Rebecca F. Durst, Max Hlavacek, Chi Huynh

SMALL 2016

rfd1@williams.edu, mhlavacek@hmc.edu, nhuynh30@gatech.edu

Young Mathematicians Conference Ohio State University August 20th, 2016

Motivation

000 Motivation

> Start with points: Given a set of points, how many distinct distances do I have?

Motivation

000 Motivation

> **Start with points:** Given a set of points, how many distinct distances do I have?

Motivation

Introduction

●○○ Motivation

Start with distances: Given a set of n-1 distinct distances, can I arrange n points such that for each $1 \le i \le n-1$ one of my n-1 distances shows up i times?

Introduction

000 Motivation

> **Start with distances:** Given a set of n-1 distinct distances. can I arrange n points such that for each $1 \le i \le n-1$ one of my n-1distances shows up *i* times? Yes.

Introduction

Introduction

Introduction

Introduction

General Position in \mathbb{R}^d : No d+1 points on the same hyperplane and no d+2 points on the same hypersphere.

Crescent Configuration(SMALL 2015): We say n points are in crescent configuration (in \mathbb{R}^d) if they lie in general position in \mathbb{R}^d and determine n-1 distinct distances, such that for every $1 \le i \le n-1$ there is a distance that occurs exactly i times.

• Erdős: **Conjecture:**(1989) There exists an *N* sufficiently large such that no crescent configuration exists on *N* points.

Crescent Configurations

- Erdős: Conjecture: (1989) There exists an N sufficiently large such that no crescent configuration exists on N points.
- Pomerance and Palásti: 1989, n=5, n=6, n=7, n=8.

- Erdős: Conjecture: (1989) There exists an N sufficiently large such that no crescent configuration exists on N points.
- Pomerance and Palásti: 1989, n=5, n=6, n=7, n=8.

Introduction

- Erdős: Conjecture: (1989) There exists an N sufficiently large such that no crescent configuration exists on N points.
- Pomerance and Palásti: 1989, n=5, n=6, n=7, n=8.

- Erdős: Conjecture: (1989) There exists an N sufficiently large such that no crescent configuration exists on N points.
- Pomerance and Palásti: 1989, n=5, n=6, n=7, n=8.

Crescent Configurations

- Erdős: Conjecture: (1989) There exists an N sufficiently large such that no crescent configuration exists on N points.
- Pomerance and Palásti: 1989, n=5, n=6, n=7, n=8.

• Distance Coordinate: The distance coordinate, D_a of a point a is the set of all distances, counting multiplicity, between a and the other points in a set, \mathcal{P} .

Why Classify?

Main Theorem

- Distance Coordinate: The distance coordinate, D_a of a point a is the set of all distances, counting multiplicity, between a and the other points in a set, \mathcal{P} .
- **Distance Set:** The distance set, \mathcal{D} , corresponding to a set of points, \mathcal{P} , is the set of the distance coordinates for each point in the \mathcal{P} .

Why Classify?

Main Theorem

- **Distance Coordinate:** The distance coordinate, D_a of a point a is the set of all distances, counting multiplicity, between a and the other points in a set, \mathcal{P} .
- **Distance Set:** The distance set, \mathcal{D} , corresponding to a set of points, \mathcal{P} , is the set of the distance coordinates for each point in the \mathcal{P} .

Thank You

Main Theorem

Theorem (Durst-Hlavacek-Huynh 2016)

Let A and B be two crescent configurations on the same number of points n. If A and B have the same distance sets, then there exists a graph isomorphism $A \to B$.

Theorem (Durst-Hlavacek-Huynh 2016)

Let A and B be two crescent configurations on the same number of points n. If A and B have the same distance sets, then there exists a graph isomorphism $A \rightarrow B$.

Graph Isomorphism (Gervasi)

Graph A is isomorphic to graph B if and only if there exists a bijective function $f: V(A) \mapsto V(B)$, (where V(A) and V(B) are the vertex spaces) such that: 1. $\forall a_i \in A, I_A(a_i) = I_B(f(a_i)), 2.$ $\forall a_i, a_j \in V, \{a_i, a_j\} \in E_A \leftrightarrow \{f(a_i), f(a_j)\} \in E_B$, and 3. $\forall \{a_i, a_j\} \in E_A, w_A(\{a_i, a_j\}) = w_B(f(\{a_i, a_j\})),$ where $\{I_A, I_B\}$ and $\{w_A, w_B\}$ are functions that define the labels of the vertices and edges of A and B respectively.

