Cookie Monster Meets the Fibonacci Numbers. Mmmmmm - Theorems!

Research and Results in REUs: Steven J. Miller Williams College and MC96: sjm1@williams.edu
http://www.williams.edu/Mathematics/sjmiller/public_html
Yale University, February 23, 2024

Introduction

Goals of the Talk

- Research: What questions to ask? How? With whom?
- Explore: Look for the right perspective.
- Utilize: What are your tools and how can they be used?
- succeed: Control what you can: reports, talks,

Joint with many students and junior faculty over the years.

Research: What questions to ask? How? With whom?

- Build on what you know and can learn.
- What will be interesting?
- How will you work?
- Where are the questions? Classes, arXiv, conferences,

Explore: Look for the right perspective.

- Ask interesting questions.
- Look for connections.
- Be a bit of a jack-of-all trades.

Leads naturally into....

Utilize: What are your tools and how can they be used?

Law of the Hammer:

- Abraham Kaplan: I call it the law of the instrument, and it may be formulated as follows: Give a small boy a hammer, and he will find that everything he encounters needs pounding.
- Abraham Maslow: I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.
- Bernard Baruch: If all you have is a hammer, everything

Ilooks like a nail.

Succeed: Control what you can: reports, talks

- Write up your work: post on the arXiv, submit.
- Go to conferences: present and mingle (no spam and P\&J).
- Turn things around fast: show progress, no more than 24 hours on mundane.
- Service: refereeing, MathSciNet,
- Polymath Jr REU:
https://geometrynyc.wixsite.com/polymathreu

I Love Rectangles

Tiling the Plane with Squares

Have $n \times n$ square for each n, place one at a time so that shape formed is always connected and a rectangle.

Tiling the Plane with Squares

Have $n \times n$ square for each n, extra 1×1 square, place one at a time so that shape formed is always connected and a rectangle.

Tiling the Plane with Squares: $1 \times 1,1 \times 1,2 \times 2,3 \times 3, \ldots$

Tiling the Plane with Squares: $1 \times 1,1 \times 1,2 \times 2,3 \times 3, \ldots$

Tiling the Plane with Squares: $1 \times 1,1 \times 1,2 \times 2,3 \times 3, \ldots$

Tiling the Plane with Squares: $1 \times 1,1 \times 1,2 \times 2,3 \times 3, \ldots$

Tiling the Plane with Squares: $1 \times 1,1 \times 1,2 \times 2,3 \times 3, \ldots$

Fibonacci Spiral:

https://www.youtube.com/watch?v=kkGeOWYOFoA

Fibonacci Spiral: $(33,552)$

https://www. youtube.com/watch?v=kkGeOWYOFoA

Fibonacci Spiral:

https://www. youtube.com/watch?v=kkGeOWYOFoA

Pre-requisites

Pre-requisites: Probability Review

- Let X be random variable with density $p(x)$:
$\diamond p(x) \geq 0 ; \int_{-\infty}^{\infty} p(x) d x=1$;
$\diamond \operatorname{Prob}(a \leq X \leq b)=\int_{a}^{b} p(x) d x$.
- Mean: $\mu=\int_{-\infty}^{\infty} x p(x) d x$.
- Variance: $\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x$.
- Gaussian: Density $\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)$.

Pre-requisites: Combinatorics Review

- n!: number of ways to order n people, order matters.
- $\frac{n!}{k!(n-k)!}=n C k=\binom{n}{k}$: number of ways to choose k from n, order doesn't matter.
- Stirling's Formula: $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51=$?

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51=34+17=F_{8}+17$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51=34+13+4=F_{8}+F_{6}+4$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51=34+13+3+1=F_{8}+F_{6}+F_{3}+1$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51=34+13+3+1=F_{8}+F_{6}+F_{3}+F_{1}$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
First few: $1,2,3,5,8,13,21,34,55,89, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51=34+13+3+1=F_{8}+F_{6}+F_{3}+F_{1}$. Example: $83=55+21+5+2=F_{9}+F_{7}+F_{4}+F_{2}$. Observe: 51 miles ≈ 82.1 kilometers.

Old Results

Central Limit Type Theorem

As $n \rightarrow \infty$ distribution of number of summands in Zeckendorf decomposition for $m \in\left[F_{n}, F_{n+1}\right.$) is Gaussian (normal).

Figure: Number of summands in $\left[F_{2010}, F_{2011}\right) ; F_{2010} \approx 10^{420}$.

New Results: Bulk Gaps: $m \in\left[F_{n}, F_{n+1}\right)$ and $\phi=\frac{1+\sqrt{5}}{2}$

$$
m=\sum_{j=1}^{k(m)=n} F_{i_{j}}, \quad \nu_{m ; n}(x)=\frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x-\left(i_{j}-i_{j-1}\right)\right) .
$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m ; n}$ converge almost surely to average gap measure where $P(k)=1 / \phi^{k}$ for $k \geq 2$.

Figure: Distribution of gaps in $\left[F_{1000}, F_{1001}\right) ; F_{2010} \approx 10^{208}$.

New Results: Longest Gap

Theorem (Longest Gap)

As $n \rightarrow \infty$, the probability that $m \in\left[F_{n}, F_{n+1}\right)$ has longest gap less than or equal to $f(n)$ converges to

$$
\operatorname{Prob}\left(L_{n}(m) \leq f(n)\right) \approx e^{-e^{\log n-f(n) / \log \phi}}
$$

Immediate Corollary: If $f(n)$ grows slower or faster than $\log n / \log \phi$, then $\operatorname{Prob}\left(L_{n}(m) \leq f(n)\right)$ goes to $\mathbf{0}$ or $\mathbf{1}$, respectively.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people ($C=8, P=5$):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people ($C=8, P=5$):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people ($C=8, P=5$):

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in\left[F_{n}, F_{n+1}\right)$, the largest summand is F_{n}.

$$
\begin{gathered}
N=F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{k-1}}+F_{n}, \\
1 \leq i_{1}<i_{2}<\cdots<i_{k-1}<i_{k}=n, i_{j}-i_{j-1} \geq 2 .
\end{gathered}
$$

