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Summary / Acknowledgements

Previous results: Zeckendorf’s and Lekkerkerker’s
theorems.

New approach: View as combinatorial problem.

Thanks: Ed Burger and SMALL REU students.
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Special Thanks

Special thanks go to Cameron and Kayla Miller
for playing quietly while key details were worked out
and for suggesting which colors to use and where!

We’re ready for yellow now – hope you are too!
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5 . . . .

Zeckendorf’s Theorem
Every positive integer can be written in a unique way as a
sum of non-consecutive Fibonacci numbers.

Example: 2010 = 1597+377+34+2 = F16 + F13 + F8 + F2.

Lekkerkerker’s Theorem
The average number of non-consecutive Fibonacci
summands in the Zeckendorf decomposition for integers
in [Fn,Fn+1) tends to n

'2+1 ≈ .276n, where ' = 1+
√

5
2 is the

golden mean.
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Main Results

Lemma: Application of Cookie Counting

The ‘probability’ (ie, percentage of the time) an integer in
[Fn,Fn+1) has exactly k + 1 non-consecutive Fibonacci
summands is

(n−1−k
k

)

/Fn−1.

The above lemma yields Zeckendorf’s Theorem,
Lekkerkerker’s Theorem, and will (hopefully) yield

An Erdos-Kac Type Theorem: SMALL 2010
As n → ∞, the distribution of the number of
non-consecutive Fibonacci summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) is Gaussian.
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Properties of Fibonacci Numbers
and needed Combinatorial Results
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Binet’s Formula

Binet’s Formula

Fn =
1√
5

(

1 +
√

5
2

)n+1

− 1√
5

(

1 −
√

5
2

)n+1

.

Proof: Fn+1 = Fn + Fn−1.

Guess Fn = nr : rn+1 = rn + rn−1 or r2 = r + 1.

Roots r = (1 ±
√

5)/2.

General solution: Fn = c1rn
1 + c2rn

2 , solve for ci ’s. □
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Combinatorial Review

The Cookie Problem
The number of ways of dividing C identical cookies
among P distinct people is

(C+P−1
P−1

)

.

Proof: Consider C + P − 1 cookies in a line.

Cookie Monster eats P − 1 cookies:
(C+P−1

P−1

)

ways to do.

Divides the cookies into P sets. □

Example: 10 cookies and 5 people:
⊙⊙⊗⊗⊙⊙⊗⊙⊙⊙⊙⊙⊗⊙
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Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅+ xP = C with xi a
non-negative integer is

(C+P−1
P−1

)

.

Generalization: If have constraints xi ≥ ci , then number of
solutions is

(C−
∑

i ci+P−1
P−1

)

.

This follows by setting xi = yi + ci with yi a non-negative
integer.
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Zeckendorf’s Theorem
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Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutive
Fibonacci numbers equaling an m ∈ [Fn,Fn+1); note there
are Fn+1 − Fn = Fn−1 such integers.

Must have Fn one of the summands, must not have Fn−1.

For each Fibonacci number from F1 to Fn−1 we either
include or not, cannot have two consecutive, must end
with a non-taken number.
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Proof of Zeckendorf’s Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccis
from {F1, . . . ,Fn} where Fn is taken. Let y0 be number of
Fibonaccis not taken until first one taken, and then yi

(1 ≤ i ≤ k ) be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 = F16 + F13 + F8 + F2,
so n = 16, k + 1 = 4, y0 = 1, y1 = 5, y2 = 4, y3 = 2.

Equivalently: y0 + y1 + ⋅ ⋅ ⋅+ yk + k = n − 1, yi ≥ 1 if i ≥ 1.

Equivalently: x0 + ⋅ ⋅ ⋅+ xk + 2k = n − 1, xi ≥ 0. Number of
solutions is

(n−1−k
k

)

.

Obtain
∑⌊ n−1

2 ⌋
k=0

(n−1−k
k

)

= Fn−1 integers in [Fn,Fn+1); as all
distinct and this many integers in interval, done. □
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Lekkerkerker’s Theorem
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Preliminaries

ℰ(n) :=

⌊ n−1
2 ⌋
∑

k=0

k
(

n − 1 − k
k

)

.

Average number of summands in [Fn,Fn+1) is

ℰ(n)
Fn−1

+ 1.

Recurrence Relation for ℰ(n)

ℰ(n) + ℰ(n − 2) = (n − 2)Fn−3.
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Recurrence Relation

Recurrence Relation for ℰ(n)

ℰ(n) + ℰ(n − 2) = (n − 2)Fn−3.

