Intro I Love Rectangles Pre-reas Gaussianity 000000 000000000000 000000

Gaps (Bulk)

Zeckendorf Game

Summand Minimality Refs

## Cookie Monster Meets the Fibonacci Numbers. Mmmmmm – Theorems!

## Research and Results in REUs: Steven J. Miller Williams College and MC96: sjm1@williams.edu

http://www.williams.edu/Mathematics/similler/public html

## Yale University, February 23, 2024



Intro I Love Rectangles Pre-reqs Gaus

2

Gaussianity

ps (Bulk) Zeck

Zeckendorf Game

fs Summand Minimal

## Introduction



- Research: What questions to ask? How? With whom?
- Explore: Look for the right perspective.
- Utilize: What are your tools and how can they be used?
- succeed: Control what you can: reports, talks, ....



Joint with many students and junior faculty over the years.

Research: What questions to ask? How? With whom?

00000000 000

Gaussianity

- Build on what you know and can learn.
- What will be interesting?

Pre-reas

• How will you work?

I Love Rectangles

Intro

• Where are the questions? Classes, arXiv, conferences, ....

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

#### Explore: Look for the right perspective.

- Ask interesting questions.
- Look for connections.
- Be a bit of a jack-of-all trades.

Leads naturally into....



Intro I Love Rectangles

Pre-reqs Gaussianity

nity Gaps (Bulk)

Zeckendorf Game

Refs Summand Minimality

#### Utilize: What are your tools and how can they be used?

#### Law of the Hammer:

- Abraham Kaplan: I call it the law of the instrument, and it may be formulated as follows: Give a small boy a hammer, and he will find that everything he encounters needs pounding.
- Abraham Maslow: I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.
- Bernard Baruch: If all you have is a hammer, everything looks like a nail.



Succeed: Control what you can: reports, talks

Gaussianity

Pre-reas

- Write up your work: post on the arXiv, submit.
- Go to conferences: present and mingle (no spam and P&J).

Gaps (Bulk)

Refs

**Zeckendorf Game** 

Summand Minimality

- Turn things around fast: show progress, no more than 24 hours on mundane.
- Service: refereeing, MathSciNet, ....
- Polymath Jr REU:

I Love Rectangles

Intro

https://geometrynyc.wixsite.com/polymathreu

Intro I Love Rectangles

Pre-reqs Gaussianity Gaps (Bulk)

Zeckendorf Game

Refs

## I Love Rectangles

Intro occupied of the sector o

#### Tiling the Plane with Squares

Have  $n \times n$  square for each *n*, place one at a time so that shape formed is always connected and a rectangle.



Intro o constraints o constrai

#### Tiling the Plane with Squares

# Have $n \times n$ square for each n, extra $1 \times 1$ square, place one at a time so that shape formed is always connected and a rectangle.



11

Pre-reqs Gaussianity Gaps (Bulk)

Zeckendorf Game Refs

Pre-reqs Gaussianity Gaps (Bulk)

Zeckendorf Game

Refs





Pre-reqs Gaussianity Gaps (Bul Gaps (Bulk)

Zeckendorf Game

Refs



Pre-reqs Gaussianity Gaps (Bul

Gaps (Bulk)

Zeckendorf Game Refs



Pre-reqs Gaussianity Gaps (Bul

Gaps (Bulk)

Zeckendorf Game

Refs



#### **Fibonacci Spiral:**

https://www.youtube.com/watch?v=kkGeOWYOFoA



#### Fibonacci Spiral: (33,552)

https://www.youtube.com/watch?v=kkGeOWYOFoA



#### **Fibonacci Spiral:**

https://www.youtube.com/watch?v=kkGeOWYOFoA



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs

## **Pre-requisites**

#### **Pre-requisites: Probability Review**



• Let X be random variable with density p(x):  $\diamond p(x) \ge 0; \int_{-\infty}^{\infty} p(x) dx = 1;$  $\diamond \operatorname{Prob} (a \le X \le b) = \int_{a}^{b} p(x) dx.$ 

• Mean: 
$$\mu = \int_{-\infty}^{\infty} x p(x) dx$$
.

- Variance:  $\sigma^2 = \int_{-\infty}^{\infty} (x \mu)^2 p(x) dx$ .
- Gaussian: Density  $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$ .

#### **Pre-requisites: Combinatorics Review**

- *n*!: number of ways to order *n* people, order matters.
- $\frac{n!}{k!(n-k)!} = nCk = \binom{n}{k}$ : number of ways to choose *k* from *n*, order doesn't matter.
- Stirling's Formula:  $n! \approx n^n e^{-n} \sqrt{2\pi n}$ .

#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....



#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

#### **Zeckendorf's Theorem**

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.



#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 51 =?



#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 17 = F_8 + 17$ .

#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 4 = F_8 + F_6 + 4$ .



#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + 1$ .



#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$ .



#### **Previous Results**

Fibonacci Numbers:  $F_{n+1} = F_n + F_{n-1}$ ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$ . Example:  $83 = 55 + 21 + 5 + 2 = F_9 + F_7 + F_4 + F_2$ . Observe: 51 miles  $\approx 82.1$  kilometers.



#### **Central Limit Type Theorem**

As  $n \to \infty$  distribution of number of summands in Zeckendorf decomposition for  $m \in [F_n, F_{n+1})$  is Gaussian (normal).



Figure: Number of summands in  $[F_{2010}, F_{2011}); F_{2010} \approx 10^{420}$ .

New Results: Bulk Gaps:  $m \in [F_n, F_{n+1})$  and  $\phi = \frac{1+\sqrt{5}}{2}$ 

Gaussianity

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x-(i_j-i_{j-1})\right).$$

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

#### **Theorem (Zeckendorf Gap Distribution)**

Gap measures  $\nu_{m;n}$  converge almost surely to average gap measure where  $P(k) = 1/\phi^k$  for  $k \ge 2$ .



