Intro	Previous Results	Gaps	Gap Proofs	Future Work
	0000	0000		

To Infinity and Beyond: Gaps Between Summands in Zeckendorf Decompositions

Olivial Beckwith, Louis Gaudet, Steven J. Miller http://www.williams.edu/Mathematics/sjmiller/public_html

CUNY Graduate Center, CANT 2012

Intro	Previous Results	Gaps	Gap Proofs	Future Work

Introduction

Intro ●	Previous Results	Gaps oooo	Gap Proofs	Future Work o
Goals of t	he Talk			

- Review previous work on Zeckendorf-type decompositions.
- Describe new results on gaps between summands.
- Discuss open problems being studied by SMALL 2012.

Thanks to colleagues from the Williams College 2010 and 2011 SMALL REU programs (especially Murat Kologlu, Gene Kopp and Yinghui Wang).

Intro	Previous Results	Gaps	Gap Proofs	Future Work

Previous Results

Intro	Previous Results	Gaps	Gap Proofs	Future Work
O	●○○○	0000		○
Fibona	cci Results			

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Intro	Previous Results	Gaps	Gap Proofs	Future Work
O	●○○○	0000		o
Fibonac	ci Results			

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o	●○○○	oooo		○
Fibona	cci Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o	●○○○	oooo		O
Fibona	acci Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1$.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o	●○○○	0000		o
Fibona	cci Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

 $2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_L H_{n-L+1}, \ n \ge L$$

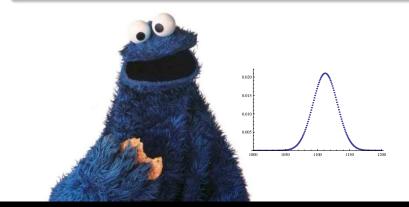
with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker: The average number of summands in the generalized Zeckendorf decomposition for integers in [*H_n*, *H_{n+1}*) tends to *Cn* + *d* as *n* → ∞, where *C* > 0 and *d* are computable constants determined by the *c_i*'s.
- Central Limit Type Theorem

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o	○○●○	0000		O
Centra	I Limit Type Theoren	n		

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands, i.e., $a_1 + a_2 + \cdots + a_m$ in the generalized Zeckendorf decomposition $\sum_{i=1}^{m} a_i H_i$ for integers in $[H_n, H_{n+1})$, is Gaussian.



Intro	Previous Results	Gaps	Gap Proofs	Future Work
	0000			

Example: the Special Case of L = 1, $c_1 = 10$

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}$$

• Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$:

$$a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), a_m \in \{1, \dots, 9\}.$$

- For $N \in [H_n, H_{n+1})$, m = n, i.e., first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow \text{Gaussian}$ with mean 4.5n + O(1)and variance 8.25n + O(1).

Intro	Previous Results	Gaps	Gap Proofs	Future Work

Gaps Between Summands

Intro o	Previous Results	Gaps ●○○○	Gap Proofs	Future Work o
Distribu	ition of Gaps			

Intro o	Previous Results	Gaps ●○○○	Gap Proofs	Future Work o
Distribu	ition of Gaps			

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Intro o	Previous Results	Gaps ●○○○	Gap Proofs	Future Work o
Distribu	ition of Gaps			

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *k*.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
O		●○○○	0000	o
Distribut	ion of Gaps			

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *k*.

What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Intro O	Previous Results	Gaps ●○○○	Gap Proofs	Future Work o
Distribu	ition of Gaps			

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *k*.

What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Can ask similar questions about binary or other expansions: $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$.

Intro O	Previous Results	Gaps ○●○○	Gap Proofs	Future Work o
Main R	esults (Beckwith-M	iller 2011)		

Theorem (Base B Gap Distribution)

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

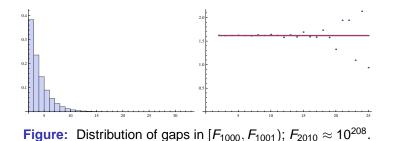
Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
O		○○●○	0000	o
Fibona	cci Results			

Theorem (Zeckendorf Gap Distribution (BM))

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.



Intro	Previous Results	Gaps	Gap Proofs	Future Work
O		○○○●	0000	o
Main Res	ults (Gaudet-Mille	er 2012)		

Generalized Fibonacci Numbers: $G_n = G_{n-1} + \cdots + G_{n-L}$.