Proof by algebra (details in appendix):

ℰ(n) =

⌊ n−1
2 ⌋
∑

k=0

k
(

n − 1 − k
k

)

= (n − 2)
⌊ n−3

2 ⌋
∑

ℓ=0

(

n − 3 − ℓ

ℓ

)

−
⌊ n−3

2 ⌋
∑

ℓ=0

ℓ

(

n − 3 − ℓ

ℓ

)

= (n − 2)Fn−3 − ℰ(n − 2).
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Solving Recurrence Relation

Formula for ℰ(n) (i.e., Lekkerkerker’s Theorem)

ℰ(n) =
nFn−1

'2 + 1
+ O(Fn−2).

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ (ℰ(n − 2ℓ) + ℰ(n − 2(ℓ + 1)))

=

⌊ n−3
2 ⌋
∑

ℓ=0

(−1)ℓ(n − 2 − 2ℓ)Fn−3−2ℓ.

Result follows from Binet’s formula, the geometric series
formula, and differentiating identities:

∑m
j=0 jx j =

x (m+1)xm(x−1)−(xm+1−1)
(x−1)2 . Details in appendix.
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An Erdos-Kac Type Theorem
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Generalizing Lekkerkerker

Theorem (SMALL 2010)
As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Proof should follow from Markov’s Method of Moments,
Binet’s formula for the Fibonacci numbers, and then
differentiating identities to evaluate sums of the form
∑

j jmxm.
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Generalizing Lekkerkerker

Theorem (SMALL 2010)
As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020

Figure: Number of summands in [F2010,F2011)
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Generalizing Lekkerkerker

Theorem (SMALL 2010)
As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Numerics: At F100,000: Ratio of 2mth moment �2m to
(2m − 1)!!�m

2 is between .999955 and 1 for 2m ≤ 10.
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Conclusion
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Conclusion

Re-derive Zeckendorf and Lekkerkerker’s results
through combinatorics.

Method should yield an Erdos-Kac type result on
Gaussian behavior of the number of summands.

Method should be applicable to other, related
questions.

NOTE: These and similar questions will be studied by the
students at the 2010 SMALL REU at Williams College; we
expect to be able to provide papers and proofs by the end
of the summer.
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Appendix:
Details of Computations
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Needed Binomial Identity

Binomial identity involving Fibonacci Numbers

Let Fm denote the mth Fibonacci number, with F1 = 1, F2 = 2, F3 = 3, F4 = 5 and so on. Then

⌊ n−1
2 ⌋

∑

k=0

(

n − 1 − k

k

)

= Fn−1.

Proof by induction: The base case is trivially verified. Assume our claim holds for n and show that it holds for n + 1.

We may extend the sum to n − 1, as
(

n−1−k
k

)

= 0 whenever k > ⌊ n−1
2 ⌋. Using the standard identity that

(

m

ℓ

)

+

(

m

ℓ + 1

)

=

(

m + 1

ℓ + 1

)

,

and the convention that
(

m
ℓ

)

= 0 if ℓ is a negative integer, we find

n
∑

k=0

(

n − k

k

)

=
n

∑

k=0

[(

n − 1 − k

k − 1

)

+

(

n − 1 − k

k

)]

=
n

∑

k=1

(

n − 1 − k

k − 1

)

+
n

∑

k=0

(

n − 1 − k

k

)

=
n

∑

k=1

(

n − 2 − (k − 1)

k − 1

)

+
n

∑

k=0

(

n − 1 − k

k

)

= Fn−2 + Fn−1

by the inductive assumption; noting Fn−2 + Fn−1 = Fn completes the proof. □
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Derivation of Recurrence Relation for ℰ(n)

ℰ(n) =

⌊ n−1
2 ⌋

∑

k=0

k
(

n − 1 − k

k

)

=

⌊ n−1
2 ⌋

∑

k=1

k
(n − 1 − k)!

k !(n − 1 − 2k)!

=

⌊ n−1
2 ⌋

∑

k=1

(n − 1 − k)
(n − 2 − k)!

(k − 1)!(n − 1 − 2k)!

=

⌊ n−1
2 ⌋

∑

k=1

(n − 2 − (k − 1))
(n − 3 − (k − 1)!

(k − 1)!(n − 3 − 2(k − 1))!

