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Introduction

Given A ⊂ Z, let

A + A = {a1 + a2 : a1,a2 ∈ A},
A− A = {a1 − a2 : a1,a2 ∈ A}.

Example: For A = {1,4,5}:

A + A = {2,5,6,8,9,10}

A− A = {0,±1,±3,±4}.

A finite set A is sum dominated, or more sum than difference (MSTD)
if |A + A| > |A− A|.

The smallest example: {0;2;3;4;7;11;12;14}.
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Previous Results

Martin and O’Bryant (2006): There exists a positive constant c such
that for any n large, the proportion of MSTD sets A ⊂ {0, . . . ,n} is
greater than c.

Zhao (2010): The proportion pn of MSTD subset in {1, · · · ,n} as
n→∞ converges to a positive number which can be computed.

Hegarty-Miller (2009): If the probability to pick a number from 1 to n
into set A decays with n, then probability A is MSTD converges to 0
as n→∞.

Hegarty (2007): The smallest size of a sum-dominated set is 8.
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Correlated Random Pairs

All of the literature to date has looked at sums and differences of a
set with itself.

We investigate sums and differences of pairs of subsets
(A,B) ⊂ {0, . . . ,n}. A pair is sum dominated or MSTD if

|A + B| > | ± (A− B)| = |(A− B) ∪ (B − A)|.

We select such pairs according to the dependent random process:

P(k ∈ A) = p; P(k ∈ B|k ∈ A) = ρ1; P(k ∈ B|k /∈ A) = ρ2.
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Correlated Random Pairs

(ρ1, ρ2) = (1,0) =⇒ (A,A).

(ρ1, ρ2) = (0,1) =⇒ (A,Ac).

ρ1 = ρ2, =⇒ (A,B) independent.
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Probability function

Let P(~ρ,n) be the probability that a ~ρ-correlated pair
(A,B) ⊂ {0, . . . ,n} is MSTD.

Theorem

For any ~ρ ∈ [0,1]3, the limit

lim
n→∞

P(~ρ,n) =: P(~ρ)

exists. Moreover, as long as p /∈ {0,1} and (ρ1, ρ2) 6= (0,0), (1,1),
then P(~ρ) is strictly positive.

Main idea of proof: same approach with Martin O’Bryant (2007) and
Zhao (2010), construct an appropriate fringe (edge elements), then
fill in the middle.
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The function P(~ρ)

Theorem

The function P(~ρ) is continuous on [0,1]3.

Main idea of proof: write this function as an infinite sum of
polynomial-type term, show the sum converges uniformly.

Corollary: P must attain a maximum in [0,1]3.

Conjecture 1: Function P(p, ρ1, ρ2) is differentiable.

Conjecture 2: max P=P(0,1,1/2) ≈ 0.03.

19



Introduction Correlated Random Pairs New results Conclusion

The function P(~ρ)

Theorem

The function P(~ρ) is continuous on [0,1]3.

Main idea of proof: write this function as an infinite sum of
polynomial-type term, show the sum converges uniformly.

Corollary: P must attain a maximum in [0,1]3.

Conjecture 1: Function P(p, ρ1, ρ2) is differentiable.

Conjecture 2: max P=P(0,1,1/2) ≈ 0.03.

20



Introduction Correlated Random Pairs New results Conclusion

The function P(~ρ)

Theorem

The function P(~ρ) is continuous on [0,1]3.

Main idea of proof: write this function as an infinite sum of
polynomial-type term, show the sum converges uniformly.

Corollary: P must attain a maximum in [0,1]3.

Conjecture 1: Function P(p, ρ1, ρ2) is differentiable.

Conjecture 2: max P=P(0,1,1/2) ≈ 0.03.

21



Introduction Correlated Random Pairs New results Conclusion

The function P(~ρ)

Theorem

The function P(~ρ) is continuous on [0,1]3.

Main idea of proof: write this function as an infinite sum of
polynomial-type term, show the sum converges uniformly.

Corollary: P must attain a maximum in [0,1]3.

Conjecture 1: Function P(p, ρ1, ρ2) is differentiable.

Conjecture 2: max P=P(0,1,1/2) ≈ 0.03.

22



Introduction Correlated Random Pairs New results Conclusion

The function P(~ρ)

Theorem

The function P(~ρ) is continuous on [0,1]3.

Main idea of proof: write this function as an infinite sum of
polynomial-type term, show the sum converges uniformly.

Corollary: P must attain a maximum in [0,1]3.

Conjecture 1: Function P(p, ρ1, ρ2) is differentiable.

Conjecture 2: max P=P(0,1,1/2) ≈ 0.03.

23



Introduction Correlated Random Pairs New results Conclusion

Taking p → 0

In previous section, we know that for any fixed (p, ρ1, ρ2) there is a
positive percentage of MSTD pairs.

Here we let some of p, ρ1, ρ2 vary and depend on n.

We get similar results to Hegarty-Miller (2009): if ~ρ decays with n
(either p → 0 or ρ1 + ρ2 → 0) then the probability a correlated pair
(A,B) in {1, · · · ,n} is MSTD converges to 0 as n→∞.

24



Introduction Correlated Random Pairs New results Conclusion

Taking p → 0

In previous section, we know that for any fixed (p, ρ1, ρ2) there is a
positive percentage of MSTD pairs.

Here we let some of p, ρ1, ρ2 vary and depend on n.

We get similar results to Hegarty-Miller (2009): if ~ρ decays with n
(either p → 0 or ρ1 + ρ2 → 0) then the probability a correlated pair
(A,B) in {1, · · · ,n} is MSTD converges to 0 as n→∞.

25



Introduction Correlated Random Pairs New results Conclusion

Taking p → 0

In previous section, we know that for any fixed (p, ρ1, ρ2) there is a
positive percentage of MSTD pairs.

Here we let some of p, ρ1, ρ2 vary and depend on n.

We get similar results to Hegarty-Miller (2009): if ~ρ decays with n
(either p → 0 or ρ1 + ρ2 → 0) then the probability a correlated pair
(A,B) in {1, · · · ,n} is MSTD converges to 0 as n→∞.

26



Introduction Correlated Random Pairs New results Conclusion

The minimal MSTD pair

Hegarty (2007) proved the smallest MSTD set has size 8.

We prove

Theorem
The smallest MSTD pair has size (3,5) or (4,4).

Examples of minimal size MSTD pair:

A = {1,2,5,7}, B = {1,3,6,7}

A = {3,4,6}, B = {1,2,5,7,8}

A = {3,5,6}, B = {1,2,4,7,8}.

Idea of proof: different from Hegarty (2007), we use combinatorial
approach. Show that if (A,B) is MSTD then there must exist
a1,a2,a3 ∈ A and b1,b2,b3 ∈ B such that a1 + b1 = a2 + b2 = a3 + b3.
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Summary of Results and Future Research

We prove results similar to previous research in a more general
setting.

We show that the limit P(~ρ) exists for each chosen p, ρ1, ρ2, and
prove P is continuous.

In the future, we would like to prove our two conjectures, and find
more analytic properties of P.
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