31

Intro

I Love Rectangles

Pre-reas

#### New Results: Longest Gap

#### Theorem (Longest Gap)

As  $n \to \infty$ , the probability that  $m \in [F_n, F_{n+1})$  has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \approx e^{-e^{\log n - f(n)/\log \phi}}$$

Immediate Corollary: If f(n) grows **slower** or **faster** than  $\log n / \log \phi$ , then  $\operatorname{Prob}(L_n(m) \le f(n))$  goes to **0** or **1**, respectively.

#### **Preliminaries: The Cookie Problem**

#### **The Cookie Problem**

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

#### **Preliminaries: The Cookie Problem**

#### The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets.

#### **Preliminaries: The Cookie Problem**

#### The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):



#### **Preliminaries: The Cookie Problem**

#### **The Cookie Problem**

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):



Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimality

## **Preliminaries: The Cookie Problem**

### **The Cookie Problem**

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):



I Love Rectangles Pre-regs 000000 0000

Gaussianity 

Gaps (Bulk)

Zeckendorf Game

Refs Summand Minimality

## Preliminaries: The Cookie Problem: Reinterpretation

## **Reinterpreting the Cookie Problem**

# The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$ .

000000 000000000000 000000

Gaussianitv

#### **Reinterpreting the Cookie Problem**

Pre-reas

I Love Rectangles

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Gaussianity

#### **Reinterpreting the Cookie Problem**

Pre-reas

I Love Rectangles

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

Gaps (Bulk)

Refs

Zeckendorf Game

Summand Minimality

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

For  $N \in [F_n, F_{n+1})$ , the largest summand is  $F_n$ .  $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$ ,  $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n$ ,  $i_j - i_{j-1} \ge 2$ .

000000 000000000000 000000

Gaussianity

#### **Reinterpreting the Cookie Problem**

Pre-reas

I Love Rectangles

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

For  $N \in [F_n, F_{n+1})$ , the largest summand is  $F_n$ .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$
  

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$
  

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$
  

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Gaussianity

#### **Reinterpreting the Cookie Problem**

0000 0000

Pre-reas

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

For  $N \in [F_n, F_{n+1})$ , the largest summand is  $F_n$ .  $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$ ,  $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2$ .  $d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1)$ .  $d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0$ . Coolding counting h = n - (n-2k+1) + (n-k)

Cookie counting  $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}$ .

Intro

Pre-reqs Gaussianity Gaps (Bulk)

Zeckendorf Game

Refs

# **Gaussian Behavior**

Intro I Love Rectangles

Pre-reqs Ga

Gaussianity Gap

Gaps (Bulk) Zeckend

Zeckendorf Game Refs

Summand Minimality

## Generalizing Lekkerkerker: Erdos-Kac type result

## Theorem (KKMW 2010)

As  $n \to \infty$ , the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

#### (Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in  $[F_n, F_{n+1})$  is  $f_n(k) = \binom{n-1}{k}/F_{n-1}$ . Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = \binom{n-k}{k} \frac{1}{F_n}$$
  
=  $\frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$ 

plus a lower order correction term.

Also we can write  $F_n = \frac{1}{\sqrt{5}}\phi^{n+1} = \frac{\phi}{\sqrt{5}}\phi^n$  for large *n*, where  $\phi$  is the golden ratio (we are using relabeled Fibonacci numbers where  $1 = F_1$  occurs once to help dealing with uniqueness and  $F_2 = 2$ ). We can now split the terms that exponentially depend on *n*.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right) \left(\phi^{-n}\frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k (n-2k)^{n-2k}}.$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where  $N_n$  is the first term that is of order  $n^{-1/2}$  and  $S_n$  is the second term with exponential dependence on n.

Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimality

#### (Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable  $k = \mu + x\sigma$  where  $\mu$  and  $\sigma$  are the mean and the standard deviation, and depend on *n*. The discrete weights of  $f_n(k)$  will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx$$

Using the change of variable, we can write  $N_n$  as

$$\begin{split} N_n &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where  $C = \mu/n \approx 1/(\phi + 2)$  (note that  $\phi^2 = \phi + 1$ ) and  $y = \sigma x/n$ . But for large *n*, the *y* term vanishes since  $\sigma \sim \sqrt{n}$  and thus  $y \sim n^{-1/2}$ . Thus

$$N_n \approx \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{\frac{1-C}{2}} \sqrt{\frac{1-C}{2}}$$

since  $\sigma^2 = n \frac{\phi}{5(\phi+2)}$ .

Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimality

## (Sketch of the) Proof of Gaussianity

For the second term  $S_n$ , take the logarithm and once again change variables by  $k = \mu + x\sigma$ ,

$$\begin{split} \log(S_n) &= & \log\left(\phi^{-n} \frac{(n-k)^{(n-k)}}{k^k (n-2k)^{(n-2k)}}\right) \\ &= & -n\log(\phi) + (n-k)\log(n-k) - (k)\log(k) \\ &- (n-2k)\log(n-2k) \\ &= & -n\log(\phi) + (n-(\mu+x\sigma))\log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma)\log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma))\log(n-2(\mu+x\sigma)) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right)\right) \\ &- (n-2(\mu+x\sigma))\left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \end{split}$$

Intro I Love Rectangles Pre-regs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimality

## (Sketch of the) Proof of Gaussianity

Note that, since  $n/\mu = \phi + 2$  for large *n*, the constant terms vanish. We have  $\log(S_n)$ 

$$\begin{aligned} &= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu} - 1\right) - (n-2k)\log\left(\frac{n}{\mu} - 2\right) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) \\ &- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right) \\ &= -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) \\ &- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right) \\ &= n(-\log(\phi) + \log(\phi^2) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) \\ &- (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right) \\ &= (n - (\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right). \end{aligned}$$

Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimality

## (Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of  $x\sigma/n$ .

$$\begin{split} \log(S_n) &= (n - (\mu + x\sigma)) \left( -\frac{x\sigma}{n - \mu} - \frac{1}{2} \left( \frac{x\sigma}{n - \mu} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left( \frac{x\sigma}{\mu} - \frac{1}{2} \left( \frac{x\sigma}{\mu} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left( -2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left( 2 \frac{x\sigma}{n - 2\mu} \right)^2 + \dots \right) \\ &= (n - (\mu + x\sigma)) \left( -\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} - \frac{1}{2} \left( \frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left( \frac{x\sigma}{\frac{\phi}{\phi+2}} - \frac{1}{2} \left( \frac{x\sigma}{\frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left( -\frac{2x\sigma}{n \frac{\phi}{\phi+2}} - \frac{1}{2} \left( \frac{2x\sigma}{n \frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ &= \frac{x\sigma}{n} n \left( - \left( 1 - \frac{1}{\phi+2} \right) \frac{(\phi+2)}{(\phi+1)} - 1 + 2 \left( 1 - \frac{2}{\phi+2} \right) \frac{\phi+2}{\phi} \right) \\ &- \frac{1}{2} \left( \frac{x\sigma}{n} \right)^2 n \left( -2 \frac{\phi+2}{\phi+1} + \frac{\phi+2}{\phi+1} + 2(\phi+2) - (\phi+2) + 4 \frac{\phi+2}{\phi} \right) \\ &+ O \left( n(x\sigma/n)^3 \right) \end{split}$$

Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimali

# (Sketch of the) Proof of Gaussianity

$$\begin{split} \log(S_n) &= \frac{x\sigma}{n} n\left(-\frac{\phi+1}{\phi+2}\frac{\phi+2}{\phi+1} - 1 + 2\frac{\phi}{\phi+2}\frac{\phi+2}{\phi}\right) \\ &-\frac{1}{2}\left(\frac{x\sigma}{n}\right)^2 n(\phi+2)\left(-\frac{1}{\phi+1} + 1 + \frac{4}{\phi}\right) \\ &+ O\left(n\left(\frac{x\sigma}{n}\right)^3\right) \\ &= -\frac{1}{2}\frac{(x\sigma)^2}{n}(\phi+2)\left(\frac{3\phi+4}{\phi(\phi+1)} + 1\right) + O\left(n\left(\frac{x\sigma}{n}\right)^3\right) \\ &= -\frac{1}{2}\frac{(x\sigma)^2}{n}(\phi+2)\left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)}\right) + O\left(n\left(\frac{x\sigma}{n}\right)^3\right) \\ &= -\frac{1}{2}x^2\sigma^2\left(\frac{5(\phi+2)}{\phi n}\right) + O\left(n(x\sigma/n)^3\right). \end{split}$$

#### (Sketch of the) Proof of Gaussianity

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi+2)}$$

Also, since  $\sigma \sim n^{-1/2}$ ,  $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$ . So for large *n*, the  $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$  term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$
$$S_n = e^{-\frac{1}{2}x^2}$$

Hence, as n gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$
  
=  $\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$   
=  $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$ 

# Generalizations

I Love Rectangles

Pre-reas

Gaussianity

Intro

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

Gaps (Bulk)

**Zeckendorf Game** 

Refs

Summand Minimality

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_L H_{n-L+1}, \ n \ge L$$

with  $H_1 = 1$ ,  $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$ , n < L, coefficients  $c_i \ge 0$ ;  $c_1, c_L > 0$  if  $L \ge 2$ ;  $c_1 > 1$  if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a<sub>i</sub>H<sub>i</sub> with natural constraints on the a<sub>i</sub>'s (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimality

#### Generalizing Lekkerkerker

## Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in  $[H_n, H_{n+1})$  tends to Cn + d as  $n \to \infty$ , where C > 0 and d are computable constants determined by the  $c_i$ 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

$$y(x) \text{ is the root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}.$$

$$y(1) \text{ is the root of } 1 - c_1 y - c_2 y^2 - \dots - c_L y^L.$$

Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckendorf Game Refs Summand Minimality

## **Central Limit Type Theorem**

# **Central Limit Type Theorem**

As  $n \to \infty$ , the distribution of the number of summands, i.e.,  $a_1 + a_2 + \cdots + a_m$  in the generalized Zeckendorf decomposition  $\sum_{i=1}^{m} a_i H_i$  for integers in  $[H_n, H_{n+1})$  is Gaussian.



### **Example: the Special Case of** L = 1, $c_1 = 10$

Gaussianity

Pre-reas

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$
  
• Legal decomposition is decimal expansion:  $\sum_{i=1}^{m} a_i H_i$ :

Gaps (Bulk)

**Zeckendorf Game** 

Refs

Summand Minimality

$$a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), \ a_m \in \{1, \dots, 9\}.$$

0000000 OC

- For  $N \in [H_n, H_{n+1})$ , m = n, i.e., first term is  $a_n H_n = a_n 10^{n-1}$ .
- *A<sub>i</sub>*: the corresponding random variable of *a<sub>i</sub>*. The *A<sub>i</sub>*'s are independent.
- For large *n*, the contribution of *A<sub>n</sub>* is immaterial.
   *A<sub>i</sub>* (1 ≤ *i* < *n*) are identically distributed random variables
   with mean 4.5 and variance 8.25.
- Central Limit Theorem:  $A_2 + A_3 + \cdots + A_n \rightarrow$  Gaussian with mean 4.5n + O(1) and variance 8.25n + O(1).

