Classification of All Crescent Configurations on Four and Five Points

CHI HUYNH

Georgia Tech/ Williams College SMALL REU 2016 nhuynh30@gatech.edu

> Joint work with Rebecca F. Durst (rfd1@williams.edu), Max Hlavacek(mhlavacek@g.hmc.edu), Steven J. Miller(Steven.Miller.MC.96@aya.yale.edu), and Eyvindur A. Palsson(eap2@williams.edu).

> > Integers Conference Oct 8th, 2016

Motivation

• **Erdős' Distinct Distances Problem**: Starting with *n* points, what is the minimum number of distinct distances determined by these points?

• Distances of specified multiplicities: Given a set of n-1 distinct distances, can n points be arranged such that for each $1 \le i \le n-1$, there is exactly one of n-1 distances occuring i times?

Motivation

Construction on n = 4 with no restrictions:

Introduction

What if we impose restrictions to avoid "uninteresting" cases?

Crescent Configuration (Burt et. al. 2015): We say n points are in crescent configuration (in \mathbb{R}^d) if they lie in *general position in* \mathbb{R}^d and determine n-1 distinct distances, such that for every $1 \le i \le n-1$ there is a distance that occurs exactly i times.

General Position: We say that n points are in general position in \mathbb{R}^d if no d+1 points lie on the same hyperplane and no d+2 lie on the same hypersphere.

Crescent Configurations

Crescent Configuration (Burt et. al. 2015): We say n points are in crescent configuration (in \mathbb{R}^d) if they lie in *general position in* \mathbb{R}^d and determine n-1 distinct distances, such that for every $1 \le i \le n-1$ there is a distance that occurs exactly i times.

General Position: We say that n points are in general position in \mathbb{R}^d if no d+1 points lie on the same hyperplane and no d+2 lie on the same hypersphere.

Erdős' Conjecture (1989): There exists N sufficiently large such that no crescent configuration exists on N points.

Constructions for n = 5, 6, 7 and 8

Due to Erdős, Pomerance and Palásti (1989)

The Approach

• **Distance Coordinate:** Given a set of points \mathcal{P} , the distance coordinate, D_A , of a point $A \in \mathcal{P}$ is the set of all distances, counting multiplicity, between A and the other points in \mathcal{P} .

The Approach

- **Distance Coordinate:** Given a set of points \mathcal{P} , the distance coordinate, D_A , of a point $A \in \mathcal{P}$ is the set of all distances, counting multiplicity, between A and the other points in \mathcal{P} .
- **Distance Set:** The distance set, \mathcal{D} , corresponding to \mathcal{P} is the set of the distance coordinates of the points in \mathcal{P} .

The Approach

- **Distance Coordinate:** Given a set of points \mathcal{P} , the distance coordinate, D_A , of a point $A \in \mathcal{P}$ is the set of all distances, counting multiplicity, between A and the other points in \mathcal{P} .
- **Distance Set:** The distance set, \mathcal{D} , corresponding to \mathcal{P} is the set of the distance coordinates of the points in \mathcal{P} .

$$D_A = \{d_2, d_2, d_3\};$$

$$D_B = \{d_1, d_2, d_3\};$$

$$D_C = \{d_1, d_2, d_3\};$$

$$D_D = \{d_3, d_3, d_3\};$$

$$\mathcal{D} = \{D_A, D_B, D_C, D_D\}.$$

Graph Isomorphism of Crescent Configurations

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Let A and B be two crescent configurations on the same number of points n. If A and B have the same distance sets, then there exists a graph isomorphism $A \rightarrow B$.

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

Initial Result

• For a set of 3 distinct distances on 4 points: Generation of 60 possible adjacency matrices $\xrightarrow[isomorphism]{graph}$ decrease to 4 potential configuration classes

Initial Result

Initial Result

Which candidate is geometrically realizable?

The Question of Geometric Realizability

• **Distance Geometry Problem:** If we are given a set of distances between points, what can we find out about the relative position of these points?

Cayley-Menger Matrices

Cayley-Menger Matrix: The Cayley-Menger matrix for a set of n points $\{P_1, P_2, \dots P_n\}$ is an $(n+1) \times (n+1)$ matrix of the following form:

$$\begin{pmatrix} 0 & d_{1,2}^2 & \dots & d_{1,n}^2 & 1 \\ d_{2,1}^2 & 0 & \dots & d_{2,n}^2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{n,1}^2 & d_{n,2}^2 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{pmatrix}$$

where $d_{i,j}$ is the distance between P_i and P_j .

