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Motivation

Motivation
Start with points: Given a set of points, how many distinct distances do
I have?

Start with distances: Given a set of n − 1 distinct distances,
can I arrange n points such that for each 1 ≤ i ≤ n − 1 one of my n − 1
distances shows up i times? Yes.
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Motivation

We have four points and three distinct distances with the required
multiplicities.

General Position in Rd : No d+1 points on the same hyperplane and no
d+2 points on the same hypersphere.
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Crescent Configurations

Crescent Configurations

Crescent Configuration(SMALL 2015): We say n points are in crescent
configuration (in Rd ) if they lie in general position in Rd and determine
n − 1 distinct distances, such that for every 1 ≤ i ≤ n − 1 there is a
distance that occurs exactly i times.

Erdős: Conjecture:(1989) There exists an N sufficiently large such
that no crescent configuration exists on N points.

Pomerance and Palásti: 1989,n=5, n=6, n=7,n=8.
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Main Theorem

Why Classify?

Distance Coordinate:The distance coordinate, Da of a point a is
the set of all distances, counting multiplicity, between a and the
other points in a set, P.

Distance Set: The distance set, D, corresponding to a set of points,
P, is the set of the distance coordinates for each point in the P.
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Main Theorem

Graph Isomorphism

Theorem (Durst-Hlavacek-Huynh 2016)
Let A and B be two crescent configurations on the same number of
points n. If A and B have the same distance sets, then there exists a
graph isomorphism A→ B.

Graph Isomorphism (Gervasi)
Graph A is isomorphic to graph B if and only if there exists a bijective
function f : V (A) 7→ V (B), (where V(A) and V(B) are the vertex spaces)
such that: 1. ∀ai ∈ A, lA(ai ) = lB(f (ai )), 2.
∀ai , aj ∈ V , {ai , aj} ∈ EA ↔ {f (ai ), f (aj)} ∈ EB , and 3.
∀{ai , aj} ∈ EA, wA({ai , aj}) = wB(f ({ai , aj})), where {lA, lB} and
{wA, wB} are functions that define the labels of the vertices and edges of
A and B respectively.
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Main Theorem

Graph Isomorphism


0 d3 d1 d3
d3 0 d2 d3
d1 d2 0 d2
d3 d3 d2 0

 ∼=


0 d3 d3 d2
d3 0 d3 d1
d3 d3 0 d2
d2 d1 d2 0


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Results

All Configurations on Four and Five Points

Theorem (Durst-Hlavacek-Huynh 2016)
Given a set of three distinct distances, {d1, d2, d3}, on four points in
crescent configuration, there are only three allowable crescent
configurations up to graph isomorphism

We label these M-type, C-type, and R-type, respectively.

Theorem
Given a set of four distinct distances, {d1, d2, d3, d4}, on five points in
crescent configuration, there are only 27 allowable crescent configurations
up to graph isomorphism
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Remarks

Remarks

Advantages
New methods for approaching an Erdős problem.

Generates all possible distance sets.
May be generalized to higher dimensions.
Permits the use of distance geometry to find new configurations.

All possible configurations on four and five points in R2.
Three new configurations on five points in R3.

Disadvantages
Running time is O(nn).
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Generates all possible distance sets.

May be generalized to higher dimensions.
Permits the use of distance geometry to find new configurations.

All possible configurations on four and five points in R2.
Three new configurations on five points in R3.

Disadvantages
Running time is O(nn).



Introduction Classification of Crescent Configurations Distance Geometry Techniques Rigidity of Crescent Configuration Thank You

Remarks

Remarks

Advantages
New methods for approaching an Erdős problem.
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The Question of Geometric Realizability

Given a distance set D, can we find a set of points in a crescent
configuration with D as its distance set in Rn?

Distance Geometry Problem: If we are given a set of distances
between points, what can we find out about the positioning of these
points?
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Cayley-Menger Matrices

Cayley Menger Matrix: The Cayley Menger matrix for a set n points
{P1, P2, . . . Pn} is an (n + 1)× (n + 1) matrix of the following form:

0 d2
1,2 . . . d2

1,n 1
d2

2,1 0 . . . d2
2,n 1

...
...

. . .
...

...
d2

n,1 d2
n,2 . . . 0 1

1 1 . . . 1 0


where di,j is the distance between Pi and Pj .
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Cayley-Menger and Geometric realizability

Theorem (Sommerville 1958)
A distance set corresponding to 4 points is geometrically realizable in R2

if and only if the Cayley-Menger matrix is not invertible.

