Cookie Monster Meets the Fibonacci Numbers, Mmmmmm - Theorems!

Steven J. Miller

http://www.williams.edu/Mathematics/sjmiller/public html

Summer Science Lecture Series Williams College, June 19, 2012

Goals of the Talk

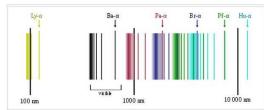
Intro

000000000

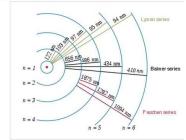
- Get to see 'fun' properties of Fibonacci numbers.
- Often enough to ask any question, not just right one.
- Explain consequences of 'right' perspective.
- Proofs!
- Highlight techniques.
- Some open problems.

Thanks to colleagues from the Williams College 2010, 2011 and 2012 SMALL REU programs, and Louis Gaudet.

Hydrogen atom: Images from WikiMedia Commons (OrangeDog, Szdori)

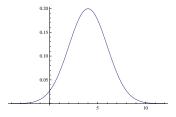


The spectral series of hydrogen, on a logarithmic scale



Electron transitions and their resulting wavelengths for hydrogen.

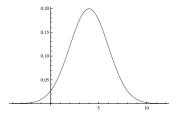
Pre-requisites: Probability Review



- Let X be random variable with density p(x):
 - $\diamond p(x) \geq 0$; $\int_{-\infty}^{\infty} p(x) dx = 1$;
 - $\diamond \operatorname{Prob} (a \leq X \leq b) = \int_a^b p(x) dx.$

Intro

Pre-requisites: Probability Review



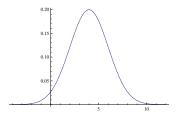
- Let X be random variable with density p(x):
 - $\diamond p(x) \geq 0$; $\int_{-\infty}^{\infty} p(x) dx = 1$;
 - \diamond Prob $(a \le X \le b) = \int_a^b p(x) dx$.
- Mean: $\mu = \int_{-\infty}^{\infty} x p(x) dx$.
- Variance: $\sigma^2 = \int_{-\infty}^{\infty} (x \mu)^2 p(x) dx$.

6

Intro

000000000

Pre-requisites: Probability Review



• Let X be random variable with density p(x):

$$\diamond p(x) \geq 0$$
; $\int_{-\infty}^{\infty} p(x) dx = 1$;

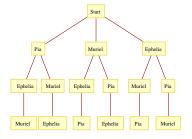
$$\diamond$$
 Prob $(a \le X \le b) = \int_a^b p(x) dx$.

• Mean:
$$\mu = \int_{-\infty}^{\infty} x p(x) dx$$
.

• Variance:
$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx$$
.

• Gaussian: Density $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$.

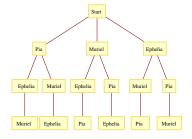
Gaussianity



• $n! := n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$: number of ways to order npeople, order matters.

Intro

Gaussianity

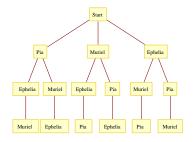


• $n! := n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$: number of ways to order npeople, order matters.

0! = 1.

Intro

Gaussianity



• $n! := n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$: number of ways to order n people, order matters.

0! = 1.

• $n(n-1)\cdots(n-(r-1)) = n\Pr = \frac{n!}{(n-r)!}$: number of ways to order r from n people, order matters.

Intro

- $n! := n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$: number of ways to order n people, order matters.
- $n(n-1)\cdots(n-(r-1))=nPr=\frac{n!}{(n-r)!}$: number of ways to order r from n people, order matters.
- $\frac{n!}{r!(n-r)!} = nCr = \binom{n}{r}$: number of ways to choose r from n, order doesn't matter.

Equals nPr/r!: removing ordering.

Intro

Gaussianity

- $n! := n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$: number of ways to order n people, order matters.
- $n(n-1)\cdots(n-(r-1))=n\Pr=\frac{n!}{(n-r)!}$: number of ways to order r from n people, order matters.
- $\frac{n!}{r!(n-r)!} = nCr = \binom{n}{r}$: number of ways to choose r from n, order doesn't matter.