Cayley-Menger and Geometric realizability

Theorem (Sommerville 1958)

A distance set corresponding to 4 points is geometrically realizable in \mathbb{R}^2 if and only if the Cayley-Menger matrix is not invertible.

Example

Solutions for a Given Crescent Configuration Type

- Suppose we are given a distance set with the multiplicities of the distances specified, but we are not given values for the distances.
- We can fix one of the unknown distances and use Cayley-Menger determinants to find a system of equations that yields geometrically realizable distances.

Figure: Possible values for d_2 , d_3 for the M-type when $d_1 = 1$

All Configurations on Four and Five Points

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Given a set of three distinct distances, $\{d_1, d_2, d_3\}$, on four points, there are only three allowable crescent configurations up to graph isomorphism.

We label these M-type, C-type, and R-type, respectively.

n = 4

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

n = 5

Given a set of four distinct distances, $\{d_1, d_2, d_3, d_4\}$, on five points , there are only 27 allowable crescent configurations up to graph isomorphism.

The Uniqueness Question

Given a particular isomorphism class of crescent configurations on n points, how many realizations of the associated distance set could we construct?

Inspiration from the Molecule Problem

Figure: Two Realizations of a Flexible Graph¹

- The Molecule Problem: given a set of distance measurements between points in Euclidean space, can we find the appropriate realization? \rightarrow NP-hard
- More generally: Graph realization (how many arrangements?) and rigidity (can we distort the arrangements?)

¹B. Hendrickson. Conditions for Unique Graph Realization. SIAM Journal of Computing . 21(1). 64-84, Feb. 1992

Laman's Condition for Graph Rigidity

Definition (Graph rigidity - Asimow and Roth 1978)

Let G be a graph (V, E) on v vertices in \mathbb{R}^n then G(p) is G together with the point $p = (p_1, p_2, \ldots, p_v) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \dots \mathbb{R}^n = \mathbb{R}^{nv}$. Let K be the complete graph on v vertices. The graph G(p) is rigid in \mathbb{R}^n if there exists a neighbordhood U of p such that

$$e_K^{-1}(e_K(p))\cap \mathbf{U}=e_G^{-1}(e_G(p))\cap \mathbf{U},$$

where e_K and e_G are the edge functions of K and G, which return the distances of edges of the associated graphs.

Laman's Condition (1970)

A graph with 2n-3 edges is rigid in two dimensions if and only if no subgraph G' has more than 2n'-3 edges.

Crescent Configurations are Rigid

Graph Theoretic Background

• For each n, any crescent configurations on n points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$

- For each n, any crescent configurations on n points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$
- K_1, K_2 and K_3 can be easily verified to satisfy Laman's Condition.

Crescent Configurations are Rigid

- For each n, any crescent configurations on n points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$
- K_1, K_2 and K_3 can be easily verified to satisfy Laman's Condition.
- For $n \ge 3$: K_n is composed of K_3 subgraphs (not necessarily non-overlapping)

Crescent Configurations are Rigid

- For each n, any crescent configurations on n points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$
- K_1, K_2 and K_3 can be easily verified to satisfy Laman's Condition.
- For $n \ge 3$: K_n is composed of K_3 subgraphs (not necessarily non-overlapping)

However, does the rigidity ranking differ between configurations?

Graph Theoretic Background

Techniques and Terminologies

 Flexible Framework vs. Rigid Framework vs. Redundantly Rigid Framework

Techniques and Terminologies

- Flexible Framework vs. Rigid Framework vs. Redundantly Rigid Framework
- Gluck (1975): If a graph has a single rigid realization, then all its generic realizations are rigid.

Techniques and Terminologies

- Flexible Framework vs. Rigid Framework vs. Redundantly Rigid Framework
- Gluck (1975): If a graph has a single rigid realization, then all its generic realizations are rigid.
- The Rigidity Matrix Example: Complete graph K_3 with vertices mapped to (0,1),(-1,0)and (1,0)

$$\begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & -2 & 0 & 2 & 0 \end{bmatrix}$$

Graph Theoretic Background

A framework f(G) is rigid if and only if its rigidity matrix has rank exactly equal to S(n, d), which is the number of allowed motions, where:

$$S(n,d) = \begin{cases} nd - \frac{d(d+1)}{2} \text{ for } n \ge d \\ \frac{n(n-1)}{2} \text{ otherwise} \end{cases}$$