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in\left[F_{n}, F_{n+1}\right)$, the largest summand is F_{n}.

$$
\begin{gathered}
N=F_{i_{1}}+F_{i_{1}}+\cdots+F_{i_{k-1}}+F_{n}, \\
1 \leq i_{1}<i_{2}<\cdots<i_{k-1}<i_{k}=n, i_{j}-i_{j-1} \geq 2 . \\
d_{1}:=i_{1}-1, d_{j}:=i_{j}-i_{j-1}-2(j>1) . \\
d_{1}+d_{2}+\cdots+d_{k}=n-2 k+1, d_{j} \geq 0 .
\end{gathered}
$$

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in\left[F_{n}, F_{n+1}\right)$, the largest summand is F_{n}.

$$
\begin{gathered}
N=F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{k-1}}+F_{n}, \\
1 \leq i_{1}<i_{2}<\cdots<i_{k-1}<i_{k}=n, i_{j}-i_{j-1} \geq 2 . \\
d_{1}:=i_{1}-1, d_{j}:=i_{j}-i_{j-1}-2(j>1) . \\
d_{1}+d_{2}+\cdots+d_{k}=n-2 k+1, d_{j} \geq 0 .
\end{gathered}
$$

Cookie counting $\Rightarrow p_{n, k}=\binom{n-2 k+1+k-1}{k-1}=\binom{n-k}{k-1}$.

Gaussian Behavior

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As $n \rightarrow \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$
n!\approx n^{n} e^{-n} \sqrt{2 \pi n}
$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in $\left[F_{n}, F_{n+1}\right)$ is $f_{n}(k)=\binom{n-1-k}{k} / F_{n-1}$. Consider the density for the $n+1$ case. Then we have, by Stirling

$$
\begin{aligned}
f_{n+1}(k) & =\binom{n-k}{k} \frac{1}{F_{n}} \\
& =\frac{(n-k)!}{(n-2 k)!k!} \frac{1}{F_{n}}=\frac{1}{\sqrt{2 \pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{\left(k+\frac{1}{2}\right)}(n-2 k)^{n-2 k+\frac{1}{2}}} \frac{1}{F_{n}}
\end{aligned}
$$

plus a lower order correction term.
Also we can write $F_{n}=\frac{1}{\sqrt{5}} \phi^{n+1}=\frac{\phi}{\sqrt{5}} \phi^{n}$ for large n, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1=F_{1}$ occurs once to help dealing with uniqueness and $F_{2}=2$). We can now split the terms that exponentially depend on n.

$$
f_{n+1}(k)=\left(\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{(n-k)}{k(n-2 k)}} \frac{\sqrt{5}}{\phi}\right)\left(\phi^{-n} \frac{(n-k)^{n-k}}{k^{k}(n-2 k)^{n-2 k}}\right) .
$$

Define

$$
N_{n}=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{(n-k)}{k(n-2 k)}} \frac{\sqrt{5}}{\phi}, \quad S_{n}=\phi^{-n} \frac{(n-k)^{n-k}}{k^{k}(n-2 k)^{n-2 k}} .
$$

Thus, write the density function as

$$
f_{n+1}(k)=N_{n} S_{n}
$$

where N_{n} is the first term that is of order $n^{-1 / 2}$ and S_{n} is the second term with exponential dependence on n.

(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable $k=\mu+x \sigma$ where μ and σ are the mean and the standard deviation, and depend on n. The discrete weights of $f_{n}(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$
f_{n}(k) d k=f_{n}(\mu+\sigma x) \sigma d x
$$

Using the change of variable, we can write N_{n} as

$$
\begin{aligned}
N_{n} & =\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{n-k}{k(n-2 k)}} \frac{\phi}{\sqrt{5}} \\
& =\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-k / n}{(k / n)(1-2 k / n)}} \frac{\sqrt{5}}{\phi} \\
& =\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-(\mu+\sigma x) / n}{((\mu+\sigma x) / n)(1-2(\mu+\sigma x) / n)}} \frac{\sqrt{5}}{\phi} \\
& =\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2 C-2 y)}} \frac{\sqrt{5}}{\phi}
\end{aligned}
$$

where $C=\mu / n \approx 1 /(\phi+2)$ (note that $\phi^{2}=\phi+1$) and $y=\sigma x / n$. But for large n, the y term vanishes since $\sigma \sim \sqrt{n}$ and thus $y \sim n^{-1 / 2}$. Thus

$$
N_{n} \approx \frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-C}{C(1-2 C)}} \frac{\sqrt{5}}{\phi}=\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi}=\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{5(\phi+2)}{\phi}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}}
$$

since $\sigma^{2}=n_{5(\phi+2)}$.

(Sketch of the) Proof of Gaussianity

For the second term S_{n}, take the logarithm and once again change variables by $k=\mu+x \sigma$,

$$
\begin{aligned}
\log \left(S_{n}\right)= & \log \left(\phi^{-n} \frac{(n-k)^{(n-k)}}{k^{k}(n-2 k)^{(n-2 k)}}\right) \\
= & -n \log (\phi)+(n-k) \log (n-k)-(k) \log (k) \\
& -(n-2 k) \log (n-2 k) \\
= & -n \log (\phi)+(n-(\mu+x \sigma)) \log (n-(\mu+x \sigma)) \\
& -(\mu+x \sigma) \log (\mu+x \sigma) \\
& -(n-2(\mu+x \sigma)) \log (n-2(\mu+x \sigma)) \\
= & -n \log (\phi) \\
& +(n-(\mu+x \sigma))\left(\log (n-\mu)+\log \left(1-\frac{x \sigma}{n-\mu}\right)\right) \\
& -(\mu+x \sigma)\left(\log (\mu)+\log \left(1+\frac{x \sigma}{\mu}\right)\right) \\
& -(n-2(\mu+x \sigma))\left(\log (n-2 \mu)+\log \left(1-\frac{x \sigma}{n-2 \mu}\right)\right) \\
& -n \log (\phi) \\
& +(n-(\mu+x \sigma))\left(\log \left(\frac{n}{\mu}-1\right)+\log \left(1-\frac{x \sigma}{n-\mu}\right)\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right) \\
& -(n-2(\mu+x \sigma))\left(\log \left(\frac{n}{\mu}-2\right)+\log \left(1-\frac{x \sigma}{n-2 \mu}\right)\right) .
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