Equals nPr/r!: removing ordering.

• Stirling's Formula: $n! \approx n^n e^{-n} \sqrt{2\pi n}$.

Intro

Gaussianity

- $n! := n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$: number of ways to order npeople, order matters.
- $n(n-1)\cdots(n-(r-1))=nPr=\frac{n!}{(n-r)!}$: number of ways to order r from n people, order matters.
- $\frac{n!}{r!(n-r)!} = nCr = \binom{n}{r}$: number of ways to choose r from n, order doesn't matter.

Equals nPr/r!: removing ordering.

• Stirling's Formula: $n! \approx n^n e^{-n} \sqrt{2\pi n}$. Might have seen from integral test: $\log n! = \log 1 + \log 2 + \cdots + \log n \approx \int_{1}^{n+1} \log t dt.$

Intro

Intro

0000000000

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Intro

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Intro

000000000

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

0000000000

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1$$
.

Intro

000000000

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$$

Proof: Given N, choose largest Fibonacci $\leq N$, say F_m .

000000000

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$$

Proof: Given N, choose largest Fibonacci $\leq N$, say F_m .

Look at $N - F_m$, choose largest Fibonacci smaller than this.

000000000

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

 $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$, ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$$

Proof: Given N, choose largest Fibonacci < N, say F_m .

Look at $N - F_m$, choose largest Fibonacci smaller than this.

Is $< F_m$, and if F_{m-1} then $N - F_m - F_{m-1} > 0$.

0000000000

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$$

Proof: Given N, choose largest Fibonacci $\leq N$, say F_m .

Look at $N - F_m$, choose largest Fibonacci smaller than this.

Is $\leq F_m$, and if F_{m-1} then $N - F_m - F_{m-1} \geq 0$.

By recurrence relation, could subtract $F_{m+1} = F_m + F_{m-1}$.

Contradiction, but an unenlightening one.

000000000

Intro

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Gaussianity

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

$$2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_{8} + F_{3} + F_{1}$$
.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1}]$ tends to $\frac{n}{c^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Results

000000000

Intro

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ is Gaussian (normal).

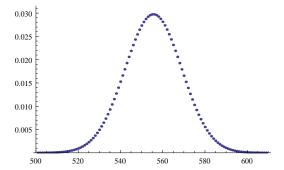


Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

Gaussianity

000000000

Intro

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

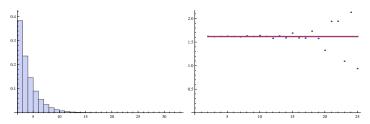


Figure: Distribution of gaps in $[F_{1000}, F_{1001})$; $F_{2010} \approx 10^{208}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies:

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{p-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{p-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Intro

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ *N* has exactly *k* summands}.

Intro

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_p = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ N has exactly k summands.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_i - i_{i-1} \ge 2.$$

Intro

Reinterpreting the Cookie Problem

Gaussianity

The number of solutions to $x_1 + \cdots + x_p = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ N has exactly k summands.

For
$$N \in [F_n, F_{n+1})$$
, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Intro

000000000

Intro

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Gaussianity

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$ $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$ $d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$ $d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$

Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1-k-1}{k-1} = \binom{n-k}{k-1}$.

38

Gaussian behavior

Generalizing Lekkerkerker: Gaussian behavior

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

Gaussianity

000000

The probability density for the number of Fibonacci numbers that add up to an integer in $[F_n, F_{n+1}]$ is $f_n(k) = {n-1-k \choose k}/F_{n-1}$. Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = {n-k \choose k} \frac{1}{F_n}$$

$$= \frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$$

plus a lower order correction term.

Also we can write $F_n = \frac{1}{\sqrt{5}}\phi^{n+1} = \frac{\phi}{\sqrt{5}}\phi^n$ for large n, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1 = F_1$ occurs once to help dealing with uniqueness and $F_2 = 2$). We can now split the terms that exponentially depend on n.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right)\left(\phi^{-n}\frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where N_n is the first term that is of order $n^{-1/2}$ and S_n is the second term with exponential dependence on n.

