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Introduction
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Goals of the Talk

Get to see ‘fun’ properties of Fibonacci numbers.
Often enough to ask any question, not just right one.
Explain consequences of ‘right’ perspective.
Proofs!
Highlight techniques.
Some open problems.

Thanks to colleagues from the Williams College 2010, 2011
and 2012 SMALL REU programs, and Louis Gaudet.
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Hydrogen atom: Images from WikiMedia Commons (OrangeDog,
Szdori)
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Pre-requisites: Probability Review
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Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .

5



Intro Gaussianity Conclusion Generalizations Gaps Gap Proofs

Pre-requisites: Probability Review

5 10
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Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .

Mean: µ =
∫∞
−∞ xp(x)dx .

Variance: σ2 =
∫∞
−∞(x − µ)2p(x)dx .
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Pre-requisites: Probability Review

5 10

0.05

0.10

0.15

0.20

Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .

Mean: µ =
∫∞
−∞ xp(x)dx .

Variance: σ2 =
∫∞
−∞(x − µ)2p(x)dx .

Gaussian: Density (2πσ2)−1/2 exp(−(x − µ)2/2σ2).
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Pre-requisites: Combinatorics Review

Start

Pia Muriel Ephelia

Muriel PiaEphelia PiaEphelia Muriel

MurielPiaEpheliaPiaEpheliaMuriel

n! := n(n − 1)(n − 2) · · · 3 · 2 · 1: number of ways to order n
people, order matters.
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Pre-requisites: Combinatorics Review

Start

Pia Muriel Ephelia

Muriel PiaEphelia PiaEphelia Muriel

MurielPiaEpheliaPiaEpheliaMuriel

n! := n(n − 1)(n − 2) · · · 3 · 2 · 1: number of ways to order n
people, order matters.

0! = 1.
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Pre-requisites: Combinatorics Review

Start

Pia Muriel Ephelia

Muriel PiaEphelia PiaEphelia Muriel

MurielPiaEpheliaPiaEpheliaMuriel

n! := n(n − 1)(n − 2) · · · 3 · 2 · 1: number of ways to order n
people, order matters.

0! = 1.

n(n − 1) · · · (n − (r − 1)) = nPr = n!
(n−r)! : number of ways to

order r from n people, order matters.
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Pre-requisites: Combinatorics Review

n! := n(n − 1)(n − 2) · · · 3 · 2 · 1: number of ways to order n
people, order matters.

n(n − 1) · · · (n − (r − 1)) = nPr = n!
(n−r)! : number of ways to

order r from n people, order matters.

n!
r !(n−r)! = nCr =

(n
r

)

: number of ways to choose r from n,
order doesn’t matter.

Equals nPr/r !: removing ordering.
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Pre-requisites: Combinatorics Review

n! := n(n − 1)(n − 2) · · · 3 · 2 · 1: number of ways to order n
people, order matters.

n(n − 1) · · · (n − (r − 1)) = nPr = n!
(n−r)! : number of ways to

order r from n people, order matters.

n!
r !(n−r)! = nCr =

(n
r

)

: number of ways to choose r from n,
order doesn’t matter.

Equals nPr/r !: removing ordering.

Stirling’s Formula: n! ≈ nne−n
√

2πn.
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Pre-requisites: Combinatorics Review

n! := n(n − 1)(n − 2) · · · 3 · 2 · 1: number of ways to order n
people, order matters.

n(n − 1) · · · (n − (r − 1)) = nPr = n!
(n−r)! : number of ways to

order r from n people, order matters.

n!
r !(n−r)! = nCr =

(n
r

)

: number of ways to choose r from n,
order doesn’t matter.

Equals nPr/r !: removing ordering.

Stirling’s Formula: n! ≈ nne−n
√

2πn.
Might have seen from integral test:
log n! = log 1 + log 2 + · · ·+ log n ≈

∫ n+1
1 log tdt .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
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Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
Proof: Given N, choose largest Fibonacci ≤ N, say Fm.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
Proof: Given N, choose largest Fibonacci ≤ N, say Fm.
Look at N − Fm, choose largest Fibonacci smaller than this.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
Proof: Given N, choose largest Fibonacci ≤ N, say Fm.
Look at N − Fm, choose largest Fibonacci smaller than this.
Is ≤ Fm, and if Fm−1 then N − Fm − Fm−1 ≥ 0.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
Proof: Given N, choose largest Fibonacci ≤ N, say Fm.
Look at N − Fm, choose largest Fibonacci smaller than this.
Is ≤ Fm, and if Fm−1 then N − Fm − Fm−1 ≥ 0.
By recurrence relation, could subtract Fm+1 = Fm + Fm−1.
Contradiction, but an unenlightening one. �
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Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Results

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is Gaussian
(normal).

