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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
Flzl, F2:2, F3:3, F4:5’..._
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
Flzl, F2:2, F3:3, F4:5’..._

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
Flzl, F2:2, F3:3, F4:5’..._

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2011 = 1597 + 377+ 34 +3 = Fi5 + F13 + Fg + Fs.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
Flzl, F2:2, F3:3, F4:5’..._

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2011 = 1597 + 377+ 34 +3 = Fi5 + F13 + Fg + Fs.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fn,1) tends to

2+1 ~ .276n, where p = 1+f is the golden mean.
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Central Limit Type Theorem

Central Limit Type Theorem

As n — oo, the distribution of the number of summands,
i.e.,, a; +a, +---+ an in the generalized Zeckendorf
decomposition Zim:l ajH; for integers in [H,, Hn.1) IS
Gaussian.
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the
+F,’s, such that every two terms of the same (opposite)
sign differ in index by at least 4 (3).

EX&mp'e: 1900 = F17 — F14 — FlO + FG + FZ-
K: # of positive terms, L: # of negative terms.
Generalized Lekkerkerker’'s Theorem

Asn — oo, E[K] and E[L] — n/10, E[K] — E[L] =
/2 =~ .809.
Central Limit Type Theorem

As n — oo, K and L converges to a bivariate Gaussian.
o corr(K,L) = —(21 — 2¢)/(29 + 2¢) ~ —.551.
@ K +L and K — L are independent.
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
@ Recurrence relation:
N € [Fn+l7Fn+2): N = Fn+1—|—Ft—|—"',t§ n—1.
Pn+ik+1 = Pn-1k +Pn-2k + -
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
@ Recurrence relation:
N € [Fn+l7Fn+2): N = Fn+1—|—Ft—|—"',t§ n—1.
Pn+ik+1 = Pn-1k +Pn-2k + -
Pnk+i1 = Pn—2k T Pn-3k+ -
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
@ Recurrence relation:
N € [Fn+l7Fn+2): N = Fn+1—|—Ft—|—"',t§ n—1.
Pn+ik+1 = Pn-1k +Pn-2k + -
Pnk+i1 = Pn—2k T Pn-3k+ -
= Prnrik+r = Pnk+i T Pno1k-
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
@ Recurrence relation:
N € [Fn+l7Fn+2): N = Fn+1—|—Ft—|—"',t§ n—1.
Pn+ik+1 = Pn-1k +Pn-2k + -
Pnk+i1 = Pn—2k T Pn-3k+ -
= Prnrik+r = Pnk+i T Pno1k-

@ Generating functionz:mk>0 pn,kay” = ﬁ

@ Partial fraction expansion:

y B —y ( 11 )
1—y—xy2 yi(x)—y2(x) \y —yi(x) 'y —Yya(x)

where y;(x) and y,(x) are the roots of 1 —y — xy? = 0.

Coefficient of y": g(x) = > o0 PnkX .
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New Approach: Case of Fibonacci Numbers (Continued)

K,: random variable associated with k.
g(X) = Zn7k>0 pn,kxk-

@ Differentiating identities:
9(1) = Zn,k>0 Pnk = Fni1 — Fn,
9'(X) = Xnko0 KPnkX ", (1) = 9(1E[Kn],
(XQ'(X))" = Xon ko0 KZPniX T,
(xg'(x))' [x=1 = 9(L)E[KZ], ...

@ Method of moments (for normalized K/):
E[(K3)*™/(SD(Kg))*™ — (2m — 1)1,

E[(Kq)*™*/(SD(Ky))*™~* — 0.
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New Approach: General Case

Let pnx = # {N € [Hn, Hny1): the generalized Zeckendorf
decomposition of N has exactly k summands}.
@ Recurrence relation:
Fibonacci: pni1k+1 = Prk+1 + Pnk-
_ ma1—1
General: ppyik = o s ,-S:;i Pn—mk—j-
where s = 0,8, =C1 +Co + -+ -+ Cp.
@ Generating function:
. . y
Fibonacci: T2
General:
L-1 m+1—1 i
> n<L PraX Y™ — 3o Js:;T1 XymH Y PrgXKy"

