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Introduction

What questions can we ask?

Distinct distances problem:

Essentially solved: at least
Ω(n/ log n) distinct distances.
[Guth and Katz, 2010]

Unit distances problem:

Best known bound: at most
O(n4/3) times. [Szekely]

Optimal configurations for few
distances:

Characterized for small numbers
(≤ 6) of distinct distances.
[Erdős and Fishburn]
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[Brass, Moser, and Pach]
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Triangles

2 points ⇒ distance.
3 points ⇒ triangle.

Can ask analogous questions for
triangles:

Minimum number of distinct
triangles?

Maximum number of a given
triangle?

Optimal configurations for few
triangles?
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Some motivation

4 vertices of a square ⇒ 1 distinct triangle.

Can we do this with 5 points?
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Some motivation

Square plus center ⇒ 2 distinct triangles.
Regular pentagon ⇒ 2 distinct triangles.

Can we do this with 6 points?
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Main results

Theorem (Epstein, Lott, Miller, and Palsson)

Let F (t) = maximum # of points that can be placed in the plane
to determine exactly t distinct triangles.

F (1) = 4

F (2) = 5

F (t) < 24(t + 1)
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Proof sketch for F (1)

Enough to show that a rectangle is the only 4-point
configuration determining a single triangle.

Idea: brute force by cases.
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Example case

4 points form a quadrilateral with all side lengths distinct:

A

B

C

D

4ABC and 4ADC are distinct.
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Proof sketch for F (2)

Enough to show that the square with its center and the
regular pentagon are the only 5-point configurations
determining two triangles.

Idea: most 4-point configurations determine three triangles.
For the ones that don’t, show that the addition of a fifth
point generates a third.
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Example case

4 points form a non-rhombus parallelogram:

A B

D
C

E E ′

E ′′

Any choice of E will generate a third distinct triangle.
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Proof sketch for upper bound

Show n points determine ≥ n/24 distinct triangles:

Bound from above the number of times a given triangle can
appear.
Bound from below the number of noncollinear triples that
generate a triangle.
# of distinct triangles ≥ ratio of these two quantities.
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Proof sketch for upper bound

Let k = maximum # of collinear points.

No triangle appears more than 4 ·
((n−k+1

2

)
+ (k − 1)

)
times.

At least n(n−1)(n−k)
6 noncollinear triples.

⇒ # distinct triangles ≥ n(n−1)(n−k)
12(n−k+1)(n−k)+24(k−1) .

Minimize over k ∈ [2, n − 1]⇒ n/24.
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3-triangle sets

3 distinct triangles.
Can we do this with 7 points?
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3-triangle sets

Conjecture

F (3) = 6, i.e. any set of 7 points determines at least 4 triangles.
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General structure of optimal configurations

What general properties do the optimal configurations share?

Vertices of a regular polygon?

Vertices of a regular polygon plus the center?

Subsets of the triangular lattice?

Erdős conjectured that optimal distance sets come from the
triangular lattice.
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4 triangles 4 triangles ≥ 5 triangles
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General structure of optimal configurations

Conjecture

The regular n-gon minimizes (not necessarily uniquely) the number
of distinct triangles determined by an n-point set.
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Application of conjecture

Can calculate number of triangles determined by regular n-gon
exactly.

Idea: by symmetry, there is a bijection between triangles and
partitions of n into 3 parts.

Known to be [n2/12] (nearest integer function).

If conjecture is true, can say any set of n points determines at
least Ω(n2) distinct triangles.

Current best is Ω(n5/3) [Szekely].

Alternatively, F (t) ≈
√

12t for infinitely many t.

Better than current linear bound.
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Explaining the bijection

P0 P1

P8

P7

P5

P6

P4

P3

P2

n = 9
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Clare Boothe Luce Program

Steven J. Miller

Eyvindur Palsson
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