinatorial Results
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Binet's Formula

Binet's Formula

- 1 <1+\/§)n+l_i<l_\/§>n+l

V5

Proof: Fni1 = Fy + Fp_1.
GuessF,=n": "l =" 4" lorr2=r 4+ 1.
Roots r = (14 +/5)/2.

General solution: F,, = cyr{' + c,rJ, solve for ¢;’s. O

y
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Combinatorial Review

The Cookie Problem

The number of ways of dividing C identical cookies

among P distinct people is (17 1).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (“;F*) ways to do.

Divides the cookies into P sets. O

Example: 10 cookies and 5 people:

OORXKRXOORXIOOOOOXO
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Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto x; +---+Xp = C with x; a

non-negative integer is (“;° ")

Generalization: If have constraints x; > ¢;, then number of
solutions is (°24% P,

This follows by setting x; = y; + ¢; with y; a non-negative
integer.
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Zeckendorf’'s Theorem J
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Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutive
Fibonacci numbers equaling an m € [F,, F,.1); note there
are F,,1 — F, = F,_1 such integers.

Must have F, one of the summands, must not have F,_;.
For each Fibonacci number from F; to F,,_; we either

include or not, cannot have two consecutive, must end
with a non-taken number.
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Proof of Zeckendorf's Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccis
from {F,,...,F,} where F, is taken. Let y, be number of
Fibonaccis not taken until first one taken, and then vy;

(2 <i <k) be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 = F1g + F13 + Fg + F,
son=16,k+1=4,yo=1,y1 =5y, =4,y; = 2.

Equivalently: yo+y:1 +---+yc+k=n—-1,y; > 1ifi > 1.

Equivalently: xo+---+Xx +2k = n—1, x; > 0. Number of

solutions is ("1 7).

n-1
Obtain ZLZOJ (”_i_k) = F,_1 integers in [Fy, Fny1); as all

distinct and this many integers in interval, done. O
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Preliminaries

15

£(n) = k(”_i_k).

k=0
Average number of summands in [F,, Fn.1) IS

£(n)

+ 1.
Fn—l

Recurrence Relation for £(n)

EN)+EN—-2) = (n—2)F_s.
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Recurrence Relation

Recurrence Relation for £(n)

EN)+&MN—-2) = (n—2)F,_3.

Proof by algebra (details in appendix):

gn) = Zk(”_i_k)




Lekkerkerker's Thm
°

Solving Recurrence Relation

Formula for &(n) (i.e., Lekkerkerker's Theorem)

= (—1)£(n -2 Zf)Fn_;g_zg.
(=0

Result follows from Binet's formula, the geometric series
formula, and differentiating identities: Zj”;o X =

 (MALX™ (x=1)— (<1 —1)
(x—1)?

. Details in appendix.
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Generalizing Lekkerkerker

Theorem (SMALL 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’'s Theorem is a Gaussian.

Proof should follow from Markov’s Method of Moments,
Binet's formula for the Fibonacci numbers, and then
differentiating identities to evaluate sums of the form

T
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Generalizing Lekkerkerker

Theorem (SMALL 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’'s Theorem is a Gaussian.
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Figure: Number of summands in [F2010, F2011)
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Generalizing Lekkerkerker

Theorem (SMALL 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’'s Theorem is a Gaussian.

Numerics: At Fig0000: Ratio of 2m" moment o, to
(2m — 1)o7 is between .999955 and 1 for 2m < 10.




Conclusion

Conclusion J




Conclusion
[ ]

Conclusion

@ Re-derive Zeckendorf and Lekkerkerker’s results
through combinatorics.

@ Method should yield an Erdos-Kac type result on
Gaussian behavior of the number of summands.

@ Method should be applicable to other, related
guestions.

NOTE: These and similar questions will be studied by the
students at the 2010 SMALL REU at Williams College; we
expect to be able to provide papers and proofs by the end
of the summer.




Appendix

Appendix:
Details of Computations




Appendix
°

Needed Binomial Identity

Binomial identity involving Fibonacci Numbers

Let F denote the mt" Fibonacci number, with F1 =1,F, =2,F3 = 3,F4 = 5andsoon. Then

n—1
L2J(n—1—k) .

