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Introduction

Erd�os Distinct Distance Problem

Question (Erd�os Distance Problem)

What is the minimum number of distinct distances between n points in

the plane?

• The
√
n×
√
n integer lattice provides upper bound O(n/

√
log n)

(Erd�os 1946).

• Guth and Katz gave an almost matching lower bound of

Ω(n/ log(n)) in 2015.
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Introduction

Variants of the Distance Problem

1 What is the minimal number of distinct distances among sets of n
points in �general position?�

2 What is the largest number such that every set of n points admits

a subset of that size with all distinct distances?

There are many, many more. See Adam She�er's survey.
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Introduction

The Erd�os Distinct Angle Problem

Question (Erd�os Distinct Angle Problem)

What is the minimum number of distinct angles, A(n), in (0, π) formed

by n non-collinear points in the plane?

• Introduced by Erd�os and Purdy in 1995.
• They conjectured that regular n-gons are optimal (n− 2 distinct

angles):
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Minimum Distinct Angles

General Lower Bound on the Erd�os Angle Problem

Conjecture (Weak Dirac Conjecture)

Every set P of n non-collinear points in the plane contains a point

incident to at least dn/2e lines between points in P.

The best current bound of
⌈
n
3

⌉
+ 1 was proven by Han in 2017.

Corollary

A(n) ≥ n
6 , Ano3l(n) ≥ n−2

2 .

θ
θ
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Minimum Distinct Angles

Projected Polygon

Question (Distance angle problem with non-cocircular points)

What is the the minimum number of distinct angles, Ano4c(n), among n
points with no 4 cocircular?

p

`

`

p
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Minimum Distinct Angles

General Position Bounds

Question (Distance angle problem in general position)

What is the the minimum number of distinct angles, Agen(n), among n
points with no 4 cocircular and no 3 collinear?

Theorem (FHJMPPW 2022)

Agen(n) = O(nlog2(7)).

Theorem (FKMPPW 2022)

Agen(n) = O(n2).
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Minimum Distinct Angles

Logarithmic spiral construction

Theorem (FKMPPW 2022)

Agen(n) = O(n2).

Sketch of the Proof.

We place the points on a small arc of a logarithmic spiral, spaced at

equal angles.

• Hence, there are are O(n2) non-similar triangles formed by the

points on the spiral and O(n2) distinct angles.

• The points are in general position by the curvature of the spiral

and the fact that the points are on a small arc of the spiral.
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Minimum Distinct Angles

General Position Bounds #2

Question

What if we de�ned general position more strictly, to remove the case of

many points on a logarithmic spiral (or any other class of curve)?
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Minimum Distinct Angles

General Position Bounds #2

Question

What if we de�ned general position more strictly, to remove the case of

many points on a logarithmic spiral (or any other class of curve)?

Theorem (FKMPPW 2022)

We have Agen(n) = n22O(
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Minimum Distinct Angles

General Position Bounds #2

Theorem (FKMPPW 2022)

We have Agen(n) = n22O(
√
logn).

Proof.

This bound arises from projecting the points at the intersection of a

high-dimensional sphere and grid onto a generic plane.
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Distinct Angle Subsets

Maximal subsets with all distinct angles

Question

What is the largest number R(n) such that every set of n points in the

plane admits a subset of R(n) points inducing no repeated angles?

Lemma

Let P be a point con�guration such that |P| = n and P contains no 3

collinear points. Then, R(n) ≤ (2A(P))
1
3 .

Proof.

• S ⊆ P admits at most A(P) distinct angles.

• Moreover, if 3
(|S|

3

)
> A(P), there are repeated angles in S.

• =⇒ R(n), Rno3l(n) = O(n1/3)
• Moreover, Rno4c(n), Rgen(n) = O(n2/3).
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Distinct Angle Subsets

A better upper bound in general position

Theorem (FKMPPW 2022)

Rno4c(n), Rgen(n) = O(
√
n).

Proof.

• Let S be a subset of the logarithmic spiral con�guration.

• Think of each point in S as a number in {0, 1, . . . , n− 1}
characterizing the number of equiangular rotations around the

spiral required to reach that point.
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1 023
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Distinct Angle Subsets

A better upper bound in general position

Theorem (FKMPPW 2022)

Rgen(n) = O(
√
n).

Proof.

• For any pair of points, there are n− 1 possible non-negative

di�erences.

• Hence, if
(|S|

2

)
≥ 2n− 1 = (n− 1) + (n− 1) + 1, there must be

three pairs each with the same di�erence. This yields a pair of

equivalent triples and a repeated angle.
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Distinct Angle Subsets

Lower bound in general position

Theorem (FHJMPPW 2022)

Rgen(n) = Ω(n1/5).

• Let P be a point con�guration in general position with n points.

• Let Q ⊆ P with each element chosen with probability p.

• Let qi(n) be the number of pairs of equal angles on i total points
(in P).

• Remove an element from Q in each of the pairs in the qi-sets to
form Q′.

• E[|Q′|] ≥ pn−
∑6

i=3 p
iqi(n).
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Distinct Angle Subsets

Lower bound in general position

• E[|Q′|] ≥ pn−
∑6

i=3 p
iqi(n).

• q3(n) = O(n7/3), q4(n) = O(n3), q5(n) = O(n4), q6(n) = O(n5).

q3 q6q5q4

Example con�gurations of q3(n), q4(n), q5(n), q6(n).

• Let p = cn−4/5 for some carefully chosen constant c, and conclude

the result!
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