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

Theorem (Durst-Hlavacek-Huynh 2016)

Given a set of three distinct distances, $\{d1, d2, d3\}$, on four points in crescent configuration, there are only three allowable crescent configurations up to graph isomorphism

• We label these M-type, C-type, and R-type, respectively.

Theorem (Durst-Hlavacek-Huynh 2016)

Given a set of three distinct distances, $\{d1, d2, d3\}$, on four points in crescent configuration, there are only three allowable crescent configurations up to graph isomorphism

We label these M-type, C-type, and R-type, respectively.

Theorem (Durst-Hlavacek-Huynh 2016)

Given a set of three distinct distances, $\{d1, d2, d3\}$, on four points in crescent configuration, there are only three allowable crescent configurations up to graph isomorphism

We label these M-type, C-type, and R-type, respectively.

Theorem (Durst-Hlavacek-Huynh 2016)

Given a set of three distinct distances, $\{d1, d2, d3\}$, on four points in crescent configuration, there are only three allowable crescent configurations up to graph isomorphism

We label these M-type, C-type, and R-type, respectively.

Theorem (Durst-Hlavacek-Huynh 2016)

Given a set of three distinct distances, $\{d1, d2, d3\}$, on four points in crescent configuration, there are only three allowable crescent configurations up to graph isomorphism

We label these M-type, C-type, and R-type, respectively.

Theorem

Results

Given a set of four distinct distances, $\{d1, d2, d3, d4\}$, on five points in crescent configuration, there are only 27 allowable crescent configurations up to graph isomorphism

000000

Remarks

Advantages

• New methods for approaching an Erdős problem.

Remarks

Advantages

- New methods for approaching an Erdős problem.
- Generates all possible distance sets.

Remarks

Advantages

- New methods for approaching an Erdős problem.
- Generates all possible distance sets.
- May be generalized to higher dimensions.

Remarks

Advantages

- New methods for approaching an Erdős problem.
- Generates all possible distance sets.
- May be generalized to higher dimensions.
- Permits the use of distance geometry to find new configurations.
 - All possible configurations on four and five points in \mathbb{R}^2 .
 - Three new configurations on five points in \mathbb{R}^3 .

Remarks

Remarks

Advantages

- New methods for approaching an Erdős problem.
- Generates all possible distance sets.
- May be generalized to higher dimensions.
- Permits the use of distance geometry to find new configurations.
 - All possible configurations on four and five points in \mathbb{R}^2 .
 - Three new configurations on five points in \mathbb{R}^3 .

Remarks

Remarks

Advantages

- New methods for approaching an Erdős problem.
- Generates all possible distance sets.
- May be generalized to higher dimensions.
- Permits the use of distance geometry to find new configurations.
 - All possible configurations on four and five points in \mathbb{R}^2 .
 - Three new configurations on five points in \mathbb{R}^3 .

Disadvantages

Remarks

Remarks

Advantages

- New methods for approaching an Erdős problem.
- Generates all possible distance sets.
- May be generalized to higher dimensions.
- Permits the use of distance geometry to find new configurations.
 - All possible configurations on four and five points in \mathbb{R}^2 .
 - Three new configurations on five points in \mathbb{R}^3 .

Disadvantages

• Running time is $\mathcal{O}(n^n)$.

The Question of Geometric Realizability

• Given a distance set \mathcal{D} , can we find a set of points in a crescent configuration with \mathcal{D} as its distance set in \mathbb{R}^n ?

The Question of Geometric Realizability

- Given a distance set \mathcal{D} , can we find a set of points in a crescent configuration with \mathcal{D} as its distance set in \mathbb{R}^n ?
- Distance Geometry Problem: If we are given a set of distances between points, what can we find out about the positioning of these points?

Cayley Menger Matrix: The Cayley Menger matrix for a set n points $\{P_1, P_2, \dots P_n\}$ is an $(n+1) \times (n+1)$ matrix of the following form:

$$\begin{pmatrix} 0 & d_{1,2}^2 & \dots & d_{1,n}^2 & 1 \\ d_{2,1}^2 & 0 & \dots & d_{2,n}^2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{n,1}^2 & d_{n,2}^2 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{pmatrix}$$

where $d_{i,j}$ is the distance between P_i and P_j .