500 520 540 560 580 600

0.005

0.010

0.015

0.020

0.025

0.030

Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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Results

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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The number of ways of dividing C identical cookies among P
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.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1−k−1

k−1

)

=
(n−k

k−1

)

.
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Gaussian behavior
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Generalizing Lekkerkerker: Gaussian behavior

Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn , Fn+1) is

fn(k) =
(

n−1−k
k

)

/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(

n − k

k

)

1

Fn

=
(n − k)!

(n − 2k)!k !

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.

Also we can write Fn = 1
√

5
φn+1 = φ

√

5
φn for large n, where φ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(

1
√

2π

√

(n − k)

k(n − 2k)

√
5

φ

)(

φ
−n (n − k)n−k

kk (n − 2k)n−2k

)

.

Define

Nn =
1

√
2π

√

(n − k)

k(n − 2k)

√
5

φ
, Sn = φ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity (cont)

Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√

n − k

k(n − 2k)

φ
√

5

=
1

√
2πn

√

1 − k/n

(k/n)(1 − 2k/n)

√
5

φ

=
1

√
2πn

√

1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

φ

=
1

√
2πn

√

1 − C − y

(C + y)(1 − 2C − 2y)

√
5

φ

where C = µ/n ≈ 1/(φ + 2) (note that φ2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since

σ ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√

1 − C

C(1 − 2C)

√
5

φ
=

1
√

2πn

√

(φ + 1)(φ + 2)

φ

√
5

φ
=

1
√

2πn

√

5(φ + 2)

φ
=

1
√

2πσ2

since σ2 = n φ
5(φ+2) .
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(Sketch of the) Proof of Gaussianity (cont)

For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(

φ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)

= −n log(φ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(φ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(φ)

+ (n − (µ + xσ))

(

log(n − µ) + log
(

1 −
xσ

n − µ

))

− (µ + xσ)

(

log(µ) + log
(

1 +
xσ

µ

))

− (n − 2(µ + xσ))

(

log(n − 2µ) + log
(

1 −
xσ

n − 2µ

))

= −n log(φ)

+ (n − (µ + xσ))

(

log
(

n

µ
− 1
)

+ log
(

1 −
xσ

n − µ

))

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ))

(

log
(

n

µ
− 2
)

+ log
(

1 −
xσ

n − 2µ

))

.
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(Sketch of the) Proof of Gaussianity (cont)

Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(φ) + (n − k) log
(

n

µ
− 1

)

− (n − 2k) log
(

n

µ
− 2
)

+ (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= −n log(φ) + (n − k) log (φ + 1) − (n − 2k) log (φ) + (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= n(− log(φ) + log
(

φ
2
)

− log (φ)) + k(log(φ2
) + 2 log(φ)) + (n − (µ + xσ)) log

(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

= (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

.
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(Sketch of the) Proof of Gaussianity (cont)

Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(

−
xσ

n − µ
−

1

2

(

xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(

xσ

µ
−

1

2

(

xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(

−2
xσ

n − 2µ
−

1

2

(

2
xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))



−
xσ

n (φ+1)
(φ+2)

−
1

2





xσ

n (φ+1)
(φ+2)





2

+ . . .





− (µ + xσ)





xσ
n

φ+2

−
1

2





xσ
n

φ+2





2

+ . . .





− (n − 2(µ + xσ))



−
2xσ

n φ
φ+2

−
1

2





2xσ

n φ
φ+2





2

+ . . .





=
xσ

n
n

(

−

(

1 −
1

φ + 2

)

(φ + 2)

(φ + 1)
− 1 + 2

(

1 −
2

φ + 2

)

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n
(

−2
φ + 2

φ + 1
+

φ + 2

φ + 1
+ 2(φ + 2) − (φ + 2) + 4

φ + 2

φ

)

+O
(

n (xσ/n)3
)
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(Sketch of the) Proof of Gaussianity (cont)

log(Sn) =
xσ

n
n
(

−
φ + 1

φ + 2

φ + 2

φ + 1
− 1 + 2

φ

φ + 2

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n(φ + 2)

(

−
1

φ + 1
+ 1 +

4

φ

)

+O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4

φ(φ + 1)
+ 1

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4 + 2φ + 1

φ(φ + 1)

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2
x2

σ
2
(

5(φ + 2)

φn

)

+ O
(

n (xσ/n)3
)

.
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(Sketch of the) Proof of Gaussianity (cont)

But recall that

σ
2
=

φn

5(φ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(

n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

�
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Conclusion and
Future Work
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Gaps?

⋄ Gaps longer than recurrence – proved geometric decay.

