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Why Elliptic Curves?
Modularity theorem for semistable elliptic curves (Andrew Wiles, 1995).
Andrew Wiles proved that elliptic curves over the field of rational numbers Q are related to modular forms.

Corollary. (Fermat’s Last Theorem, 1637)

No three positive integers a, b, and c can satisfy the equation

an + bn = cn, n ∈ N≥3.
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Counting Rational Solutions

An elliptic curve E is a non-singular curve of genus 1 of the form y2 = x3 + A x + B where
A, B ∈ C. We may consider the set E(Q) of rational solutions of E plus the point at infinity OE .

Theorem. (Mordell-Weil, 1922)
Let P , Q, and P ∗ Q be points on E which lie on a line. Then the binary operation
P · Q =

(
P ∗ Q

)
∗ OE turns

(
E(Q), ·

)
into a finitely generated abelian group. In particular,

E(Q) ∼= E(Q)torsion ⊕ Zrank
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Motivating question
Can we find an elliptic curve of large rank?

In 2006, Noam Elkies set the record by finding an elliptic curve of rank at least 28:
y2 + xy + y = x3 − x2

− 20067762415575526585033208209338542750930230312178956502x

+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429

Also known as twenty septendecillion sixty-seven sexdecillion seven hundred sixty-two quindecillion four hundred fifteen
quattuordecillion five hundred seventy-five tredecillion five hundred twenty-six duodecillion five hundred eighty-five undecillion
thirty-three decillion two hundred eight nonillion two hundred nine octillion three hundred thirty-eight septillion five hundred forty-two
sextillion seven hundred fifty quintillion nine hundred thirty quadrillion two hundred thirty trillion three hundred twelve billion one
hundred seventy-eight million nine hundred fifty-six thousand five hundred two
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Zoë Batterman, Aditya Jambhale Biases in Second Moments of Elliptic Curves 6 / 28



One Parameter Family

A one-parameter family of elliptic curves is given by

E : y2 = x3 + A(T )x + B(T ),

where A(T ), B(T ) are polynomials in Z[T ].
Each specialization of T to an integer t gives an elliptic curve Et over Q.

Moments of a family of elliptic curves
The rth moment (note we do not normalize by 1/p) is

Ar,E(p) =
∑
t∈Fp

aEt(p)r,

where aEt(p) = p + 1 − #(solutions to Et mod p) is the Frobenius trace of Et.
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Negative Bias in the First Moment

The first moment is related to the rank of the elliptic curve family:

A1,E(p) and Family Rank (Nagao, Rosen-Silverman, 1998)

Given certain technical assumptions (Tate’s Conjecture) hold for E , then

lim
X→∞

1
X

∑
p≤X

A1,E(p) log p

p
= − rank E(Q(T )).

By ∑p≤x log p ∼ x, if A1,E(t)(p) = −rp + O(1), then rank E(Q(T )) = r.
The “rank” of the family means that except for finitely many t, the elliptic curve
Et has rank greater or equal to r.
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Bias Conjecture
The j(T )-invariant is j(T ) = 1728 4A(T )3

4A(T )3+27B(T )2 .

Second moment asymptotic (Michel, 1995)
For a one-parameter family E with j(T )-invariant non-constant, the second moment
is

A2,E = p2 + O(p3/2),

with lower-order terms of size p3/2, p, p1/2, and 1.

Strong and Weak Bias conjecture

• Weak: The largest lower term in the second moment expansion which does not
average to 0 is on average negative.

• Strong: The largest lower term in the second moment expansion which does not
average to 0 is negative except for finitely many p
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Comments

Relation with Excess Rank
• If we have lower order negative bias, then the bound for the average rank in

families increases.

• However, lower order negative biases increases bound only by a small amount,
which is not enough to explain observed excess rank.
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Methods for Obtaining Explicit Formulas

For a specialization Et : y2 = x3 + A(t)x + B(t), we may write

aEt(p) = −
∑

x∈Fp

(
x3 + A(t)x + B(t)

p

)

where
(

·
p

)
is the Legendre symbol mod p given by

(
x

p

)
=


1 x a non-zero square modulo p,

0 x ≡ 0 mod p,

−1 otherwise.

Observe that
(

x

p

)
+ 1 is precisely the number of solutions to x = y2 (mod p).
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Lemmas on Legendre Symbols
Linear and quadratic Legendre sums
We have the following ∑

x(p)

(
ax + b

p

)
= 0 p ∤ a,

∑
x(p)

(
ax2 + bx + c

p

)
=

−
(

a
p

)
p ∤ b2 − 4ac,

(p − 1)
(

a
p

)
p | b2 − 4ac.

Average values of Legendre symbols
Taking the limit of the average of the Legendre symbol over all primes gives

lim
x→∞

1
π(x)

∑
p≤x

(
x

p

)
=
{

1 x a non-zero square,

0 otherwise.

Zoë Batterman, Aditya Jambhale Biases in Second Moments of Elliptic Curves 14 / 28



Lemmas on Legendre Symbols
Linear and quadratic Legendre sums
We have the following ∑

x(p)

(
ax + b

p

)
= 0 p ∤ a,

∑
x(p)

(
ax2 + bx + c

p

)
=

−
(

a
p

)
p ∤ b2 − 4ac,

(p − 1)
(

a
p

)
p | b2 − 4ac.