Theorem (Sommerville 1958)

A distance set corresponding to 4 points is geometrically realizable in \mathbb{R}^2 if and only if the Cayley-Menger matrix is not invertible.

Theorem (Sommerville 1958)

A distance set corresponding to 4 points is geometrically realizable in \mathbb{R}^2 if and only if the Cayley-Menger matrix is not invertible.

• We first use this to make sure the distances are realizable in the plane.

Theorem (Sommerville 1958)

A distance set corresponding to 4 points is geometrically realizable in \mathbb{R}^2 if and only if the Cayley-Menger matrix is not invertible.

- We first use this to make sure the distances are realizable in the plane.
- We then use this to make sure no 3 points are on a line.

Theorem (Sommerville 1958)

A distance set corresponding to 4 points is geometrically realizable in \mathbb{R}^2 if and only if the Cayley-Menger matrix is not invertible.

- We first use this to make sure the distances are realizable in the plane.
- We then use this to make sure no 3 points are on a line.
- We can use similar techniques to make sure no 4 points are on a circle.

Example

Solutions for a Given Crescent Configuration Type

- Suppose we are given a distance set with the multiplicities of the distances specified, but we are not given values for the distances.
- We can fix one of the unknown distances and use Cayley-Menger determinants to find a system of equations that yields geometrically realizable distances.

Figure: Possible values for d_2 , d_3 for the M-type when $d_1 = 1$

As expected, all 3 of our distance sets on 4 points are realizable in \mathbb{R}^2 .

As expected, all 3 of our distance sets on 4 points are realizable in \mathbb{R}^2 .

Thank You

Exactly 27 of the 51 distance sets on 5 points are geometrically realizable.

Exactly 27 of the 51 distance sets on 5 points are geometrically realizable.

For a complete list of configurations, email rfd1@williams.edu.

Higher dimensions

 Cayley Menger Matrices can be used to determine whether the distances between d + 2 points are geometrically realizable in d-dimensional space.

Thank You

Higher dimensions

 Cayley Menger Matrices can be used to determine whether the distances between d + 2 points are geometrically realizable in d-dimensional space.

• Can some of the distance sets that are not geometrically realizable in \mathbb{R}^2 be realized in \mathbb{R}^3 ?

The Uniqueness Question

Given an appropriate set of n-1 distances, how many ways could we realize a crescent configuration on n points?

Thank You

Inspiration from the Molecule Problem

Figure: Two Realizations of a Flexible Graph¹

- The Molecule Problem: given a set of distance measurements between points in Euclidean space, can we find the points in space? \rightarrow NP-hard
- More generally: Graph realization (how many arrangements?) and rigidity (can we distort the arrangements?)

¹B. Hendrickson. Conditions for Unique Graph Realization. SIAM Journal of Computing . 21(1). 64-84, Feb. 1992 4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9

 Flexible Framework vs. Rigid Framework vs. Redundantly Rigid Framework

- Flexible Framework vs. Rigid Framework vs. Redundantly Rigid Framework
- Gluck (1975): If a graph has a single rigid realization, then all its generic realizations are rigid.

Techniques and Terminologies

- Flexible Framework vs. Rigid Framework vs. Redundantly Rigid Framework
- Gluck (1975): If a graph has a single rigid realization, then all its generic realizations are rigid.
- The Rigidity Matrix Example: Complete graph K_3 with vertices mapped to (0,1),(-1,0) and (1,0)

$$\begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & -2 & 0 & 2 & 0 \end{bmatrix}$$

Graph Theoretic Background

Theorem (Hendrickson 1992)

A framework f(G) is rigid if and only if its rigidity matrix has rank exactly equal to S(n, d) or the number of allowed motions, which equals nd - d(d+1)/2 for n > d and n(n-1)/2 otherwise