⋄ Interesting behavior with “short” gaps.

⋄ “Skiponaccis”: Sn+1 = Sn + Sn−2.

⋄ “Doublanaccis”: Hn+1 = 2Hn + Hn−1.

⋄ Distribution of largest gap.

⋄ Hope: Generalize to all positive linear recurrences.

Thank you!
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Generalizations
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written uniquely
as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).

Lekkerkerker

Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends to
Cn + d as n → ∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)

2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + · · ·+ cm.

y(x) is the root of 1 −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1 − c1y − c2y2 − · · · − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands, i.e.,
a1 + a2 + · · ·+ am in the generalized Zeckendorf decomposition
∑m

i=1 aiHi for integers in [Hn,Hn+1) is Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :

ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.

For N ∈ [Hn,Hn+1), m = n, i.e., first term is
anHn = an10n−1.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean 4.5 and variance 8.25.

Central Limit Theorem: A2 + A3 + · · · + An → Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10. E [K ]− E [L] = ϕ/2 ≈ .809.

Central Limit Type Theorem

As n → ∞, K and L converges to a bivariate Gaussian.

corr(K ,L) = −(21 − 2ϕ)/(29 + 2ϕ) ≈ −.551, ϕ =
√

5+1
2 .

K + L and K − L are independent.
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Gaps Between Summands
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other expansions:
2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.
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Main Results (Beckwith-Miller 2011)

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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Fibonacci Results

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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0.1
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0.4
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1.0

1.5

2.0

Figure: Distribution of gaps in [F1000,F1001); F1000 ≈ 10208.
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Main Results (Gaudet-Miller 2012)

Generalized Fibonacci Numbers: Gn = Gn−1 + · · ·+ Gn−L.

Theorem (Gaps for Generalized Fibonacci Numbers)

The limiting probability of finding a gap of length k ≥ 1 between
summands of numbers in [Gn,Gn+1] decays geometrically in k:

P(k) =



















p1(λ
2
1;L − λ1;L − 1)2

CL
λ−1

1;L if k = 1

p1(λ
L−1
1;L − 1)

CLλ
L−1
1;L

λ−k
1;L if k ≥ 2,

where λ1;L is the largest eigenvalue of the characteristic
polynomial, Gn = p1λ

n
1;L + · · · and CL is a constant.
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Gap Proofs
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi ,i+k

Fn−1
n

φ2+1

.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have Fi , don’t
have Fi−1. Follows by Zeckendorf: like the interval [Fi ,Fi+1) as
have Fi , number elements is Fi+1 − Fi = Fi−1.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have Fi , don’t
have Fi−1. Follows by Zeckendorf: like the interval [Fi ,Fi+1) as
have Fi , number elements is Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Have Fn, don’t have Fi+k+1. Like Zeckendorf with potential
summands Fi+k+2, . . . ,Fn. Shifting, like summands
F1, . . . ,Fn−k−i−1, giving Fn−k−i−2.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have Fi , don’t
have Fi−1. Follows by Zeckendorf: like the interval [Fi ,Fi+1) as
have Fi , number elements is Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Have Fn, don’t have Fi+k+1. Like Zeckendorf with potential
summands Fi+k+2, . . . ,Fn. Shifting, like summands
F1, . . . ,Fn−k−i−1, giving Fn−k−i−2.

So total choices number of choices is Fn−k−2−iFi−1.
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Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.
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Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.

P(k) = C/φk for some constant C, so P(k) = φ(φ− 1)/φk .
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Interval: [Tn,Tn+1), number of gaps is
Cn(Tn−1 + Tn−2) + smaller.
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Interval: [Tn,Tn+1), number of gaps is
Cn(Tn−1 + Tn−2) + smaller.

Counting:

Xi ,i+k(n) =
{

Ti−1(Tn−i−3 + Tn−i−4) if k = 1
(Ti−1 + Ti−2)(Tn−k−i−1 + Tn−k−i−3) if k ≥ 2.
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Tribonacci Gaps

Tribonacci Numbers: Tn+1 = Tn + Tn−1 + Tn−2;
F1 = 1, F2 = 2, F3 = 4, F4 = 7, . . . .

Interval: [Tn,Tn+1), number of gaps is
Cn(Tn−1 + Tn−2) + smaller.

Counting:

Xi ,i+k(n) =
{

Ti−1(Tn−i−3 + Tn−i−4) if k = 1
(Ti−1 + Ti−2)(Tn−k−i−1 + Tn−k−i−3) if k ≥ 2.

Constants s.t. P(1) =
c1

Cλ3
1

, P(k) =
2c1

C(1 + λ1)
λ−k

1 (for k ≥ 2).

Similar argument works as all coefficients are 1.
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