Note that, since $n / \mu=\phi+2$ for large n, the constant terms vanish. We have $\log \left(S_{n}\right)$

$$
\begin{aligned}
= & -n \log (\phi)+(n-k) \log \left(\frac{n}{\mu}-1\right)-(n-2 k) \log \left(\frac{n}{\mu}-2\right)+(n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right)-(n-2(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-2 \mu}\right) \\
= & -n \log (\phi)+(n-k) \log (\phi+1)-(n-2 k) \log (\phi)+(n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right)-(n-2(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-2 \mu}\right) \\
= & n\left(-\log (\phi)+\log \left(\phi^{2}\right)-\log (\phi)\right)+k\left(\log \left(\phi^{2}\right)+2 \log (\phi)\right)+(n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right)-(n-2(\mu+x \sigma)) \log \left(1-2 \frac{x \sigma}{n-2 \mu}\right) \\
= & (n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right)-(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right) \\
& -(n-2(\mu+x \sigma)) \log \left(1-2 \frac{x \sigma}{n-2 \mu}\right) .
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of $x \sigma / n$.

$$
\begin{aligned}
\log \left(S_{n}\right)= & (n-(\mu+x \sigma))\left(-\frac{x \sigma}{n-\mu}-\frac{1}{2}\left(\frac{x \sigma}{n-\mu}\right)^{2}+\ldots\right) \\
& -(\mu+x \sigma)\left(\frac{x \sigma}{\mu}-\frac{1}{2}\left(\frac{x \sigma}{\mu}\right)^{2}+\ldots\right) \\
& -(n-2(\mu+x \sigma))\left(-2 \frac{x \sigma}{n-2 \mu}-\frac{1}{2}\left(2 \frac{x \sigma}{n-2 \mu}\right)^{2}+\ldots\right) \\
= & (n-(\mu+x \sigma))\left(-\frac{x \sigma}{\left.n \frac{(\phi+1)}{(\phi+2)}-\frac{1}{2}\left(\frac{x \sigma}{n \frac{(\phi+1)}{(\phi+2)}}\right)^{2}+\ldots\right)}\right. \\
& -(\mu+x \sigma)\left(\frac{x \sigma}{\frac{n}{\phi+2}}-\frac{1}{2}\left(\frac{x \sigma}{\frac{n}{\phi+2}}\right)^{2}+\ldots\right) \\
& -(n-2(\mu+x \sigma))\left(-\frac{2 x \sigma}{n \frac{\phi}{\phi+2}}-\frac{1}{2}\left(\frac{2 x \sigma}{n \frac{\phi}{\phi+2}}\right)^{2}+\ldots\right) \\
& \frac{x \sigma}{n} n\left(-\left(1-\frac{1}{\phi+2}\right) \frac{(\phi+2)}{(\phi+1)}-1+2\left(1-\frac{2}{\phi+2}\right) \frac{\phi+2}{\phi}\right) \\
& -\frac{1}{2}\left(\frac{x \sigma}{n}\right)^{2} n\left(-2 \frac{\phi+2}{\phi+1}+\frac{\phi+2}{\phi+1}+2(\phi+2)-(\phi+2)+4 \frac{\phi+2}{\phi}\right) \\
& +O\left(n(x \sigma / n)^{3}\right)
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

$$
\begin{aligned}
\log \left(S_{n}\right)= & \frac{x \sigma}{n} n\left(-\frac{\phi+1}{\phi+2} \frac{\phi+2}{\phi+1}-1+2 \frac{\phi}{\phi+2} \frac{\phi+2}{\phi}\right) \\
& -\frac{1}{2}\left(\frac{x \sigma}{n}\right)^{2} n(\phi+2)\left(-\frac{1}{\phi+1}+1+\frac{4}{\phi}\right) \\
& +O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right) \\
= & -\frac{1}{2} \frac{(x \sigma)^{2}}{n}(\phi+2)\left(\frac{3 \phi+4}{\phi(\phi+1)}+1\right)+O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right) \\
= & -\frac{1}{2} \frac{(x \sigma)^{2}}{n}(\phi+2)\left(\frac{3 \phi+4+2 \phi+1}{\phi(\phi+1)}\right)+O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right) \\
= & -\frac{1}{2} x^{2} \sigma^{2}\left(\frac{5(\phi+2)}{\phi n}\right)+O\left(n(x \sigma / n)^{3}\right) .
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

But recall that

$$
\sigma^{2}=\frac{\phi n}{5(\phi+2)} .
$$

Also, since $\sigma \sim n^{-1 / 2}, n\left(\frac{x \sigma}{n}\right)^{3} \sim n^{-1 / 2}$. So for large n, the $O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right)$ term vanishes. Thus we are left with

$$
\begin{aligned}
\log S_{n} & =-\frac{1}{2} x^{2} \\
S_{n} & =e^{-\frac{1}{2} x^{2}} .
\end{aligned}
$$

Hence, as n gets large, the density converges to the normal distribution:

$$
\begin{aligned}
f_{n}(k) d k & =N_{n} S_{n} d k \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} x^{2}} \sigma d x \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x
\end{aligned}
$$

Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$
H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{L} H_{n-L+1}, n \geq L
$$

with $H_{1}=1, H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{n} H_{1}+1, n<L$, coefficients $c_{i} \geq 0 ; c_{1}, c_{L}>0$ if $L \geq 2 ; c_{1}>1$ if $L=1$.