_ L1 Smi1—1y jyym+l




Fibonacci
L]

New Approach: General Case (Continued)

@ Partial fraction expansion:

H . Yy 1 1
Fibonacci: —57 5 (y—yl(x) - y—yz(x)>'
General: L
Z B(va) ]
ST 30 2y — i) T (5(%) — %))
L—1 Smy1—1
BOGY) =D PakX y™ =D > xy™ N pxky”,
n<L m=0 j=sm n<L—m

yi(x): root of 1 — SO S emia—tyjymil — g,

i=Sm
Coefficient of y™ g(X) = ", =0 PakX .
@ Differentiating identities
@ Method of moments: = K, — Gaussian.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.




Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 . energy eigenfunctions

1Q




Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).




Random Matrix Ensembles

a1 a;pp a3 - ain
aip QA Ay - axn
A = . . . . - AT, alj _ajl
ain N asn - ann
Fix p, define
Prob(A) = H p(ay).
1<i<j<N
This means
Bu
Prob (A : a; € [ay, Gi]) = H / p(x; )dx;.
1<i<j<N VX =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

/buA,N(x)dx _ #{A"A(A . b]}

N

ZiN:l Ai (A)k .

K" moment = .
2kN 2+l




SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand A’s eigenvalues, but it's A’s elements
that are chosen randomly and independently.

Eigenvalue Trace Lemma

Let A be an N x N matrix with eigenvalues \;(A). Then

Trace(A*) = > \(A)K,

where

Trace(Ak = Z 23.1.23.2.3 - Qi -

ii=1 k=1
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve(\(A)?) ~ NZ2or Ave()(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).




SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann

Iljl

Integration factors as

[e.e]
/ arp(a;)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / p(aw)day = 1.
a

k')#IJ) K=7—00




SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

W/ / Z E:a.l.2 -3y, - [ [ p(ay)day.

ii=1 k=1 i<j

Main contribution when the a;,;,,,’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).




Circulant Ensemble

Real Symmetric
m-Circulant Ensemble




Circulant Ensemble
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Circulant Matrices

Study circulant matrices, period m on diagonals.

6-by-6 real symmetric period 2-circulant matrix:

Co C1 Cp C3 Cp dp
Ci do di dy c3 dy
C; di C C1 Cr C3
cz dy ¢ do di dy
C; C3 C di Co C
di d» c3 dy c1 do

Look at the expected value for the moments:

Ma(N) = E(Mq(A N))

1
= N3+1 Z E(ailizaizis o 'ainii)'
1<iy,.in<N
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Matchings

Rewrite:
1
Ma(N) = INEE Zﬁ(“)mdl(fv) Mgy (~)-

where the sum is over equivalence relations on
{(1,2),(2,3),...,(n,1)}. The dj(~) denote the sizes of the
equivalence classes, and the myq the moments of p.
Finally, the coefficient n(~) is the number of solutions to
the system of Diophantine equations:
Whenever (s,s + 1) ~ (t,t + 1),

@ is;1 —is =iy — I (mod N) and is = iy (mod m), or

@ is; 1 —is = —(ity1 — it) (mod N) and is = i1 (mod m).




Circulant Ensemble
°

Matchings

@ is;1 —is =iy — i (mod N) and is = iy (mod m), or
@ is;1 —is = —(ip1 —it) (mod N) and is = it,1 (mod m).

7,3 (igig 22

7,5 Aij5ig /1/6

Figure: Red edges same orientation and blue, green opposite.

1



Circulant Ensemble

Contributing Terms

As N — oo, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.
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Contributing Terms: Algebraic Topology

Think of pairings as topological identifications, the
contributing ones give rise to orientable surfaces.

Contribution from such a pairing is m=29, where g is the
genus (number of holes) of the surface. Proof:
combinatorial argument involving Euler characteristic.




Circulant Ensemble

Computing the Even Moments

Theorem: Even Moment Formula
[k/2] 1
Mac = ) eg(k)m~2¢ + O, (N) :

9=0

with g4(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions
for the g4(K).
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Computing the Even Moments

Harer and Zagier

[k/2]
D eg(k)rk = (2k — 1)l c(k, 1)
g=0
where ;
> 1+ x
142 k,r)xkt = :
#23olk.nx (55)

Thus, we write

My = m~&+D(2k — 1)l1c(k, m).