Theorem (Gaps for Generalized Fibonacci Numbers)

The limiting probability of finding a gap of length $k \ge 1$ between summands of numbers in $[G_n, G_{n+1}]$ decays geometrically in k:

$$P(k) = \begin{cases} \frac{p_1(\lambda_{1;L}^2 - \lambda_{1;L} - 1)^2}{C_L} \lambda_{1;L}^{-1} & \text{if } k = 1\\ \frac{p_1(\lambda_{1;L}^{L-1} - 1)}{C_L \lambda_{1;L}^{L-1}} \lambda_{1;L}^{-k} & \text{if } k \ge 2 \end{cases}$$

where $\lambda_{1;L}$ is the largest eigenvalue of the characteristic equation and C_L is a constant.

Intro	Previous Results	Gaps	Gap Proofs	Future Work

Gap Proofs

Intro	Previous Results	Gaps	Gap Proofs	Future Work
○		0000	●○○○	○
Proof of	Fibonacci Result			

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	●○○○	o
Proof o	of Fibonacci Result			

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	○●○○	o
Calculating	X i,i+k			

Intro o	Previous Results	Gaps 0000	Gap Proofs	Future Work ○
Calculating	g X _{i,i+k}			

 $1 \le i \le n-k-2$:

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	○●○○	o
Calculating	X i,i+k			

 $1 \le i \le n - k - 2$:

For the indices less than *i*: F_{i-1} choices. Why? Have F_1 , don't have F_{i-1} , follows by inverted Zeckendorf.

For the indices greater than i + k: $F_{n-k-2-i}$ choices. Why? Easier: have F_n , don't have F_{i+k+1} .

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	○●○○	o
Calculating	X i,i+k			

 $1 \le i \le n - k - 2$:

For the indices less than *i*: F_{i-1} choices. Why? Have F_1 , don't have F_{i-1} , follows by inverted Zeckendorf.

For the indices greater than i + k: $F_{n-k-2-i}$ choices. Why? Easier: have F_n , don't have F_{i+k+1} .

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
O		0000	○○●○	○
Determinin	g <i>P</i> (<i>k</i>)			

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
O		0000	○○●○	○
Determinin	g <i>P</i> (<i>k</i>)			

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

$$P(k) = C/\phi^k$$
 for some constant C, so $P(k) = \phi(\phi - 1)/\phi^k$.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	○○○●	○
Tribonac	ci Gaps			

Tribonacci Numbers: $T_{n+1} = T_n + T_{n-1} + T_{n-2}$; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, \dots$

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	○○○●	O
Tribona	icci Gaps			

Tribonacci Numbers: $T_{n+1} = T_n + T_{n-1} + T_{n-2}$; $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, \dots$

Interval: $[T_n, T_{n+1})$, size $Cn(T_{n-1} + T_{n-2})$ + smaller.

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	○○○●	o
Tribonacci	Gaps			

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
;
 $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, \dots$

Interval: $[T_n, T_{n+1})$, size $Cn(T_{n-1} + T_{n-2})$ + smaller.

Counting:

$$X_{i,i+k}(n) = \begin{cases} T_{i-1}(T_{n-i-3} + T_{n-i-4}) & \text{if } k = 1\\ (T_{i-1} + T_{i-2})(T_{n-k-i-1} + T_{n-k-i-3}) & \text{if } k \ge 2. \end{cases}$$

Intro	Previous Results	Gaps	Gap Proofs	Future Work
o		0000	○○○●	o
Tribonad	ci Gaps			

Tribonacci Numbers:
$$T_{n+1} = T_n + T_{n-1} + T_{n-2}$$
;
 $F_1 = 1, F_2 = 2, F_3 = 4, F_4 = 7, \dots$

Interval: $[T_n, T_{n+1})$, size $Cn(T_{n-1} + T_{n-2})$ + smaller.

Counting:

$$X_{i,i+k}(n) = \begin{cases} T_{i-1}(T_{n-i-3} + T_{n-i-4}) & \text{if } k = 1\\ (T_{i-1} + T_{i-2})(T_{n-k-i-1} + T_{n-k-i-3}) & \text{if } k \ge 2. \end{cases}$$

Constants st
$$P(1) = \frac{c_1}{C\lambda_1^3}$$
, $P(k) = \frac{2c_1}{C(1+\lambda_1)}\lambda_1^{-k}$ (for $k \ge 2$).

Intro	Previous Results	Gaps	Gap Proofs	Future Work

Future Work

Intro o	Previous Results	Gaps 0000	Gap Proofs	Future Work ●
Other gap	os?			

- ◊ Gaps longer than recurrence proved geometric decay.
- Interesting behavior with "short" gaps.
- ♦ "Skiponaccis": $S_{n+1} = S_n + S_{n-2}$.
- ♦ "Doublanaccis": $H_{n+1} = 2H_n + H_{n-1}$.
- o Hope: Generalize to all positive linear recurrences.