Intro

Pre-reqs Gaussianity Gaps (Bu

# **Binet's Formula**

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

Gaussianity

**Binet's Formula** 

I Love Rectangles

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

(1

• Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ 

Gaussianity

000000 000000000000 000000

Pre-reas

## **Binet's Formula**

I Love Rectangles

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

• Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ 

• Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

Gaussianity

000000 000000000000 000000

Pre-reas

# **Binet's Formula**

I Love Rectangles

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

(1) 
$$\Rightarrow \sum_{n\geq 2} F_{n+1} x^{n+1} = \sum_{n\geq 2} F_n x^{n+1} + \sum_{n\geq 2} F_{n-1} x^{n+1}$$

Gaussianity

000000 000000000000 000000

Pre-reas

# **Binet's Formula**

I Love Rectangles

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

(1) 
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \boldsymbol{F}_n \boldsymbol{x}^n = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 1} \boldsymbol{F}_n \boldsymbol{x}^{n+2}$$

Gaussianity

000000 000000000000 000000

Pre-reas

# **Binet's Formula**

I Love Rectangles

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

(1) 
$$\Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$

Gaussianity

000000 000000000000 000000

Pre-reas

# **Binet's Formula**

I Love Rectangles

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$

Gaussianity

000000 000000000000 000000

Pre-reas

# **Binet's Formula**

I Love Rectangles

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Gaps (Bulk)

Zeckendorf Game

Refs

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$
$$\Rightarrow g(x) = x/(1 - x - x^2).$$

Pre-reqs Gaussianity Gaps (Bulk)

Zeckendorf Game

Refs

## Partial Fraction Expansion (Example: Binet's Formula)

• Generating function: 
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

Partial Fraction Expansion (Example: Binet's Formula)

Pre-reqs Gaussianity Gaps (Bu

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

- Generating function:  $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$ .
- Partial fraction expansion:

Pre-reas

I Love Rectangles

### Partial Fraction Expansion (Example: Binet's Formula)

Pre-reqs Gaussianity Gaps (Bu

• Generating function: 
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

I Love Rectangles

000000 0000

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left( \frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Gaps (Bulk)

Zeckendorf Game

Refs

#### Partial Fraction Expansion (Example: Binet's Formula)

000000 000000000000 000000

Gaussianity

• Generating function: 
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

Pre-reas

I Love Rectangles

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left( \frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

**Coefficient of** *x*<sup>*n*</sup> (power series expansion):

$$\boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right] - \text{Binet's Formula!}$$
  
(using geometric series:  $\frac{1}{1-r} = 1 + r + r^2 + r^3 + \cdots$ ).

#### **Differentiating Identities and Method of Moments**

Gaussianity

Differentiating identities

Pre-reas

Example: Given a random variable X such that

00000000 000

 $Pr(X = 1) = \frac{1}{2}, Pr(X = 2) = \frac{1}{4}, Pr(X = 3) = \frac{1}{8}, \dots$ then what's the mean of X (i.e., E[X])? Solution: Let  $f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$ .  $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$ .  $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X]$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

Method of moments: Random variables X<sub>1</sub>, X<sub>2</sub>, ....
 If *l*<sup>th</sup> moments *E*[X<sub>n</sub><sup>l</sup>] converges those of standard normal then X<sub>n</sub> converges to a Gaussian.

# Standard normal distribution:

 $2m^{\text{th}}$  moment:  $(2m - 1)!! = (2m - 1)(2m - 3) \cdots 1$ ,  $(2m - 1)^{\text{th}}$  moment: 0.

Intro

Gaussianity

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$
  
 $p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$ 

Gaussianity

 $p_{n,k} = # \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

Gaussianity

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$ 

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

• Recurrence relation:

I Love Rectangles

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

Pre-reas

Gaussianity

00000 0000000000000 00000

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

• Recurrence relation:

I Love Rectangles

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

• Generating function:  $\sum_{n,k>0} p_{n,k} x^k y^n = \frac{y}{1-y-xy^2}$ . • Partial fraction expansion:

$$\frac{y}{1 - y - xy^2} = -\frac{y}{y_1(x) - y_2(x)} \left(\frac{1}{y - y_1(x)} - \frac{1}{y - y_2(x)}\right)$$
  
where  $y_1(x)$  and  $y_2(x)$  are the roots of  $1 - y - xy^2 = 0$ .

Coefficient of  $y^n$ :  $g(x) = \sum_{k>0} p_{n,k} x^k$ .

Intro

New Approach: Case of Fibonacci Numbers (Continued)

000000 000000000000 000000

Gaussianity

 $K_n$ : the corresponding random variable associated with k.  $g(x) = \sum_{k>0} p_{n,k} x^k$ .

Differentiating identities:

Pre-reas

I Love Rectangles

$$g(1) = \sum_{k>0} p_{n,k} = F_{n+1} - F_n,$$
  

$$g'(x) = \sum_{k>0} k p_{n,k} x^{k-1}, g'(1) = g(1)E[K_n],$$
  

$$(xg'(x))' = \sum_{k>0} k^2 p_{n,k} x^{k-1},$$
  

$$(xg'(x))'|_{x=1} = g(1)E[K_n^2], (x (xg'(x))')'|_{x=1} = g(1)E[K_n^3], ...$$
  
Similar results hold for the centralized  $K_n$ :  $K'_n = K_n - E[K_n].$ 

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

• Method of moments (for normalized 
$$K'_n$$
):  
 $E[(K'_n)^{2m}]/(SD(K'_n))^{2m} \rightarrow (2m-1)!!,$   
 $E[(K'_n)^{2m-1}]/(SD(K'_n))^{2m-1} \rightarrow 0. \Rightarrow K_n \rightarrow \text{Gaussian}.$ 

#### New Approach: General Case

Pre-reas

I Love Rectangles

Let  $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) :$  the generalized Zeckendorf decomposition of *N* has exactly *k* summands  $\}$ .

Gaps (Bulk)

Zeckendorf Game

Refs

• Recurrence relation:

Fibonacci:  $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$ .