- Zeckendorf: Every positive integer can be written uniquely as $\sum a_{i} H_{i}$ with natural constraints on the a_{i} 's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $\left[H_{n}, H_{n+1}\right.$) tends to $C n+d$ as $n \rightarrow \infty$, where $C>0$ and d are computable constants determined by the c_{i} 's.

$$
\begin{gathered}
C=-\frac{y^{\prime}(1)}{y(1)}=\frac{\sum_{m=0}^{L-1}\left(s_{m}+s_{m+1}-1\right)\left(s_{m+1}-s_{m}\right) y^{m}(1)}{2 \sum_{m=0}^{L-1}(m+1)\left(s_{m+1}-s_{m}\right) y^{m}(1)} . \\
s_{0}=0, s_{m}=c_{1}+c_{2}+\cdots+c_{m} .
\end{gathered}
$$

$y(x)$ is the root of $1-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1}$.
$y(1)$ is the root of $1-c_{1} y-c_{2} y^{2}-\cdots-c_{L} y^{L}$.

Central Limit Type Theorem

Central Limit Type Theorem

As $n \rightarrow \infty$, the distribution of the number of summands, i.e., $a_{1}+a_{2}+\cdots+a_{m}$ in the generalized Zeckendorf decomposition $\sum_{i=1}^{m} a_{i} H_{i}$ for integers in $\left[H_{n}, H_{n+1}\right)$ is Gaussian.

Example: the Special Case of $L=1, c_{1}=10$

$$
H_{n+1}=10 H_{n}, H_{1}=1, H_{n}=10^{n-1} .
$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_{i} H_{i}$:

$$
a_{i} \in\{0,1, \ldots, 9\}(1 \leq i<m), a_{m} \in\{1, \ldots, 9\} .
$$

- For $N \in\left[H_{n}, H_{n+1}\right), m=n$, i.e., first term is $a_{n} H_{n}=a_{n} 10^{n-1}$.
- A_{i} : the corresponding random variable of a_{i}. The A_{i} 's are independent.
- For large n, the contribution of A_{n} is immaterial. $A_{i}(1 \leq i<n)$ are identically distributed random variables
with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_{2}+A_{3}+\cdots+A_{n} \rightarrow$ Gaussian with mean $4.5 n+O(1)$ and variance $8.25 n+O(1)$.

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] .
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.
(1) $\Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1}$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \quad \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.

$$
\begin{aligned}
(1) & \Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2}
\end{aligned}
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \quad \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.

$$
\begin{aligned}
(1) & \Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=x \sum_{n \geq 2} \boldsymbol{F}_{n} x^{n}+x^{2} \sum_{n \geq 1} \boldsymbol{F}_{n} x^{n}
\end{aligned}
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \quad \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.

$$
\begin{aligned}
(1) & \Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=x \sum_{n \geq 2} \boldsymbol{F}_{n} x^{n}+x^{2} \sum_{n \geq 1} \boldsymbol{F}_{n} x^{n} \\
& \Rightarrow g(x)-\boldsymbol{F}_{1} x-\boldsymbol{F}_{2} x^{2}=x\left(g(x)-\boldsymbol{F}_{1} x\right)+x^{2} g(x)
\end{aligned}
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \quad \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.

$$
\begin{aligned}
(1) & \Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=x \sum_{n \geq 2} \boldsymbol{F}_{n} x^{n}+x^{2} \sum_{n \geq 1} \boldsymbol{F}_{n} x^{n} \\
& \Rightarrow g(x)-\boldsymbol{F}_{1} x-\boldsymbol{F}_{2} x^{2}=x\left(g(x)-\boldsymbol{F}_{1} x\right)+x^{2} g(x) \\
& \Rightarrow g(x)=x /\left(1-x-x^{2}\right) .
\end{aligned}
$$

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.
- Partial fraction expansion:

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.
- Partial fraction expansion:

$$
\Rightarrow g(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{\frac{1+\sqrt{5}}{2} x}{1-\frac{1+\sqrt{5}}{2} x}-\frac{\frac{-1+\sqrt{5}}{2} x}{1-\frac{-1+\sqrt{5}}{2} x}\right) .
$$

Partial Fraction Expansion (Example: Binet’s Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.
- Partial fraction expansion:
$\Rightarrow g(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{\frac{1+\sqrt{5}}{2} x}{1-\frac{1+\sqrt{5}}{2} x}-\frac{\frac{-1+\sqrt{5}}{2} x}{1-\frac{-1+\sqrt{5}}{2} x}\right)$.

Coefficient of x^{n} (power series expansion):

$$
\boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] \text { - Binet's Formula! }
$$

(using geometric series: $\frac{1}{1-r}=1+r+r^{2}+r^{3}+\cdots$).

Differentiating Identities and Method of Moments

- Differentiating identities

Example: Given a random variable X such that
$\operatorname{Pr}(X=1)=\frac{1}{2}, \operatorname{Pr}(X=2)=\frac{1}{4}, \operatorname{Pr}(X=3)=\frac{1}{8}, \ldots$
then what's the mean of X (i.e., $E[X])$?
Solution: Let $f(x)=\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\cdots=\frac{1}{1-x / 2}-1$.

$$
\begin{gathered}
f^{\prime}(x)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4} x+3 \cdot \frac{1}{8} x^{2}+\cdots \\
f^{\prime}(1)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\cdots=E[X]
\end{gathered}
$$

- Method of moments: Random variables X_{1}, X_{2}, \ldots. If $\ell^{\text {th }}$ moments $E\left[X_{n}^{\ell}\right]$ converges those of standard normal then X_{n} converges to a Gaussian.
Standard normal distribution:
$2 m^{\text {th }}$ moment: $(2 m-1)!!=(2 m-1)(2 m-3) \cdots 1$, $(2 m-1)^{\text {th }}$ moment: 0 .