We first use this to make sure the distances are realizable in the
plane.
We then use this to make sure no 3 points are on a line.
We can use similar techniques to make sure no 4 points are on a
circle.
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Example



A B C D
A 0 13 13 3 1
B 13 0 4 4 1
C 13 4 0 4 1
D 3 4 4 0 1

1 1 1 1 0


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Solutions for a Given Crescent Configuration Type

Suppose we are given a distance set with the multiplicities of the
distances specified, but we are not given values for the distances.
We can fix one of the unknown distances and use Cayley-Menger
determinants to find a system of equations that yields geometrically
realizable distances.

Figure: Possible values for d2, d3 for the M-type when d1 = 1
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Results for n = 4

As expected, all 3 of our distance sets on 4 points are realizable in R2.
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Results for n = 5

Exactly 27 of the 51 distance sets on 5 points are geometrically realizable.

For a complete list of configurations, email rfd1@williams.edu.
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Higher dimensions

Cayley Menger Matrices can be used to determine whether the
distances between d + 2 points are geometrically realizable in
d-dimensional space.

Can some of the distance sets that are not geometrically realizable
in R2 be realized in R3?
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The Uniqueness Question

Given an appropriate set of n − 1 distances, how many ways could we
realize a crescent configuration on n points?
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Graph Theoretic Background

Inspiration from the Molecule Problem

Figure: Two Realizations of a Flexible Graph1

The Molecule Problem: given a set of distance measurements
between points in Euclidean space, can we find the points in space?
→ NP-hard
More generally: Graph realization (how many arrangements?) and
rigidity (can we distort the arrangements?)

1B. Hendrickson. Conditions for Unique Graph Realization. SIAM Journal of
Computing . 21(1). 64–84, Feb. 1992
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Graph Theoretic Background

Techniques and Terminologies

Flexible Framework vs. Rigid Framework vs. Redundantly Rigid
Framework

Gluck (1975): If a graph has a single rigid realization, then all its
generic realizations are rigid.

The Rigidity Matrix
Example: Complete graph K3 with vertices mapped to (0, 1),(−1, 0)
and (1, 0)  1 1 −1 −1 0 0

−1 1 0 0 1 −1
0 0 −2 0 2 0


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Graph Theoretic Background

Theorem (Hendrickson 1992)
A framework f (G) is rigid if and only if its rigidity matrix has rank
exactly equal to S(n, d) or the number of allowed motions, which equals
nd − d(d + 1)/2 for n ≥ d and n(n − 1)/2 otherwise
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Analysis of Type C

A Realization for Type C

Figure: Realization obtained by fixing d1 = 1
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Analysis of Type C

Rigidity Analysis for Type C

Rigidity Matrix AC

1
2 y +

√
1+4y2

4 − 1
2 −y −

√
1+4y2

4 0 0 0 0

− 1
2 y +

√
1+4y2

4 0 0 1
2 −y −

√
1+4y2

4 0 0

0
√

1+4y2

4 0 0 0 0 0 −
√

1+4y2

4
0 0 −1 0 1 0 0 0
0 0 − 1

2 −y 0 0 1
2 y

0 0 0 0 1
2 −y − 1

2 y


Rank(AC ) = 5 = S(4, 2)→ rigid
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Analysis of Type R

Type R Realization

Figure: Realization obtained by fixing d1 = 1
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Analysis of Type R

Rigidity Analysis for Type R

Letting y =
√
−1 + 4x2, we get the rigidity matrix AR :



−x 0 x 0 0 0 0 0
−x
2

−x
y 0 0 x

2
x
y 0 0

−1
2x

−y
2x 0 0 0 0 1

2x
y

2x
0 0 x − x

2
−x
2y −x + x

2
x

2y 0 0
0 0 x − 1

2x
−y
2x 0 0 −x + 1

2x
y

2x
0 0 0 0 x

2 −
1

2x
x

2y −
y

2x
−x
2 + 1

2x
−x
2y + y

2x


Rank(AR) = 6 > S(4, 2) but when removing any row, rank of remaining
matrix is 5→ redundantly rigid
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Analysis of Type M

Type M Realizations

Figure: Two Realizations of Type M: M1 and M2
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Analysis of Type M

Rigidity Analysis for Type M

Rigidity matrix AM1

−2x 0 2x 0 0 0 0 0
−x −x

√
3 0 0 x x

√
3 0 0

−x −x
√

3− y 0 0 0 0 x x
√

3 + y
0 0 x −x

√
3 −x x

√
3 0 0

0 0 x −x
√

3− y 0 0 −x x
√

3 + y
0 0 0 0 0 −y 0 y


Rank(AM1 ) = 5 = S(4, 2)→ rigid
Same results for M2
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Future Work

Questions to explore

Find ways to speed up our techniques so we can find crescent
configurations on a higher n?

Which distance sets can be realized in higher dimensions?

In addition to rigidity, which other properties of point configurations
can we explore?
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