Gaussianity

000000 000000000000 000000

General: 
$$p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$$
.  
where  $s_0 = 0, s_m = c_1 + c_2 + \dots + c_m$ .

Generating function:

Fibonacci: 
$$\frac{y}{1-y-xy^2}$$
.  
General:  

$$\frac{\sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n}{1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}}$$

New Approach: General Case (Continued)

Pre-reas

Gaussianity

000000 00000000000 000000

Partial fraction expansion:

I Love Rectangles

000000 0000

Fibonacci: 
$$-\frac{y}{y_1(x)-y_2(x)} \left(\frac{1}{y-y_1(x)} - \frac{1}{y-y_2(x)}\right)$$
.  
General:  
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x)) \prod_{j \neq i} (y_j(x) - y_i(x))}$ .  
 $B(x,y) = \sum_{n \leq L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n$ ,  
 $y_i(x)$ : root of  $1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0$ .

Gaps (Bulk)

Zeckendorf Game

Refs

Summand Minimality

Coefficient of  $y^n$ :  $g(x) = \sum_{n,k>0} p_{n,k} x^k$ .

- Differentiating identities
- Method of moments: implies  $K_n \rightarrow$  Gaussian.

#### Gaps in the Bulk



Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.





Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(k)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length *k*.



Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(k)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length *k*.

What is  $P(k) = \lim_{n \to \infty} P_n(k)$ ?



Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(k)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length *k*.

What is  $P(k) = \lim_{n \to \infty} P_n(k)$ ?

Can ask similar questions about binary or other expansions:  $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$ .

Intro I Love Rectangles Pre-reqs Gaussianity Gaps (Bulk) Zeckend

Zeckendorf Game

Refs Summand Minimality

#### Main Result

#### Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let  $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_LH_{n+1-L}$  be a positive linear recurrence of length L where  $c_i \ge 1$  for all  $1 \le i \le L$ . Then

$$P(j) = \begin{cases} 1 - (\frac{a_1}{C_{Lek}})(2\lambda_1^{-1} + a_1^{-1} - 3) & :j = 0\\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & :j = 1\\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-j} & :j \ge 2. \end{cases}$$

Intro I Love Rectangles Pre-reqs Gaussianity Ocococo constrainty Caps (Bulk) Zeckendorf Game Refs Summand Minimality

#### **Special Cases**

#### Theorem (Base *B* Gap Distribution (SMALL 2011))

For base *B* decompositions,  $P(0) = \frac{(B-1)(B-2)}{B^2}$ , and for  $k \ge 1$ ,  $P(k) = c_B B^{-k}$ , with  $c_B = \frac{(B-1)(3B-2)}{B^2}$ .

#### Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions,  $P(k) = 1/\phi^k$  for  $k \ge 2$ , with  $\phi = \frac{1+\sqrt{5}}{2}$  the golden mean.

#### **Proof of Bulk Gaps for Fibonacci Sequence**

#### Lekkerkerker $\Rightarrow$ total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$ .

#### **Proof of Bulk Gaps for Fibonacci Sequence**

Lekkerkerker  $\Rightarrow$  total number of gaps  $\sim F_{n-1} \frac{n}{\phi^2+1}$ .

Let  $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$ 

#### Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker  $\Rightarrow$  total number of gaps  $\sim F_{n-1} \frac{n}{\phi^2+1}$ .

Let  $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$ 

$$P(k) = \lim_{n\to\infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1}\frac{n}{\phi^2+1}}.$$







For the indices less than *i*:  $F_{i-1}$  choices. Why? Have  $F_i$  as largest summand and follows by Zeckendorf:  $\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$ .



$$\begin{array}{c} \bigcirc \bigcirc & \frown & \frown & \bigcirc & \bigotimes & \bigotimes & \bigcirc & \frown & - & \bigcirc & \bigotimes & \bigotimes & \bigcirc & \frown & - & \bigcirc & \bigcirc & \bigcirc & \\ F_1 & F_{i-1} F_i & F_{i+k} F_{i+k+1} & F_{n-1} F_n \end{array}$$

For the indices less than *i*:  $F_{i-1}$  choices. Why? Have  $F_i$  as largest summand and follows by Zeckendorf:  $\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$ .

For the indices greater than i + k:  $F_{n-k-i-2}$  choices. Why? Shift. Choose summands from  $\{F_1, \ldots, F_{n-k-i+1}\}$  with  $F_1, F_{n-k-i+1}$  chosen. Decompositions with largest summand  $F_{n-k-i+1}$  minus decompositions with largest summand  $F_{n-k-i}$ .



$$\begin{array}{c} \bigcirc \bigcirc & \frown & \frown & \bigcirc & \bigotimes & \bigotimes & \bigcirc & \frown & - & \bigcirc & \bigotimes & \bigotimes & \bigcirc & \cdots & - & \bigotimes & \bigotimes & \bigcirc & \cdots & - & \bigotimes & \bullet \\ F_1 & F_{i-1} F_i & F_{i+k} F_{i+k+1} & F_{n-1} F_n \end{array}$$

For the indices less than *i*:  $F_{i-1}$  choices. Why? Have  $F_i$  as largest summand and follows by Zeckendorf:  $\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$ .

For the indices greater than i + k:  $F_{n-k-i-2}$  choices. Why? Shift. Choose summands from  $\{F_1, \ldots, F_{n-k-i+1}\}$  with  $F_1, F_{n-k-i+1}$  chosen. Decompositions with largest summand  $F_{n-k-i+1}$  minus decompositions with largest summand  $F_{n-k-i}$ .

So total number of choices is  $F_{n-k-2-i}F_{i-1}$ .

#### 

#### **Determining** P(k)

#### Recall

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2+1}} = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} F_{n-k-2-i} F_{i-1}}{F_{n-1} \frac{n}{\phi^2+1}}.$$

Use Binet's formula. Sums of geometric series:  $P(k) = 1/\phi^k$ .