Note: S(n, d) can also be used to determine whether a graph is redundantly rigid, which in turn can be used to determine if there exists a unique realization

Type R Realization

Figure: Realization obtained by fixing $d_1 = 1$

Rigidity Analysis for Type R

Analysis of Type R

Letting $y = \sqrt{-1 + 4x^2}$, we get the rigidity matrix A_R :

$$\begin{bmatrix} -x & 0 & x & 0 & 0 & 0 & 0 & 0 \\ \frac{-x}{2} & \frac{-x}{y} & 0 & 0 & \frac{x}{2} & \frac{x}{y} & 0 & 0 \\ \frac{-1}{2x} & \frac{-y}{2x} & 0 & 0 & 0 & 0 & \frac{1}{2x} & \frac{y}{2x} \\ 0 & 0 & x - \frac{x}{2} & \frac{-x}{2y} & -x + \frac{x}{2} & \frac{x}{2y} & 0 & 0 \\ 0 & 0 & x - \frac{1}{2x} & \frac{-y}{2x} & 0 & 0 & -x + \frac{1}{2x} & \frac{y}{2x} \\ 0 & 0 & 0 & 0 & \frac{x}{2} - \frac{1}{2x} & \frac{x}{2y} - \frac{y}{2x} & \frac{-x}{2} + \frac{1}{2x} & \frac{-x}{2y} + \frac{y}{2x} \end{bmatrix}$$

 $Rank(A_R) = 6 > S(4,2)$ but when removing any row, rank of remaining matrix is $5 \rightarrow$ redundantly rigid

Type M Realizations

Analysis of Type M

Figure: Two Realizations of Type M: M_1 and M_2

Rigidity Analysis for Type M

Rigidity matrix A_{M_1}

Analysis of Type M

$$\begin{bmatrix} -2x & 0 & 2x & 0 & 0 & 0 & 0 & 0 \\ -x & -x\sqrt{3} & 0 & 0 & x & x\sqrt{3} & 0 & 0 \\ -x & -x\sqrt{3} - y & 0 & 0 & 0 & 0 & x & x\sqrt{3} + y \\ 0 & 0 & x & -x\sqrt{3} & -x & x\sqrt{3} & 0 & 0 \\ 0 & 0 & x & -x\sqrt{3} - y & 0 & 0 & -x & x\sqrt{3} + y \\ 0 & 0 & 0 & 0 & 0 & -y & 0 & y \end{bmatrix}$$

$$\mathsf{Rank}(A_{M_1}) = 5 = S(4,2) o \mathsf{rigid}$$

Same results for M_2

ullet Improve the algorithm to find crescent configurations on higher n

- ullet Improve the algorithm to find crescent configurations on higher n
- Which distance sets can be realized in higher dimensions?

Future Work

- ullet Improve the algorithm to find crescent configurations on higher n
- Which distance sets can be realized in higher dimensions?
- In addition to rigidity, which other properties of crescent configurations can we explore?

- ullet Improve the algorithm to find crescent configurations on higher n
- Which distance sets can be realized in higher dimensions?
- In addition to rigidity, which other properties of crescent configurations can we explore?
- Given a rigidity ranking, can we use the rigidity matrix to generate a crescent configuration?

Acknowledgements

- Williams College Finnerty Fund and SMALL REU
- NSF Grants DMS1265673, DMS1561945 and DMS1347804
- Prof. Steven J. Miller and Prof. Eyvindur A. Palsson

L. Asimow and B. Roth (1978)

The Rigidity of Graphs

Trans. Amer. Math. Soc., 245 (1978),279-289.

D. Burt, E. Goldstein, S. Manski, S.J. Miller, E.A. Palsson and H. Suh (2016)

Crescent Configurations

Integers, 16 (2016), #A38.

Herman Gluck (1975)

Almost all simply connected closed surfaces are rigion

Geometric Topology, Lecture Notes in Mathematics, 438 (1), 225 - 239.

B. Hendrickson (1990)

The Molecule Problem: Determining Conformation from Pairwise Distance

Cornell University Computer Science Technical Reports, 90 - 1159.

B. Hendrickson (1992)

Conditions for Unique Graph Realizations

SIAM Journal On Computing, 21 (1), 65 - 84.

G. Laman (1970)

On graphs and rigidity of plane skeletal structures

Journal of Engineering Mathematics, 4 (1970), 331-340.