Model the distribution as centered around the mean by the change of variable $k=\mu+x\sigma$ where μ and σ are the mean and the standard deviation, and depend on n. The discrete weights of $f_n(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx.$$

Using the change of variable, we can write N_n as

Gaussianity

0000000

$$\begin{split} N_{n} &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where $C=\mu/n\approx 1/(\phi+2)$ (note that $\phi^2=\phi+1$) and $y=\sigma x/n$. But for large n, the y term vanishes since $\sigma\sim\sqrt{n}$ and thus $y\sim n^{-1/2}$. Thus

$$N_{n} \quad \approx \quad \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^{2}}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{5}} \sqrt{\frac{5}}{\phi} = \frac{1}{\sqrt{5}} \sqrt{\frac{5}}{\phi}} = \frac{1}{\sqrt{5}} \sqrt{\frac{5}}{\phi} = \frac{1}$$

since $\sigma^2 = n \frac{\phi}{5(\phi+2)}$.

12

Gaussianity

For the second term S_n , take the logarithm and once again change variables by $k = \mu + x\sigma$,

$$\begin{split} \log(S_n) &= & \log \left(\phi^{-n} \frac{(n-k)^{(n-k)}}{k^k (n-2k)^{(n-2k)}} \right) \\ &= & -n \log(\phi) + (n-k) \log(n-k) - (k) \log(k) \\ &- (n-2k) \log(n-2k) \\ &= & -n \log(\phi) + (n-(\mu+x\sigma)) \log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma) \log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma)) \log(n-2(\mu+x\sigma)) \\ &= & -n \log(\phi) \\ &+ (n-(\mu+x\sigma)) \left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right) \right) \\ &- (\mu+x\sigma) \left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right) \right) \\ &- (n-2(\mu+x\sigma)) \left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right) \right) \\ &= & -n \log(\phi) \\ &+ (n-(\mu+x\sigma)) \left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right) \right) \\ &- (\mu+x\sigma) \log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (\mu+x\sigma) \log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma)) \left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right) \right) . \end{split}$$

(Sketch of the) Proof of Gaussianity (cont)

Gaussianity

Note that, since $n/\mu = \phi + 2$ for large n, the constant terms vanish. We have $\log(S_n)$

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu} - 1\right) - (n-2k)\log\left(\frac{n}{\mu} - 2\right) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right)$$

$$= n(-\log(\phi) + \log\left(\phi^2\right) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right)$$

$$- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right)$$

$$= (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right)$$

$$- (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right).$$

Finally, we expand the logarithms and collect powers of $x\sigma/n$.

Gaussianity

$$\log(S_{n}) = (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n - \mu} - \frac{1}{2} \left(\frac{x\sigma}{n - \mu} \right)^{2} + \dots \right) \\ - (\mu + x\sigma) \left(\frac{x\sigma}{\mu} - \frac{1}{2} \left(\frac{x\sigma}{\mu} \right)^{2} + \dots \right) \\ - (n - 2(\mu + x\sigma)) \left(-2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left(2 \frac{x\sigma}{n - 2\mu} \right)^{2} + \dots \right) \\ = (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} - \frac{1}{2} \left(\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} \right)^{2} + \dots \right) \\ - (\mu + x\sigma) \left(\frac{x\sigma}{\frac{n}{\phi+2}} - \frac{1}{2} \left(\frac{x\sigma}{\frac{n}{\phi+2}} \right)^{2} + \dots \right) \\ - (n - 2(\mu + x\sigma)) \left(-\frac{2x\sigma}{n \frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{2x\sigma}{n \frac{\phi}{\phi+2}} \right)^{2} + \dots \right) \\ = \frac{x\sigma}{n} n \left(-\left(1 - \frac{1}{\phi+2} \right) \frac{(\phi+2)}{(\phi+1)} - 1 + 2\left(1 - \frac{2}{\phi+2} \right) \frac{\phi+2}{\phi} \right) \\ - \frac{1}{2} \left(\frac{x\sigma}{n} \right)^{2} n \left(-2 \frac{\phi+2}{\phi+1} + \frac{\phi+2}{\phi+1} + 2(\phi+2) - (\phi+2) + 4 \frac{\phi+2}{\phi} \right) \\ + O\left(n(x\sigma/n)^{3} \right)$$