**Figure:** Distribution of summands in  $[F_{1000}, F_{1001})$ .

I Love Rectangles

Pre-reqs Gaussianity Gaps (Bu

Gaps (Bulk)

Zeckendorf Game 0000000000

Refs

#### The Zeckendorf Game with Alyssa Epstein and Kristen Flint

| Intro<br>000000 | I Love Rectangles | Gaussianity |  | Refs<br>oo | Summand Minimality |
|-----------------|-------------------|-------------|--|------------|--------------------|
| Rules           | \$                |             |  |            |                    |

• Two player game, alternate turns, last to move wins.



- Two player game, alternate turns, last to move wins.
- Bins  $F_1$ ,  $F_2$ ,  $F_3$ , ..., start with N pieces in  $F_1$  and others empty.



- Two player game, alternate turns, last to move wins.
- Bins  $F_1$ ,  $F_2$ ,  $F_3$ , ..., start with N pieces in  $F_1$  and others empty.
- A turn is one of the following moves:
  ◇ If have two pieces on *F<sub>k</sub>* can remove and put one piece at *F<sub>k+1</sub>* and one at *F<sub>k-2</sub>* (if *k* = 1 then 2*F*<sub>1</sub> becomes 1*F*<sub>2</sub>)
  ◇ If pieces at *F<sub>k</sub>* and *F<sub>k+1</sub>* remove and add one at *F<sub>k+2</sub>*.



- Two player game, alternate turns, last to move wins.
- Bins  $F_1$ ,  $F_2$ ,  $F_3$ , ..., start with N pieces in  $F_1$  and others empty.
- A turn is one of the following moves:
  ◇ If have two pieces on *F<sub>k</sub>* can remove and put one piece at *F<sub>k+1</sub>* and one at *F<sub>k-2</sub>* (if *k* = 1 then 2*F*<sub>1</sub> becomes 1*F*<sub>2</sub>)
  ◇ If pieces at *F<sub>k</sub>* and *F<sub>k+1</sub>* remove and add one at *F<sub>k+2</sub>*.

#### Questions:

- Does the game end? How long?
- For each N who has the winning strategy?



#### Sample Game

Start with 10 pieces at  $F_1$ , rest empty.

Next move: Player 1:  $F_1 + F_1 = F_2$ 

#### Sample Game

Start with 10 pieces at  $F_1$ , rest empty.

Next move: Player 2:  $F_1 + F_1 = F_2$ 



Next move: Player 1:  $2F_2 = F_3 + F_1$ 



Next move: Player 2:  $F_1 + F_1 = F_2$ 



Next move: Player 1:  $F_2 + F_3 = F_4$ .





Next move: Player 2:  $F_1 + F_1 = F_2$ .





Next move: Player 1:  $F_1 + F_1 = F_2$ .



Next move: Player 2:  $F_1 + F_2 = F_3$ .



## Start with 10 pieces at $F_1$ , rest empty.

$$\begin{matrix} 0 & 1 & 1 & 1 & 0 \\ [F_1 = 1] & [F_2 = 2] & [F_3 = 3] & [F_4 = 5] & [F_5 = 8] \end{matrix}$$

Next move: Player 1:  $F_3 + F_4 = F_5$ .



No moves left, Player One wins.



#### Sample Game

#### Player One won in 9 moves.

| 10                           | 0                            | 0                            | 0                            | 0                            |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 8                            | 1                            | 0                            | 0                            | 0                            |
| 6                            | 2                            | 0                            | 0                            | 0                            |
| 7                            | 0                            | 1                            | 0                            | 0                            |
| 5                            | 1                            | 1                            | 0                            | 0                            |
| 5                            | 0                            | 0                            | 1                            | 0                            |
| 3                            | 1                            | 0                            | 1                            | 0                            |
| 1                            | 2                            | 0                            | 1                            | 0                            |
|                              |                              |                              |                              |                              |
| 0                            | 1                            | 1                            | 1                            | 0                            |
| 0                            | 1                            | 0                            | 0                            | 1                            |
| [ <i>F</i> <sub>1</sub> = 1] | [ <i>F</i> <sub>2</sub> = 2] | [ <i>F</i> <sub>3</sub> = 3] | [ <i>F</i> <sub>4</sub> = 5] | [ <i>F</i> <sub>5</sub> = 8] |



#### Sample Game

#### Player Two won in 10 moves.

| 10                           | 0                            | 0                            | 0                            | 0                            |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 8                            | 1                            | 0                            | 0                            | 0                            |
| 6                            | 2                            | 0                            | 0                            | 0                            |
| 7                            | 0                            | 1                            | 0                            | 0                            |
| 5                            | 1                            | 1                            | 0                            | 0                            |
| 5                            | 0                            | 0                            | 1                            | 0                            |
| 3                            | 1                            | 0                            | 1                            | 0                            |
| 1                            | 2                            | 0                            | 1                            | 0                            |
| 2                            | 0                            | 1                            | 1                            | 0                            |
| 0                            | 1                            | 1                            | 1                            | 0                            |
| 0                            | 1                            | 0                            | 0                            | 1                            |
| [ <i>F</i> <sub>1</sub> = 1] | [ <i>F</i> <sub>2</sub> = 2] | [ <i>F</i> <sub>3</sub> = 3] | [ <i>F</i> <sub>4</sub> = 5] | [ <i>F</i> <sub>5</sub> = 8] |

### Theorem

All games end in finitely many moves.



## Games end

## Theorem

All games end in finitely many moves.