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{array}{r}
N \in\left[F_{n+1}, F_{n+2}\right): N=F_{n+1}+F_{t}+\cdots, t \leq n-1 . \\
p_{n+1, k+1}=p_{n-1, k}+p_{n-2, k}+\cdots .
\end{array}
$$

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{array}{r}
N \in\left[F_{n+1}, F_{n+2}\right): N=F_{n+1}+F_{t}+\cdots, t \leq n-1 . \\
p_{n+1, k+1}=p_{n-1, k}+p_{n-2, k}+\cdots \\
p_{n, k+1}=p_{n-2, k}+p_{n-3, k}+\cdots
\end{array}
$$

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{aligned}
& N \in\left[F_{n+1}, F_{n+2}\right): N=F_{n+1}+F_{t}+\cdots, t \leq n-1 \\
& p_{n+1, k+1}=p_{n-1, k}+p_{n-2, k}+\cdots \\
& p_{n, k+1}=p_{n-2, k}+p_{n-3, k}+\cdots \\
& \Rightarrow p_{n+1, k+1}=p_{n, k+1}+p_{n-1, k}
\end{aligned}
$$

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{aligned}
N \in\left[F_{n+1}, F_{n+2}\right): N=F_{n+1} & +F_{t}+\cdots, t \leq n-1 . \\
p_{n+1, k+1} & =p_{n-1, k}+p_{n-2, k}+\cdots \\
p_{n, k+1} & =p_{n-2, k}+p_{n-3, k}+\cdots \\
\Rightarrow p_{n+1, k+1} & =p_{n, k+1}+p_{n-1, k} .
\end{aligned}
$$

- Generating function: $\sum_{n, k>0} p_{n, k} x^{k} y^{n}=\frac{y}{1-y-x y^{2}}$.
- Partial fraction expansion:

$$
\frac{y}{1-y-x y^{2}}=-\frac{y}{y_{1}(x)-y_{2}(x)}\left(\frac{1}{y-y_{1}(x)}-\frac{1}{y-y_{2}(x)}\right)
$$

where $y_{1}(x)$ and $y_{2}(x)$ are the roots of $1-y-x y^{2}=0$.
Coefficient of $y^{n}: g(x)=\sum_{k>0} p_{n, k} x^{k}$.

New Approach: Case of Fibonacci Numbers (Continued)

K_{n} : the corresponding random variable associated with k. $g(x)=\sum_{k>0} p_{n, k} x^{k}$.

- Differentiating identities:
$g(1)=\sum_{k>0} p_{n, k}=F_{n+1}-F_{n}$,
$g^{\prime}(x)=\sum_{k>0} k p_{n, k} x^{k-1}, g^{\prime}(1)=g(1) E\left[K_{n}\right]$,
$\left(x g^{\prime}(x)\right)^{\prime}=\sum_{k>0} k^{2} p_{n, k} x^{k-1}$,
$\left.\left(x g^{\prime}(x)\right)^{\prime}\right|_{x=1}=g(1) E\left[K_{n}^{2}\right],\left.\left(x\left(x g^{\prime}(x)\right)^{\prime}\right)^{\prime}\right|_{x=1}=g(1) E\left[K_{n}^{3}\right], \ldots$
Similar results hold for the centralized $K_{n}: K_{n}^{\prime}=K_{n}-E\left[K_{n}\right]$.
- Method of moments (for normalized K_{n}^{\prime}):
$E\left[\left(K_{n}^{\prime}\right)^{2 m}\right] /\left(S D\left(K_{n}^{\prime}\right)\right)^{2 m} \rightarrow(2 m-1)!!$,
$E\left[\left(K_{n}^{\prime}\right)^{2 m-1}\right] /\left(S D\left(K_{n}^{\prime}\right)\right)^{2 m-1} \rightarrow 0 . \quad \Rightarrow K_{n} \rightarrow$ Gaussian.

New Approach: General Case

Let $p_{n, k}=\#\left\{N \in\left[H_{n}, H_{n+1}\right)\right.$: the generalized Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

Fibonacci: $p_{n+1, k+1}=p_{n, k+1}+p_{n, k}$.
General: $p_{n+1, k}=\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} p_{n-m, k-j}$. where $s_{0}=0, s_{m}=c_{1}+c_{2}+\cdots+c_{m}$.

- Generating function:

Fibonacci: $\frac{y}{1-y-x y^{2}}$.
General:
$\frac{\sum_{n \leq L} p_{n, k} x^{k} y^{n}-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1} \sum_{n<L-m} p_{n, k} x^{k} y^{n}}{1-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1}}$.

New Approach: General Case (Continued)

- Partial fraction expansion:

Fibonacci: $-\frac{y}{y_{1}(x)-y_{2}(x)}\left(\frac{1}{y-y_{1}(x)}-\frac{1}{y-y_{2}(x)}\right)$.
General:

$$
\begin{aligned}
& -\frac{1}{\sum_{j=s_{L-1}}^{s_{L}-1} x^{j}} \sum_{i=1}^{L} \frac{B(x, y)}{\left(y-y_{i}(x)\right) \prod_{j \neq i}\left(y_{j}(x)-y_{i}(x)\right)} \\
& B(x, y)=\sum_{n \leq L} p_{n, k} x^{k} y^{n}-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1} \sum_{n<L-m} p_{n, k} x^{k} y^{n}, \\
& y_{i}(x): \text { root of } 1-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1}=0 .
\end{aligned}
$$

Coefficient of $y^{n}: g(x)=\sum_{n, k>0} p_{n, k} x^{k}$.

- Differentiating identities
- Method of moments: implies $K_{n} \rightarrow$ Gaussian.

Gaps in the Bulk

Distribution of Gaps

For $F_{r_{1}}+F_{r_{2}}+\cdots+F_{r_{n}}$, the gaps are the differences
$r_{n}-r_{n-1}, r_{n-1}-r_{n-2}, \ldots, r_{2}-r_{1}$.
Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10 .

Distribution of Gaps

For $F_{r_{1}}+F_{r_{2}}+\cdots+F_{r_{n}}$, the gaps are the differences $r_{n}-r_{n-1}, r_{n-1}-r_{n-2}, \ldots, r_{2}-r_{1}$.

Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10 .
Let $P_{n}(k)$ be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

Distribution of Gaps

For $F_{r_{1}}+F_{r_{2}}+\cdots+F_{r_{n}}$, the gaps are the differences $r_{n}-r_{n-1}, r_{n-1}-r_{n-2}, \ldots, r_{2}-r_{1}$.

Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10 .
Let $P_{n}(k)$ be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

What is $P(k)=\lim _{n \rightarrow \infty} P_{n}(k)$?