A Realization for Type C

Analysis of Type C

Figure: Realization obtained by fixing $d_1 = 1$

Thank You

Rigidity Analysis for Type C

Rigidity Matrix A_C

Analysis of Type C

$$\begin{bmatrix} \frac{1}{2} & y + \sqrt{\frac{1+4y^2}{4}} & -\frac{1}{2} & -y - \sqrt{\frac{1+4y^2}{4}} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & y + \sqrt{\frac{1+4y^2}{4}} & 0 & 0 & \frac{1}{2} & -y - \sqrt{\frac{1+4y^2}{4}} & 0 & 0 \\ 0 & \sqrt{\frac{1+4y^2}{4}} & 0 & 0 & 0 & 0 & 0 & -\sqrt{\frac{1+4y^2}{4}} \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & -y & 0 & 0 & \frac{1}{2} & y \\ 0 & 0 & 0 & 0 & \frac{1}{2} & -y & -\frac{1}{2} & y \end{bmatrix}$$

$$Rank(A_C) = 5 = S(4,2) \rightarrow rigid$$

Figure: Realization obtained by fixing $d_1 = 1$

Rigidity Analysis for Type R

Analysis of Type R

Letting $y = \sqrt{-1 + 4x^2}$, we get the rigidity matrix A_R :

$$\begin{bmatrix} -x & 0 & x & 0 & 0 & 0 & 0 & 0 \\ \frac{-x}{2} & \frac{-x}{y} & 0 & 0 & \frac{x}{2} & \frac{x}{y} & 0 & 0 \\ \frac{-1}{2x} & \frac{-y}{2x} & 0 & 0 & 0 & 0 & \frac{1}{2x} & \frac{y}{2x} \\ 0 & 0 & x - \frac{x}{2} & \frac{-x}{2y} & -x + \frac{x}{2} & \frac{x}{2y} & 0 & 0 \\ 0 & 0 & x - \frac{1}{2x} & \frac{-y}{2x} & 0 & 0 & -x + \frac{1}{2x} & \frac{y}{2x} \\ 0 & 0 & 0 & 0 & \frac{x}{2} - \frac{1}{2x} & \frac{x}{2y} - \frac{y}{2x} & \frac{-x}{2} + \frac{1}{2x} & \frac{-x}{2y} + \frac{y}{2x} \end{bmatrix}$$

 $Rank(A_R) = 6 > S(4,2)$ but when removing any row, rank of remaining matrix is $5 \rightarrow$ redundantly rigid

Thank You

Type M Realizations

Analysis of Type M

Figure: Two Realizations of Type M: M_1 and M_2

Rigidity Analysis for Type M

Rigidity matrix A_{M_1}

Analysis of Type M

$$\begin{bmatrix} -2x & 0 & 2x & 0 & 0 & 0 & 0 & 0 \\ -x & -x\sqrt{3} & 0 & 0 & x & x\sqrt{3} & 0 & 0 \\ -x & -x\sqrt{3} - y & 0 & 0 & 0 & 0 & x & x\sqrt{3} + y \\ 0 & 0 & x & -x\sqrt{3} & -x & x\sqrt{3} & 0 & 0 \\ 0 & 0 & x & -x\sqrt{3} - y & 0 & 0 & -x & x\sqrt{3} + y \\ 0 & 0 & 0 & 0 & 0 & -y & 0 & y \end{bmatrix}$$

Rank
$$(A_{M_1}) = 5 = S(4, 2) \rightarrow \text{rigid}$$

Same results for M_2

Questions to explore

Future Work

• Find ways to speed up our techniques so we can find crescent configurations on a higher *n*?

Questions to explore

Future Work

- Find ways to speed up our techniques so we can find crescent configurations on a higher *n*?
- Which distance sets can be realized in higher dimensions?

Questions to explore

Future Work

- Find ways to speed up our techniques so we can find crescent configurations on a higher *n*?
- Which distance sets can be realized in higher dimensions?
- In addition to rigidity, which other properties of point configurations can we explore?

Acknowledgements

- Williams College Finnerty Fund
- Williams College and SMALL REU
- NSF Grants DMS1265673 and DMS1561945
- NSF Grant DMS1347804
- Prof. Steven J. Miller and Prof. Eyvi A. Palsson

References

Herman Gluck (1975)

Almost all simply connected closed surfaces are rigid Geometric Toplogy, Lecture Notes in Mathematics 438(1), 225 – 239

Bruce A. Hendrickson (Sept. 1990)

The Molecule Problem: Determining Conformation from Pairwise Distances

Cornell University Computer Science Technical Reports, 90 – 1159

Bruce A. Hendrickson (Feb 1992)

Conditions for Unique Graph Realizations SIAM Journal On Computing 21(1), 65 – 84.

M. Gavrilova, et al. (Eds.) (2006)

Computational Science and its Aplications– ICCSA 2006: International Conference, Glasgow, UK, May 8-11, 2006, Proceedings, Part 5, Springer.

Thank You