(Sketch of the) Proof of Gaussianity (cont)

Gaussianity

0000000

$$\log(S_n) = \frac{x\sigma}{n} n \left(-\frac{\phi+1}{\phi+2} \frac{\phi+2}{\phi+1} - 1 + 2 \frac{\phi}{\phi+2} \frac{\phi+2}{\phi} \right)$$

$$-\frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n(\phi+2) \left(-\frac{1}{\phi+1} + 1 + \frac{4}{\phi} \right)$$

$$+ O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4}{\phi(\phi+1)} + 1 \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)} \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right)$$

$$= -\frac{1}{2} x^2 \sigma^2 \left(\frac{5(\phi+2)}{\phi n} \right) + O\left(n(x\sigma/n)^3 \right).$$

(Sketch of the) Proof of Gaussianity (cont)

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi + 2)}.$$

Also, since $\sigma \sim n^{-1/2}$, $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$. So for large n, the $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$ term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$

$$S_n = e^{-\frac{1}{2}x^2}.$$

Hence, as n gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$$

Conclusion and **Future Work**

Gaps?

- Gaps longer than recurrence proved geometric decay.
- Interesting behavior with "short" gaps.
- \diamond "Skiponaccis": $S_{n+1} = S_n + S_{n-2}$.
- \diamond "Doublanaccis": $H_{n+1} = 2H_n + H_{n-1}$.
- Distribution of largest gap.
- Our Hope: Generalize to all positive linear recurrences.

Thank you!

References

References

- Kologlu, Kopp, Miller and Wang: Fibonacci case. http://arxiv.org/pdf/1008.3204
- Miller Wang: Main paper. http://arxiv.org/pdf/1008.3202
- Miller Wang: Survey paper. http://arxiv.org/pdf/1107.2718

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}.$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

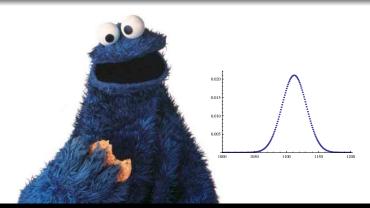
$$y(x) \text{ is the root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}.$$

$$y(1) \text{ is the root of } 1 - c_1 y - c_2 y^2 - \dots - c_L y^L.$$

Central Limit Type Theorem

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands, i.e., $a_1 + a_2 + \cdots + a_m$ in the generalized Zeckendorf decomposition $\sum_{i=1}^m a_i H_i$ for integers in $[H_n, H_{n+1})$ is Gaussian.



Example: the Special Case of L=1, $c_1=10$

$$H_{n+1} = 10H_n$$
, $H_1 = 1$, $H_n = 10^{n-1}$.

Gaussianity

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, ..., 9\}$ $(1 \le i < m), a_m \in \{1, ..., 9\}$.
- For $N \in [H_n, H_{n+1})$, m = n, i.e., first term is $a_n H_n = a_n 10^{n-1}$.
- A_i: the corresponding random variable of a_i.
 The A_i's are independent.
- For large n, the contribution of A_n is immaterial.
 A_i (1 ≤ i < n) are identically distributed random variables with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow$ Gaussian with mean 4.5n + O(1) and variance 8.25n + O(1).

สส

Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example: $1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As $n \to \infty$, E[K] and $E[L] \to n/10$. $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \to \infty$, K and L converges to a bivariate Gaussian.

- $\operatorname{corr}(K, L) = -(21 2\varphi)/(29 + 2\varphi) \approx -.551, \varphi = \frac{\sqrt{5}+1}{2}$.
- K + L and K L are independent.