Distribution of Gaps

For $F_{r_{1}}+F_{r_{2}}+\cdots+F_{r_{n}}$, the gaps are the differences $r_{n}-r_{n-1}, r_{n-1}-r_{n-2}, \ldots, r_{2}-r_{1}$.

Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10 .
Let $P_{n}(k)$ be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

What is $P(k)=\lim _{n \rightarrow \infty} P_{n}(k)$?
Can ask similar questions about binary or other expansions: $2012=2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{4}+2^{3}+2^{2}$.

Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let $H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{L} H_{n+1-L}$ be a positive linear recurrence of length L where $c_{i} \geq 1$ for all $1 \leq i \leq L$. Then

$$
P(j)= \begin{cases}1-\left(\frac{a_{1}}{C_{\text {Lek }}}\right)\left(2 \lambda_{1}^{-1}+a_{1}^{-1}-3\right) & : j=0 \\ \lambda_{1}^{-1}\left(\frac{1}{L_{L e k}}\right)\left(\lambda_{1}\left(1-2 a_{1}\right)+a_{1}\right) & : j=1 \\ \left(\lambda_{1}-1\right)^{2}\left(\frac{a_{1}}{C_{L \text { Lek }}}\right) \lambda_{1}^{-j} & : j \geq 2 .\end{cases}
$$

Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, $P(0)=\frac{(B-1)(B-2)}{B^{2}}$, and for $k \geq 1, P(k)=c_{B} B^{-k}$, with $C_{B}=\frac{(B-1)(3 B-2)}{B^{2}}$.

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, $P(k)=1 / \phi^{k}$ for $k \geq 2$, with $\phi=\frac{1+\sqrt{5}}{2}$ the golden mean.

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^{2}+1}$.

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^{2}+1}$.
Let $X_{i, j}=\#\left\{m \in\left[F_{n}, F_{n+1}\right)\right.$: decomposition of m includes
F_{i}, F_{j}, but not F_{q} for $\left.i<q<j\right\}$.

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^{2}+1}$.
Let $X_{i, j}=\#\left\{m \in\left[F_{n}, F_{n+1}\right)\right.$: decomposition of m includes
F_{i}, F_{j}, but not F_{q} for $\left.i<q<j\right\}$.

$$
P(k)=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n-k} X_{i, j+k}}{F_{n-1} \frac{n}{\phi^{2}+1}} .
$$

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?

For the indices less than i : F_{i-1} choices. Why? Have F_{i} as largest summand and follows by Zeckendorf: $\#\left[F_{i}, F_{i+1}\right)=F_{i+1}-F_{i}=F_{i-1}$.

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?

For the indices less than $i: F_{i-1}$ choices. Why? Have F_{i} as largest summand and follows by Zeckendorf: $\#\left[F_{i}, F_{i+1}\right)=F_{i+1}-F_{i}=F_{i-1}$.

For the indices greater than $i+k: F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\left\{F_{1}, \ldots, F_{n-k-i+1}\right\}$ with $F_{1}, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i}.

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?

For the indices less than i : F_{i-1} choices. Why? Have F_{i} as largest summand and follows by Zeckendorf: $\#\left[F_{i}, F_{i+1}\right)=F_{i+1}-F_{i}=F_{i-1}$.

For the indices greater than $i+k: F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\left\{F_{1}, \ldots, F_{n-k-i+1}\right\}$ with $F_{1}, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i}.

So total number of choices is $F_{n-k-2-i} F_{i-1}$.

Determining $P(k)$

Recall

$$
P(k)=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n-k} X_{i, i+k}}{F_{n-1} \frac{n}{\phi^{2}+1}}=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n-k} F_{n-k-2-i} F_{i-1}}{F_{n-1} \frac{n}{\phi^{2}+1}} .
$$

Use Binet's formula. Sums of geometric series: $P(k)=1 / \phi^{k}$.

Figure: Distribution of summands in $\left[F_{1000}, F_{1001}\right)$.

The Zeckendorf Game with Alyssa Epstein and Kristen Flint

Rules

- Two player game, alternate turns, last to move wins.

Rules

- Two player game, alternate turns, last to move wins.
- Bins $F_{1}, F_{2}, F_{3}, \ldots$, start with N pieces in F_{1} and others empty.

Rules

- Two player game, alternate turns, last to move wins.
- Bins $F_{1}, F_{2}, F_{3}, \ldots$, start with N pieces in F_{1} and others empty.
- A turn is one of the following moves:
\diamond If have two pieces on F_{k} can remove and put one piece at F_{k+1} and one at F_{k-2}
(if $k=1$ then $2 F_{1}$ becomes $1 F_{2}$)
\diamond If pieces at F_{k} and F_{k+1} remove and add one at
F_{k+2}.

Rules

- Two player game, alternate turns, last to move wins.
- Bins $F_{1}, F_{2}, F_{3}, \ldots$, start with N pieces in F_{1} and others empty.
- A turn is one of the following moves:
\diamond If have two pieces on F_{k} can remove and put one piece at F_{k+1} and one at F_{k-2}
(if $k=1$ then $2 F_{1}$ becomes $1 F_{2}$)
\diamond If pieces at F_{k} and F_{k+1} remove and add one at
F_{k+2}.
Questions:
- Does the game end? How long?
- For each N who has the winning strategy?

Sample Game

Start with 10 pieces at F_{1}, rest empty.

10	0	0	0	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 1: $F_{1}+F_{1}=F_{2}$

Sample Game

Start with 10 pieces at F_{1}, rest empty.

8	1	0	0	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 2: $F_{1}+F_{1}=F_{2}$

Sample Game

Start with 10 pieces at F_{1}, rest empty.

6	2	0	0	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 1: $2 F_{2}=F_{3}+F_{1}$

Sample Game

Start with 10 pieces at F_{1}, rest empty.

7	0	1	0	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 2: $F_{1}+F_{1}=F_{2}$

Sample Game

Start with 10 pieces at F_{1}, rest empty.

5	1	1	0	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 1: $F_{2}+F_{3}=F_{4}$.

Sample Game

Start with 10 pieces at F_{1}, rest empty.

5	0	0	1	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 2: $F_{1}+F_{1}=F_{2}$.