**Proof:** The sum of the square roots of the indices is a strict monovariant.

- Adding consecutive terms:  $\left(\sqrt{k} + \sqrt{k}\right) \sqrt{k+2} < 0$ .
- Splitting:  $2\sqrt{k} (\sqrt{k+1} + \sqrt{k+1}) < 0.$
- Adding 1's:  $2\sqrt{1} \sqrt{2} < 0$ .
- Splitting 2's:  $2\sqrt{2} \left(\sqrt{3} + \sqrt{1}\right) < 0.$



## Games Lengths: I

Upper bound: At most  $n \log_{\phi} (n \sqrt{5} + 1/2)$  moves.

Fastest game: n - Z(n) moves (Z(n) is the number of summands in *n*'s Zeckendorf decomposition). From always moving on the largest summand possible

(deterministic).



## Games Lengths: II



**Figure:** Frequency graph of the number of moves in 9,999 simulations of the Zeckendorf Game with random moves when n = 60 vs a Gaussian. Natural conjecture....

## Winning Strategy

## Theorem

Player Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One's strategy.

Non-constructive!

Will highlight idea with a simpler game.

## Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with  $i \le m$  and  $j \le n$ .

Once all dots colored game ends; whomever goes last loses.



## Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with  $i \le m$  and  $j \le n$ .

Once all dots colored game ends; whomever goes last loses.



## Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with  $i \le m$  and  $j \le n$ .

Once all dots colored game ends; whomever goes last loses.



## Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with  $i \le m$  and  $j \le n$ .

Once all dots colored game ends; whomever goes last loses.





# Sketch of Proof for Player Two's Winning Strategy

Gaussianity

I Love Rectangles



Gaps (Bulk)

Zeckendorf Game

0000000000

Refs



## Sketch of Proof for Player Two's Winning Strategy

Gaussianity

I Love Rectangles

000000 0000



Refs

Zeckendorf Game

0000000000

Gaps (Bulk)



## Sketch of Proof for Player Two's Winning Strategy

Gaussianity

Pre-reas

I Love Rectangles



Gaps (Bulk)

Zeckendorf Game

0000000000

Summand Minimality Refs

Zeckendorf Game

Refs Summand Minimality





## Sketch of Proof for Player Two's Winning Strategy

Gaussianity

I Love Rectangles



Refs

Zeckendorf Game

0000000000

Gaps (Bulk)

Zeckendorf Game

Refs Summand Minimality





## Sketch of Proof for Player Two's Winning Strategy

Gaussianity

I Love Rectangles

000000 0000



Gaps (Bulk)

Zeckendorf Game

0000000000

Refs Summand Minimality

Zeckendorf Game

Refs Summand Minimality



Zeckendorf Game

Refs Summand Minimality



Zeckendorf Game

Refs Summand Minimality





- What if p ≥ 3 people play the Fibonacci game?
- Does the number of moves in random games converge to a Gaussian?
- Define k-nacci numbers by
   S<sub>i+1</sub> = S<sub>i</sub> + S<sub>i-1</sub> + ··· + S<sub>i-k</sub>; game terminates but who has the winning strategy?



Zeckendorf Game

Refs Summand Minimality

## References

## See

https: //web.williams.edu/Mathematics/sjmiller/ public\_html/349Fa23/writingfiles.htm

| Intro | I Love Rectangles | Pre-reqs | Gaussianity | Gaps (Bulk) | Zeckendorf Game | Refs            | Summand Minimality |
|-------|-------------------|----------|-------------|-------------|-----------------|-----------------|--------------------|
|       |                   |          |             |             |                 | $\circ \bullet$ |                    |

#### References

## References (subset)

Baird-Smith, Alyssa Epstein and Kristen Flint, The Generalized Zeckendorf Game, Fibonacci Quarterly 57 (2019) no. 5. 1-14.

https://arxiv.org/abs/1809.04883.

- Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson, The Average Gap Distribution for Generalized Zeckendorf Decompositions. The Fibonacci Quarterly 51 (2013), 13-27. http://arxiv.org/abs/1208.5820.
- Bower, Insoft, Li, Miller and Tosteson, Distribution of gaps in generalized Zeckendorf decompositions (and an appendix on Extensions to Initial Segments with Ben-Ari), Journal of Combinatorial Theory, Series A 135 (2015), 130-160.

http://arxiv.org/abs/1402.3912.

- Cordwell, Hlavacek, Huynh, Miller, Peterson, and Truong Vu, On Summand Minimality of Generalized Zeckendorf Decompositions. Research in Number Theory 4 (2018), no. 43. https://doi.org/10.1007/s40993-018-0137-7.
- Kologlu, Kopp, Miller and Wang. On the number of summands in Zeckendorf decompositions. Fibonacci Quarterly 49 (2011), no. 2, 116-130. http://arxiv.org/pdf/1008.3204.

Miller and Wang, From Fibonacci numbers to Central Limit Type Theorems, Journal of Combinatorial Theory, Series A 119 (2012), no. 7, 1398-1413. http://arxiv.org/pdf/1008.3202 (expanded version).

I Love Rectangles

Pre-reqs Gaussianity Gaps (Bul

Gaps (Bulk)

Zeckendorf Game

Summand Minimality Refs 00000

## Summand Minimality with Cordwell, Hlavacek, Huynh, Peterson, Vu



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: 2018 =  $1597 + 377 + 34 + 8 + 2 = F_{16} + F_{13} + F_8 + F_5 + F_2$ .



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

#### Example:

 $2018 = 1597 + 377 + 34 + 8 + 2 = F_{16} + F_{13} + F_8 + F_5 + F_2.$ 

Conversely, we can construct the Fibonacci sequence using this property:

1



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

#### Example:

 $2018 = 1597 + 377 + 34 + 8 + 2 = F_{16} + F_{13} + F_8 + F_5 + F_2.$ 

Conversely, we can construct the Fibonacci sequence using this property:

1, 2



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

#### Example:

 $2018 = 1597 + 377 + 34 + 8 + 2 = F_{16} + F_{13} + F_8 + F_5 + F_2.$ 

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

#### Example:

 $2018 = 1597 + 377 + 34 + 8 + 2 = F_{16} + F_{13} + F_8 + F_5 + F_2.$ 

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3, 5



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

#### Example:

 $2018 = 1597 + 377 + 34 + 8 + 2 = F_{16} + F_{13} + F_8 + F_5 + F_2.$ 

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3, 5, 8



Fibonaccis: 
$$F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$$
.