Gaps Between Summands

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is
$$P(k) = \lim_{n \to \infty} P_n(k)$$
?

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is
$$P(k) = \lim_{n \to \infty} P_n(k)$$
?

Can ask similar questions about binary or other expansions: $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$.

Main Results (Beckwith-Miller 2011)

Theorem (Base B Gap Distribution)

For base B decompositions,
$$P(0) = \frac{(B-1)(B-2)}{B^2}$$
, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Fibonacci Results

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

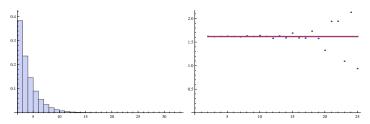


Figure: Distribution of gaps in $[F_{1000}, F_{1001}); F_{1000} \approx 10^{208}.$

Generalized Fibonacci Numbers: $G_n = G_{n-1} + \cdots + G_{n-1}$.

Theorem (Gaps for Generalized Fibonacci Numbers)

The limiting probability of finding a gap of length $k \ge 1$ between summands of numbers in $[G_n, G_{n+1}]$ decays geometrically in k:

$$P(k) = \begin{cases} \frac{p_1(\lambda_{1;L}^2 - \lambda_{1;L} - 1)^2}{C_L} \lambda_{1;L}^{-1} & \text{if } k = 1\\ \frac{p_1(\lambda_{1;L}^{L-1} - 1)}{C_L \lambda_{1;L}^{L-1}} \lambda_{1;L}^{-k} & \text{if } k \ge 2, \end{cases}$$

where $\lambda_{1:1}$ is the largest eigenvalue of the characteristic polynomial, $G_n = p_1 \lambda_{1 \cdot I}^n + \cdots$ and C_L is a constant.

Gap Proofs

Proof of Fibonacci Result

Lekkerkerker $\Rightarrow \text{ total number of gaps} \sim F_{n-1} \frac{n}{\phi^2 + 1}$.

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

How many decompositions contain a gap from F_i to F_{i+k} ?

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

For the indices less than i: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

For the indices less than i: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

For the indices greater than i + k: $F_{n-k-i-2}$ choices. Why? Have F_n , don't have F_{i+k+1} . Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_n . Shifting, like summands $F_1, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

For the indices less than i: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

For the indices greater than i + k: $F_{n-k-i-2}$ choices. Why? Have F_n , don't have F_{i+k+1} . Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_n . Shifting, like summands $F_1, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.

Determining P(k)

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

Gaussianity

Determining
$$P(K)$$

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

$$P(k) = C/\phi^k$$
 for some constant C , so $P(k) = \phi(\phi - 1)/\phi^k$.

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, ...$

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, ...$

Interval: $[T_n, T_{n+1})$, number of gaps is $Cn(T_{n-1} + T_{n-2}) + \text{smaller}$.

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, ...$

Interval: $[T_n, T_{n+1})$, number of gaps is $Cn(T_{n-1} + T_{n-2}) + \text{smaller}.$

Counting:

$$X_{i,i+k}(n) = \begin{cases} T_{i-1}(T_{n-i-3} + T_{n-i-4}) & \text{if } k = 1\\ (T_{i-1} + T_{i-2})(T_{n-k-i-1} + T_{n-k-i-3}) & \text{if } k \ge 2. \end{cases}$$

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, ...$

Interval: $[T_n, T_{n+1})$, number of gaps is $Cn(T_{n-1} + T_{n-2}) + \text{smaller}.$

Counting:

$$X_{i,i+k}(n) = \begin{cases} T_{i-1}(T_{n-i-3} + T_{n-i-4}) & \text{if } k = 1\\ (T_{i-1} + T_{i-2})(T_{n-k-i-1} + T_{n-k-i-3}) & \text{if } k \ge 2. \end{cases}$$

Constants s.t.
$$P(1) = \frac{c_1}{C\lambda_1^3}$$
, $P(k) = \frac{2c_1}{C(1+\lambda_1)}\lambda_1^{-k}$ (for $k \ge 2$).

Similar argument works as all coefficients are 1.