=

⌊ n−3
2 ⌋

∑

ℓ=0

(n − 2 − ℓ)

(

n − 3 − ℓ

ℓ

)

= (n − 2)

⌊ n−3
2 ⌋

∑

ℓ=0

(

n − 3 − ℓ

ℓ

)

−
⌊ n−3

2 ⌋
∑

ℓ=0

ℓ

(

n − 3 − ℓ

ℓ

)

= (n − 2)Fn−3 − ℰ(n − 2),

which proves the claim (note we used the binomial identity to replace the sum of binomial coefficients with a
Fibonacci number).
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Formula for ℰ(n)

Formula for ℰ(n)

ℰ(n) =
nFn−1

'2 + 1
+ O(Fn−2).

Proof: The proof follows from using telescoping sums to get an expression for ℰ(n), which is then evaluated by
inputting Binet’s formula and differentiating identities. Explicitly, consider

⌊ n−3
2 ⌋

∑

ℓ=0

(−1)ℓ (ℰ(n − 2ℓ) + ℰ(n − 2(ℓ + 1))) =

⌊ n−3
2 ⌋

∑

ℓ=0

(−1)ℓ(n − 2 − 2ℓ)Fn−3−2ℓ

=

⌊ n−3
2 ⌋

∑

ℓ=0

(−1)ℓ(n − 3 − 2ℓ)Fn−3−2ℓ +

⌊ n−3
2 ⌋

∑

ℓ=0

(−1)ℓ(2ℓ)Fn−3−2ℓ

=

⌊ n−3
2 ⌋

∑

ℓ=0

(−1)ℓ(n − 3 − 2ℓ)Fn−3−2ℓ + O(Fn−2);

while we could evaluate the last sum exactly, trivially estimating it suffices to obtain the main term (as we have a sum
of every other Fibonacci number, the sum is at most the next Fibonacci number after the largest one in our sum).
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Formula for ℰ(n) (continued)

We now use Binet’s formula to convert the sum into a geometric series. Letting ' = 1+
√

5
2 be the golden mean, we

have

Fn =
'
√

5
⋅ 'n −

1 − '
√

5
⋅ (1 − ')

n

(our constants are because our counting has F1 = 1, F2 = 2 and so on). As ∣1 − '∣ < 1, the error from dropping
the (1 − ')n term is O(

∑

ℓ≤n n) = O(n2) = o(Fn−2), and may thus safely be absorbed in our error term. We
thus find

ℰ(n) =
'
√

5

⌊ n−3
2 ⌋

∑

ℓ=0

(n − 3 − 2ℓ)(−1)ℓ'n−3−2ℓ
+ O(Fn−2)

=
'n−2

√
5

⎡

⎢

⎢

⎣

(n − 3)

⌊ n−3
2 ⌋

∑

ℓ=0

(−'
−2

)
ℓ − 2

⌊ n−3
2 ⌋

∑

ℓ=0

ℓ(−'
−2

)
ℓ

⎤

⎥

⎥

⎦

+ O(Fn−2).
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Formula for ℰ(n) (continued)

We use the geometric series formula to evaluate the first term. We drop the upper boundary term of

(−'−1)
⌊ n−3

2 ⌋ , as this term is negligible since ' > 1. We may also move the 3 from the n − 3 into the error
term, and are left with

ℰ(n) =
'n−2

√
5

⎡

⎢

⎢

⎣

n

1 + '−2
− 2

⌊ n−3
2 ⌋

∑

ℓ=0

ℓ(−'
−2

)
ℓ

⎤

⎥

⎥

⎦

+ O(Fn−2)

=
'n−2

√
5

[

n

1 + '−2
− 2S

(

⌊ n − 3

2

⌋

,−'
−2

)]

+ O(Fn−2),

where

S(m, x) =
m
∑

j=0

jx j
.

There is a simple formula for S(m, x). As
m
∑

j=0

x j
=

xm+1 − 1

x − 1
,

applying the operator x d
dx gives

S(m, x) =
m
∑

j=0

jx j
= x

(m + 1)xm(x − 1) − (xm+1 − 1)

(x − 1)2
=

mxm+2 − (m + 1)xm+1 + x

(x − 1)2
.
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Formula for ℰ(n) (continued)

Taking x = −'−2, we see that the contribution from this piece may safely be absorbed into the error term
O(Fn−2), leaving us with

ℰ(n) =
n'n−2

√
5(1 + '−2)

+ O(Fn−2) =
n'n

√
5('2 + 1)

+ O(Fn−2).

Noting that for large n we have Fn−1 = 'n
√

5
+ O(1), we finally obtain

ℰ(n) =
nFn−1

'2 + 1
+ O(Fn−2).□

A similar calculation should yield the higher moments; this
will be done by the students of the 2010 SMALL REU at
Williams College.
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