= Fn-1-
k=0 k

Proof by induction: The base case is trivially verified. Assume our claim holds for n and show that it holds for n + 1.
We may extend the sumton — 1, as ("’&’k) = O wheneverk > \_%J. Using the standard identity that

()-(7) - ()

and the convention that (’E) = 01if £ is a negative integer, we find

" /n—k n n—1-—k n—1-—k

Z(k) - Z[(k 1>+( K >]
k=0 -

- ()09

k=1
n n—2—(k—1)) "o/n—1-k

= Z( +Z( ) = Fh2+Fno1
k=1 k-1 k=0 k

by the inductive assumption; noting F, _» + F,_1 = Fp completes the proof. [m]
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Derivation of Recurrence Relation for  £(n)

LanlJ n—1-—k
£(n) = k
> (")
1252
N (n—1—k)!
a kgl = 1= 20!
1252
_ (n—2—k)!
BD P v e o]
125

(n—3— (k —1)!

- =2 =k =) =3 — 2k — D)

- (1Y)

which proves the claim (note we used the binomial identity to replace the sum of binomial coefficients with a
Fibonacci number).
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Formula for &(

Formula for £(n)

nFn_q
@2 +1

£(n) = +O(Fn_2)-

Proof: The proof follows from using telescoping sums to get an expression for £(n), which is then evaluated by
inputting Binet's formula and differentiating identities. Explicitly, consider

L1273y L1223
ST (—DF(E(M —20) + E(n —2(£ + 1)) = (—1)%(n — 2 — 20)Fy_3_20
£=0 £=0
L1253 1252
= Y (-)(n-3-20)F_3_p + (—1)*(20)Fn_3_2¢
£=0 £=0

E
|
w

I
Ny

1
(=1)(n — 3 — 20)Fy_3_2¢ + O(Fn_2):

o~
1
o

while we could evaluate the last sum exactly, trivially estimating it suffices to obtain the main term (as we have a sum
of every other Fibonacci number, the sum is at most the next Fibonacci number after the largest one in our sum).
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Formula for £(n) (continued)

We now use Binet's formula to convert the sum into a geometric series. Letting o = ”2‘/5 be the golden mean, we
have
E, = R (pn _ 1-¢
n \/g

7 (L= )"

(our constants are because our counting has F; = 1, F, = 2and so on). As |1 — ¢| < 1, the error from dropping
the (1 — ¢)" termis O(3, <, n) = 0(n?) = o(F,_»), and may thus safely be absorbed in our error term. We

thus find
. 1852
£m = = > (n—3-20)(-1)" "> 1 O(Fy_»)
-2 %53 L1253

= -3 (—¢72) -2 EZZO o~ 72" +O(Fn_).

o~
1
o
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Formula for £(n) (continued)

We use the geometric series formula to evaluate the first term. We drop the upper boundary term of

(—¢ Hl==l , as this term is negligible since ¢ > 1. We may also move the 3 from the n — 3 into the error
term, and are left with

n—3
Lpn—z n LTJ ot
E(n) = — | -2 L= )" | +O(Fh—2)
V5 1+ (p*z Z(:) n
n—2
@ n n—3 )]
—2S , = + O(Fh—2),
/5 1+o-2 (\_ 2 J ® (Fn—2)
where
m
S(m,x) = ZJXJ
j=0
There is a simple formula for S(m, x). As
m m+l g
> = ,
i—o x—1
applying the operator x (;"7 gives
(m+1)xM(x — 1) — (x™ —1 mx™+2 — (m 4+ 1)xM L 4 x
Stmx) — ZJX,:X+)( )~ ( ) _ (m+ x™ 4

(x— 172 (x— 172
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Formula for £(n) (continued)

Taking x = 7@72, we see that the contribution from this piece may safely be absorbed into the error term

O(Fn_2), leaving us with

E0) = = Lo ) = L {ofF, )
n) = + —2) = + —2):
VE(L+ ¢=2) " VE(2 + 1) "

n
Noting that for large n we have F, _; = % + O(1), we finally obtain
nF,_1
E(n) = — + O(Fh_2).0
2 +1

A similar calculation should yield the higher moments; this
will be done by the students of the 2010 SMALL REU at
Williams College.
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