Circulant Ensemble
°

Computing the Even Moments

A multiplicative convolution and Cauchy’s residue formula
yields the characteristic function of the distribution
(inverse Fourier transform of the density).

= (it) My

oft) = (2k)!

k=0

DL () et
27im J ;o 2271 1-—2z-1 z

- LS (Mt (o)
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Fourier transform and algebra yields

Theorem: Kopp, Kolo glu and M—

The limiting spectral density function f,(x) of the real
symmetric m-circulant ensemble is given by the formula

As m — oo, the limiting spectral densities approach the
semicircle distribution.
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.
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Results (continued)

. .
-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 2-circulant
matrices of size 400 x 400.
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Results (continued)

-3 -2 -1 1 2 3

Figure: Plot for f3 and histogram of eigenvalues of 100 3-circulant
matrices of size 402 x 402.

A



Circulant Ensemble
°

Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f, and histogram of eigenvalues of 100 4-circulant
matrices of size 400 x 400.

A




Circulant Ensemble
°

Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for fg and histogram of eigenvalues of 100 8-circulant
matrices of size 400 x 400.

A
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f,o and histogram of eigenvalues of 100 20-circulant
matrices of size 400 x 400.

A
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Results (continued)

Figure: Plot of convergence to the semi-circle.

A




Benford History / Apps

Benford History
and Applications

AT




Benford History / Apps
[ ]

Benford’s Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of
d base B is logg (2+2).

First 60 values of 2" (only displaying 30)

1 1024 1048576 | digit # Obs Prob BenfProb
2 2048 2097152 | 1 18 .300 301
4 4096 4194304 | 2 12 .200 176
8 8192 8388608 | 3 6 .100 125
16 16384 16777216 | 4 6 .100 .097
32 32768 33554432 | 5 6 .100 .079
64 65536 67108864 | 6 4 .067 .067
128 131072 134217728 | 7 2 .033 .058
256 262144 268435456 | 8 5 .083 .051
512 524288 536870912 | 9 1 .017 .046

-
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Examples

@ recurrence relations

e special functions (such as n!)

e iterates of power, exponential, rational maps
e products of random variables

e L-functions, characteristic polynomials

o iterates of the 3x + 1 map

e differences of order statistics

e hydrology and financial data

A
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Applications

e analyzing round-off errors

e determining the optimal way to store
numbers

e detecting tax fraud and data integrity

AR
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Caveats!

e A math test indicating fraud is not proof of
fraud: unlikely events, alternate reasons.

AQ
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Caveats!

e A math test indicating fraud is not proof of
fraud: unlikely events, alternate reasons.

¢
E -
YOUR TRAVEL EXPENSES |3 |g I DECIDE WHAT TO
ARE RETECTED BECAUSE |E| e1THER YoU 3| ORDER BASED ON LUHAT
ALL OF YOUR MEAL CO5TS || ARE A LIAR, :| TOTALS TO A ROUND
ARE ROUND NUMBERS. g OR. WORSE. g| NUMBER AFTER A 15%
£ TIP.
| H
g | : \
g g THAT'S
5 / 8| womse T,
HRE ] : ) 5 4
; ,{i‘» ) !Dni 0
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Detecting Fraud

Bank Fraud

e Bank audit: huge spike of numbers starting
with 48 and 49, most due to one person.
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Detecting Fraud

Bank Fraud

e Bank audit: huge spike of numbers starting
with 48 and 49, most due to one person.

o Write-off limit of $5,000. Officer had friends
applying, run up balances just under
$5,000....
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Data Integrity: Stream Flow Statistics: 130 years, 457,440  records
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Election Fraud: Iran 2009

Numerous protests/complaints over Iran’s 2009
elections.
Lot of analysis; data moderately suspicious:
e First and second leading digits;
e Last two digits (should almost be uniform);
e Last two digits differing by at least 2.

Warning: enough tests, even if nothing wrong
will find a suspicious result (but when all tests
are on the boundary...).