Sample Game

Start with 10 pieces at F_{1}, rest empty.

3	1	0	1	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 1: $F_{1}+F_{1}=F_{2}$.

Sample Game

Start with 10 pieces at F_{1}, rest empty.

1	2	0	1	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 2: $F_{1}+F_{2}=F_{3}$.

Sample Game

Start with 10 pieces at F_{1}, rest empty.

0	1	1	1	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Next move: Player 1: $F_{3}+F_{4}=F_{5}$.

Sample Game

Start with 10 pieces at F_{1}, rest empty.

0	1	0	0	1
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

No moves left, Player One wins.

Sample Game

Player One won in 9 moves.

10	0	0	0	0
8	1	0	0	0
6	2	0	0	0
7	0	1	0	0
5	1	1	0	0
5	0	0	1	0
3	1	0	1	0
1	2	0	1	0
0				0
0	1	1	1	0
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Sample Game

Player Two won in 10 moves.

10	0	0	0	0
8	1	0	0	0
6	2	0	0	0
7	0	1	0	0
5	1	1	0	0
5	0	0	1	0
3	1	0	1	0
1	2	0	1	0
2	0	1	1	0
0	1	1	1	0
0	1	0	0	1
$\left[F_{1}=1\right]$	$\left[F_{2}=2\right]$	$\left[F_{3}=3\right]$	$\left[F_{4}=5\right]$	$\left[F_{5}=8\right]$

Games end

Theorem

All games end in finitely many moves.

Games end

Theorem

All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict monovariant.

- Adding consecutive terms: $(\sqrt{k}+\sqrt{k})-\sqrt{k+2}<0$.
- Splitting: $2 \sqrt{k}-(\sqrt{k+1}+\sqrt{k+1})<0$.
- Adding 1's: $2 \sqrt{1}-\sqrt{2}<0$.
- Splitting 2's: $2 \sqrt{2}-(\sqrt{3}+\sqrt{1})<0$.

Games Lengths: I

Upper bound: At most $n \log _{\phi}(n \sqrt{5}+1 / 2)$ moves.

Fastest game: $n-Z(n)$ moves ($Z(n)$ is the number of summands in n 's Zeckendorf decomposition).

From always moving on the largest summand possible (deterministic).

Games Lengths: II

Figure: Frequency graph of the number of moves in 9,999 simulations of the Zeckendorf Game with random moves when $n=60$ vs a Gaussian. Natural conjecture....

Winning Strategy

Theorem
 Player Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One's strategy.

Non-constructive!
Will highlight idea with a simpler game.

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with $i \leq m$ and $j \leq n$.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with $i \leq m$ and $j \leq n$.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with $i \leq m$ and $j \leq n$.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and coloring every dot (m, n) with $i \leq m$ and $j \leq n$.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.

Sketch of Proof for Player Two's Winning Strategy

Sketch of Proof for Player Two's Winning Strategy

Sketch of Proof for Player Two's Winning Strategy

Sketch of Proof for Player Two's Winning Strategy

Sketch of Proof for Player Two's Winning Strategy

Sketch of Proof for Player Two's Winning Strategy

00

Sketch of Proof for Player Two's Winning Strategy

Sketch of Proof for Player Two's Winning Strategy

00

Sketch of Proof for Player Two's Winning Strategy

Sketch of Proof for Player Two's Winning Strategy

Future Work

- What if $p \geq 3$ people play the Fibonacci game?
- Does the number of moves in random games converge to a Gaussian?
- Define k-nacci numbers by $S_{i+1}=S_{i}+S_{i-1}+\cdots+S_{i-k} ;$ game terminates but who has the winning strategy?

References

See

https:
//web.williams.edu/Mathematics/sjmiller/
public_html/349Fa23/writingfiles.htm

References

References (subset)

- Baird-Smith, Alyssa Epstein and Kristen Flint, The Generalized Zeckendorf Game, Fibonacci Quarterly 57 (2019) no. 5, 1-14.
https://arxiv.org/abs/1809.04883.
- Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson, The Average Gap Distribution for Generalized Zeckendorf Decompositions, The Fibonacci Quarterly 51 (2013), 13-27.
http://arxiv.org/abs/1208.5820.
- Bower, Insoft, Li, Miller and Tosteson, Distribution of gaps in generalized Zeckendorf decompositions (and an appendix on Extensions to Initial Segments with Ben-Ari), Journal of Combinatorial Theory, Series A 135 (2015), 130-160.
http://arxiv.org/abs/1402.3912.
- Cordwell, Hlavacek, Huynh, Miller, Peterson, and Truong Vu, On Summand Minimality of Generalized Zeckendorf Decompositions, Research in Number Theory 4 (2018), no. 43.
https://doi.org/10.1007/s40993-018-0137-7.
- Kologlu, Kopp, Miller and Wang, On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, 116-130.
http://arxiv.org/pdf/1008.3204.
- Miller and Wang, From Fibonacci numbers to Central Limit Type Theorems, Journal of Combinatorial Theory, Series A 119 (2012), no. 7, 1398-1413.
http://arxiv.org/pdf/1008.3202 (expanded version).

Summand Minimality with Cordwell, Hlavacek, Huynh, Peterson, Vu

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: $2018=1597+377+34+8+2=F_{16}+F_{13}+F_{8}+F_{5}+F_{2}$.

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: $2018=1597+377+34+8+2=F_{16}+F_{13}+F_{8}+F_{5}+F_{2}$.

Conversely, we can construct the Fibonacci sequence using this property:

1

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: $2018=1597+377+34+8+2=F_{16}+F_{13}+F_{8}+F_{5}+F_{2}$.

Conversely, we can construct the Fibonacci sequence using this property:

1, 2

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: $2018=1597+377+34+8+2=F_{16}+F_{13}+F_{8}+F_{5}+F_{2}$.

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: $2018=1597+377+34+8+2=F_{16}+F_{13}+F_{8}+F_{5}+F_{2}$.

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3, 5

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: $2018=1597+377+34+8+2=F_{16}+F_{13}+F_{8}+F_{5}+F_{2}$.