Average values of Legendre symbols
Taking the limit of the average of the Legendre symbol over all primes gives

lim
x→∞

1
π(x)

∑
p≤x

(
x

p

)
=
{

1 x a non-zero square,

0 otherwise.
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Comments
The moments become intractible when A(T ) and B(T ) have high degree.
For the following special families, the following is known:

Family A1,E(p) A2,E(p)

y2 = x3 + 24(−3)3(9T + 1)2 0
{

2p2−2p p≡2 mod 3
0 p≡1 mod 3

y2 = x3 ± 4(4T + 2)x 0
{

2p2−2p p≡1 mod 4
0 p≡3 mod 4

y2 = x3 + (T + 1)x2 + Tx 0 p2 − 2p − 1

y2 = x3 + x2 + 2T + 1 0 p2 − 2p − −3

y2 = x3 + Tx2 + 1 −p p2 − n3,2,pp − 1 + c3/2(p)

y2 = x3 − T 2x + T 2 −2p p2 − p − c1(p) − c0(p)

y2 = x3 − T 2x + T 4 −2p p2 − p − c1(p) − c0(p)

y2 = x3 + Tx2 − (T + 3)x + 1 −2cp,1;4p p2 − 4cp,1;6p − 1
where cp,a;m = 1 if p ≡ a mod m and 0 otherwise; n3,2,p is the number of cubes roots of 2 mod p; cα(p) are
certain legendre sums multiplied by p.
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Example

Consider F : y2 = x3 − T 2x + T 4. Then the first moment is

A1,F (p) =
∑

T ∈Fp

ap,Et

= −
∑
t∈Fp

∑
x∈Fp

(
x3 − t2x + t4

p

)
.

In general, quartic Legendre sums are intractible.

But we may apply the clever substitution x 7→ tx which gives

= −
∑

x∈Fp

(
x3

p

)
−

∑
t̸≡0(p)

∑
x∈Fp

(
t3x3 − t3x + t4

p

)

= −
∑

t̸≡0∈Fp

∑
x∈Fp

(
tx3 − tx + t2

p

)
.

So, we obtained a closed-form expression.
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Searching for a Counterexample

We computationally evaluated second moments of various families of elliptic
curves.
By Michel’s theorem, we assume that

A2,E(p) = p2 + α(p)p3/2 + β(p)p + O(p1/2)

where α(p) and β(p) are O(1). To investigate the α(p) coefficient, we graphed
the bias of the second moment

Bias
We compute the bias of A2,E defined by

BE(p) = A2,E − p2

p3/2 .
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Graphs of Biases

Here are two examples for the graph of the biases, one for a tractable family, and one for not
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Eventually, we found the family
F : y2 = x3 + x + T 3.

Our reason for suspecting this family was the graph of the bias:

The graph indicates a clear line where the bias is positive, compared to the graphs in the previous slides.
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The Counterexample
Consider the family

F : y2 = x3 + x + T 3.

Notice for primes p such that 3 ∤ p, we have T 7→ T 3 a bijection.

So, we sample the simpler elliptic curve family
F̃ : y2 = x3 + x + T

when p ≡ 2 mod 3, which is half of the primes! This immediately gives us that for
such primes,

A2,F(p) =
∑
t∈Fp

∑
x,y∈Fp

(
x3 + x + t3

p

)(
y3 + y + t3

p

)

=
∑
t∈Fp

∑
x,y∈Fp

(
x3 + x + t

p

)(
y3 + y + t

p

)

= A2,F̃(p) = p2 −
(

−3
p

)
p = p2 + p.
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Computational Evidence
Bias Revisited
We graph the bias of A2,E , for calculated values, defined by

BE(p) = A2,E − p2

p3/2 .

Recall by Michel’s theorem, we have
A2,E(p) = p2 + α(p)p3/2 + β(p)p + O(p1/2)

where α(p) and β(p) are O(1). To disprove the weak bias conjecture, we do two
things:

• Show that α(p) averages to 0, i.e.

lim
x→∞

1
π(x)

∑
p≤x

α(p) = 0.

• Show that β(p) averages to a positive number.
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Computational Evidence Cont.
By the prime number theorem, one shows

1
π(x)

∑
p≤x

α(p) = 1
π(x)

∑
p≤x

BE(p) + O(x−1/2 log x)

Problem: The constant in the big O term might dominate.

Solution: Randomly simulate elliptic moments using the Sato-Tate distribution.
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The following are two graphs which randomly simulate the bias.
One graph has coefficient α(p) = −.1 and the other has α(p) = 0.
Can you guess which is which?
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Computational Success!

Taking the running average of the biases, it is clear there is a bias:

Figure: Unbiased Running Averages (Red) versus Biased Running Averages (Blue) for a random simulation

Zoë Batterman, Aditya Jambhale Biases in Second Moments of Elliptic Curves 25 / 28



Computational Success!

Doing the same with our family of interest, that is, y2 = x3 + x + t3, we get

So we have strong computational evidence the largest term averages to 0.
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A Curiosity

The conjectured first moment of y2 = x3 + x + t3

The first moment A1,p satisfies

|A1,p| =

4p p is of the form a2 + 36b2,

0 otherwise.

For a prime p ̸≡ 1(12), the Chinese remainder theorem in conjunction with the
changes of variable

t 7→ tx, and t 7→ t3 =⇒ A1,p = 0.

Using binary quadratic forms, A1,p ̸= 0 forces p to be of the form

p = a2 + 36b2 or p = 4a2 + 9b2.

We computationally found |A1,p| = 4p in the former and A1,p = 0 in the latter.
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