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

#### Example:

 $2018 = 1597 + 377 + 34 + 8 + 2 = F_{16} + F_{13} + F_8 + F_5 + F_2.$ 

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3, 5, 8, 13...

## **Summand Minimality**

## Example

- $18 = 13 + 5 = F_6 + F_4$ , legal decomposition, two summands.
- $18 = 13 + 3 + 2 = F_6 + F_3 + F_2$ , non-legal decomposition, three summands.

## **Summand Minimality**

## Example

- $18 = 13 + 5 = F_6 + F_4$ , legal decomposition, two summands.
- $18 = 13 + 3 + 2 = F_6 + F_3 + F_2$ , non-legal decomposition, three summands.

## Theorem

The Zeckendorf decomposition is summand minimal.

## **Summand Minimality**

## Example

- $18 = 13 + 5 = F_6 + F_4$ , legal decomposition, two summands.
- $18 = 13 + 3 + 2 = F_6 + F_3 + F_2$ , non-legal decomposition, three summands.

## Theorem

The Zeckendorf decomposition is summand minimal.

What other recurrences are summand minimal?

## **Positive Linear Recurrence Sequences**

## Definition

A **positive linear recurrence sequence (PLRS)** is the sequence given by a recurrence  $\{a_n\}$  with

 $a_n := c_1 a_{n-1} + \cdots + c_t a_{n-t}$ 

and each  $c_i \ge 0$  and  $c_1, c_t > 0$ . We use **ideal initial conditions**  $a_{-(n-1)} = 0, \ldots, a_{-1} = 0, a_0 = 1$  and call  $(c_1, \ldots, c_t)$  the **signature of the sequence**.

## **Positive Linear Recurrence Sequences**

## Definition

A **positive linear recurrence sequence (PLRS)** is the sequence given by a recurrence  $\{a_n\}$  with

 $a_n := c_1 a_{n-1} + \cdots + c_t a_{n-t}$ 

and each  $c_i \ge 0$  and  $c_1, c_t > 0$ . We use **ideal initial conditions**  $a_{-(n-1)} = 0, \ldots, a_{-1} = 0, a_0 = 1$  and call  $(c_1, \ldots, c_t)$  the **signature of the sequence**.

## Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)

For a PLRS with signature  $(c_1, c_2, ..., c_t)$ , the Generalized Zeckendorf Decompositions are summand minimal if and only if

 $c_1 \geq c_2 \geq \cdots \geq c_t$ .



## Idea of proof:

•  $\mathcal{D} = b_1 F_1 + \dots + b_n F_n$  decomposition of *N*, set Ind $(\mathcal{D}) = b_1 \cdot 1 + \dots + b_n \cdot n$ .

## **Proof for Fibonacci Case**

## Idea of proof:

•  $\mathcal{D} = b_1 F_1 + \dots + b_n F_n$  decomposition of *N*, set Ind $(\mathcal{D}) = b_1 \cdot 1 + \dots + b_n \cdot n$ .

• Move to 
$$\mathcal{D}'$$
 by  
 $\diamond 2F_k = F_{k+1} + F_{k-2}$  (and  $2F_2 = F_3 + F_1$ ).  
 $\diamond F_k + F_{k+1} = F_{k+2}$  (and  $F_1 + F_1 = F_2$ ).

## **Proof for Fibonacci Case**

#### Idea of proof:

•  $\mathcal{D} = b_1 F_1 + \dots + b_n F_n$  decomposition of *N*, set Ind $(\mathcal{D}) = b_1 \cdot 1 + \dots + b_n \cdot n$ .

• Move to 
$$\mathcal{D}'$$
 by  
 $\diamond 2F_k = F_{k+1} + F_{k-2}$  (and  $2F_2 = F_3 + F_1$ ).  
 $\diamond F_k + F_{k+1} = F_{k+2}$  (and  $F_1 + F_1 = F_2$ ).

• Monovariant: Note  $\operatorname{Ind}(\mathcal{D}') \leq \operatorname{Ind}(\mathcal{D})$ .  $\diamond 2F_k = F_{k+1} + F_{k-2}$ : 2k vs 2k - 1.  $\diamond F_k + F_{k+1} = F_{k+2}$ : 2k + 1 vs k + 2.

## **Proof for Fibonacci Case**

### Idea of proof:

•  $\mathcal{D} = b_1 F_1 + \dots + b_n F_n$  decomposition of *N*, set Ind $(\mathcal{D}) = b_1 \cdot 1 + \dots + b_n \cdot n$ .

• Move to 
$$\mathcal{D}'$$
 by  
 $\diamond 2F_k = F_{k+1} + F_{k-2}$  (and  $2F_2 = F_3 + F_1$ ).  
 $\diamond F_k + F_{k+1} = F_{k+2}$  (and  $F_1 + F_1 = F_2$ ).

- Monovariant: Note  $\operatorname{Ind}(\mathcal{D}') \leq \operatorname{Ind}(\mathcal{D})$ .  $\diamond 2F_k = F_{k+1} + F_{k-2}$ : 2k vs 2k - 1.  $\diamond F_k + F_{k+1} = F_{k+2}$ : 2k + 1 vs k + 2.
- If not at Zeckendorf decomposition can continue, if at Zeckendorf cannot. Better:  $\operatorname{Ind}'(\mathcal{D}) = b_1 \sqrt{1} + \dots + b_n \sqrt{n}$ .