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3, 5, 8

Introduction

Fibonaccis: $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example: $2018=1597+377+34+8+2=F_{16}+F_{13}+F_{8}+F_{5}+F_{2}$.

Conversely, we can construct the Fibonacci sequence using this property:
$1,2,3,5,8,13 \ldots$

Summand Minimality

Example

- $18=13+5=F_{6}+F_{4}$, legal decomposition, two summands.
- $18=13+3+2=F_{6}+F_{3}+F_{2}$, non-legal decomposition, three summands.

Summand Minimality

Example

- $18=13+5=F_{6}+F_{4}$, legal decomposition, two summands.
- $18=13+3+2=F_{6}+F_{3}+F_{2}$, non-legal decomposition, three summands.

Theorem

The Zeckendorf decomposition is summand minimal.

Summand Minimality

Example

- $18=13+5=F_{6}+F_{4}$, legal decomposition, two summands.
- $18=13+3+2=F_{6}+F_{3}+F_{2}$, non-legal decomposition, three summands.

Theorem

The Zeckendorf decomposition is summand minimal.

What other recurrences are summand minimal?

Positive Linear Recurrence Sequences

Definition

A positive linear recurrence sequence (PLRS) is the sequence given by a recurrence $\left\{a_{n}\right\}$ with

$$
a_{n}:=c_{1} a_{n-1}+\cdots+c_{t} a_{n-t}
$$

and each $c_{i} \geq 0$ and $c_{1}, c_{t}>0$. We use ideal initial conditions $a_{-(n-1)}=0, \ldots, a_{-1}=0, a_{0}=1$ and call $\left(c_{1}, \ldots, c_{t}\right)$ the signature of the sequence.

Positive Linear Recurrence Sequences

Definition

A positive linear recurrence sequence (PLRS) is the sequence given by a recurrence $\left\{a_{n}\right\}$ with

$$
a_{n}:=c_{1} a_{n-1}+\cdots+c_{t} a_{n-t}
$$

and each $c_{i} \geq 0$ and $c_{1}, c_{t}>0$. We use ideal initial conditions $a_{-(n-1)}=0, \ldots, a_{-1}=0, a_{0}=1$ and call $\left(c_{1}, \ldots, c_{t}\right)$ the signature of the sequence.

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)

For a PLRS with signature $\left(c_{1}, c_{2}, \ldots, c_{t}\right)$, the Generalized Zeckendorf Decompositions are summand minimal if and only if

$$
c_{1} \geq c_{2} \geq \cdots \geq c_{t} .
$$

Proof for Fibonacci Case

Idea of proof:

- $\mathcal{D}=b_{1} F_{1}+\cdots+b_{n} F_{n}$ decomposition of N, set $\operatorname{Ind}(\mathcal{D})=b_{1} \cdot 1+\cdots+b_{n} \cdot n$.

Proof for Fibonacci Case

Idea of proof:

- $\mathcal{D}=b_{1} F_{1}+\cdots+b_{n} F_{n}$ decomposition of N, set $\operatorname{Ind}(\mathcal{D})=b_{1} \cdot 1+\cdots+b_{n} \cdot n$.
- Move to \mathcal{D}^{\prime} by

$$
\begin{aligned}
& \diamond 2 F_{k}=F_{k+1}+F_{k-2}\left(\text { and } 2 F_{2}=F_{3}+F_{1}\right) . \\
& \diamond F_{k}+F_{k+1}=F_{k+2}\left(\text { and } F_{1}+F_{1}=F_{2}\right) .
\end{aligned}
$$

Proof for Fibonacci Case

Idea of proof:

- $\mathcal{D}=b_{1} F_{1}+\cdots+b_{n} F_{n}$ decomposition of N, set $\operatorname{Ind}(\mathcal{D})=b_{1} \cdot 1+\cdots+b_{n} \cdot n$.
- Move to \mathcal{D}^{\prime} by

$$
\begin{aligned}
& \diamond 2 F_{k}=F_{k+1}+F_{k-2}\left(\text { and } 2 F_{2}=F_{3}+F_{1}\right) . \\
& \diamond F_{k}+F_{k+1}=F_{k+2}\left(\text { and } F_{1}+F_{1}=F_{2}\right) .
\end{aligned}
$$

- Monovariant: $\operatorname{Note} \operatorname{Ind}\left(\mathcal{D}^{\prime}\right) \leq \operatorname{Ind}(\mathcal{D})$.

$$
\begin{aligned}
& \diamond 2 F_{k}=F_{k+1}+F_{k-2}: 2 k \text { vs } 2 k-1 \\
& \diamond F_{k}+F_{k+1}=F_{k+2}: 2 k+1 \text { vs } k+2
\end{aligned}
$$

Proof for Fibonacci Case

Idea of proof:

- $\mathcal{D}=b_{1} F_{1}+\cdots+b_{n} F_{n}$ decomposition of N, set $\operatorname{Ind}(\mathcal{D})=b_{1} \cdot 1+\cdots+b_{n} \cdot n$.
- Move to \mathcal{D}^{\prime} by

$$
\begin{aligned}
& \diamond 2 F_{k}=F_{k+1}+F_{k-2}\left(\text { and } 2 F_{2}=F_{3}+F_{1}\right) . \\
& \diamond F_{k}+F_{k+1}=F_{k+2}\left(\text { and } F_{1}+F_{1}=F_{2}\right) .
\end{aligned}
$$

- Monovariant: $\operatorname{Note} \operatorname{Ind}\left(\mathcal{D}^{\prime}\right) \leq \operatorname{Ind}(\mathcal{D})$.

$$
\begin{aligned}
& \diamond 2 F_{k}=F_{k+1}+F_{k-2}: 2 k \text { vs } 2 k-1 \\
& \diamond F_{k}+F_{k+1}=F_{k+2}: 2 k+1 \text { vs } k+2
\end{aligned}
$$

- If not at Zeckendorf decomposition can continue, if at Zeckendorf cannot. Better: $\operatorname{Ind}^{\prime}(\mathcal{D})=b_{1} \sqrt{1}+\cdots+b_{n} \sqrt{n}$.