Benford History / Apps
L]

New Test for Fraud
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New Test for Fraud

Victoria Cuff, Allie Lewis, M— (2010)
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Image Analysis

o Pictures aren’t Benford’s law, but coefficients
of Discrete Cosine Transform (DCT) very
close (slightly modified law).

e Analysis of coefficients, from Generalized
Gaussian Distributions:

fx (x) = Aexp(—[|5x[%).

e Application: detect compression,
steganography (hidden message in picture
by modifying least significant bit in pixels).
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Image Analysis (continued)

Figure ‘Man’ used in the experiments.
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Image Analysis (continued)

(a) Histogram of the luminance values of ‘Man’
in Benford (log,, mod 1) domain; (b) Distribution
of first digits from ‘Man'.
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Image Analysis (continued)

Histogram of the DCT values of ‘Man’ in Benford
(log;, mod 1) domain; (b) Distribution of first
digits from ‘Man’.

¢
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

R




Benford History / Apps
[ le]

Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

0 log2/log 10

¢
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

log2/log 10 1

- 94—@
N
o<d—o

¢
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base B if {y;} is
equidistributed mod 1, where y; = logg X;.

Kronecker-Weyl Theorem

If 5 ¢ Q then ng mod 1 is equidistributed.
(Thus if logg a ¢ Q, then o is Benford.)

¢
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Example of Equidistribution:  n./7 mod 1

20 ]

15F

10

05

02 04 06 0.8 1

ny/m mod 1 for n < 10

¢
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Example of Equidistribution:  n./7 mod 1

08

0.6

04

0.2

02 04 06 08 1

ny/m mod 1 for n < 100

¢
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Example of Equidistribution:  n./7 mod 1

0.8

0.6

041

02

02 0.4 0.6 08 1

ny/m mod 1 for n < 1000

¢
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Example of Equidistribution:  n./7 mod 1

08

0.6

04

0.2

02 04 06 08 1

ny/m mod 1 for n < 10,000

¢
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Logarithms and Benford’s Law

y? values for a", 1 < n < N (5% 15.5).
N | x*(7) x°(e) x°(x)
100 | 0.72 0.30 46.65
200 0.24 0.30 8.58
400 | 0.14 0.10 10.55
500 | 0.08 0.07 2.69
700 | 0.19 0.04 0.05
800 | 0.04 0.03 6.19
900 | 0.09 0.09 1.71
1000 | 0.02 0.06 2.90

RO
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Logarithms and Benford’s Law: Base 10

log(?) vs N for 7" (red) and e" (blue),
ne{l,...,N}. Note 71" ~ 1.0028 - 108, (5%,
log(x?) =~ 2.74).

20,

N
15} \

10 V) \ SN A R
RV AN AN
osp | I ‘ f \ \\ ’/r \\ /N
FL L Y PR O AR Y A O
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Poisson Summation and Benford’s Law: Definitions

o Feller, Pinkham (often exact processes)

7SS -
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Poisson Summation and Benford’s Law: Definitions

e Feller, Pinkham (often exact processes)
o data Yt g = logg YT (discrete/continuous):

P(A) — T'L”‘OO #{n € AT: n<T}

TS -
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Poisson Summation and Benford’s Law: Definitions

e Feller, Pinkham (often exact processes)
o data Yt g = logg YT (discrete/continuous):

P(A) — T'L”‘OO #{n € AT: n<T}

o Poisson Summation Formula: f nice:

> () = > 1
{=—00 V=—00
Fourier transform f(¢) = f(x)e 2™¢dx.

y
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Benford Good Process

Xt is Benford Good if there is a nice f st

CDFy_ (Y) = /y %f (%) dt+Er(y) := Gr(y)

—00

and monotonically increasing h (h(|T|) — o0):

V- EEEEEOOSTSTSSSSSSS L —-—S
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Benford Good Process

Xt is Benford Good if there is a nice f st

CDFy_ (Y) = /y %f (%) dt+Er(y) := Gr(y)

and monotonically increasing h (h(|T|) — o0):
e Small tails: Gr(oc0) — Gr(Th(T)) = o(1),
Gr(=Th(T)) — Gr(—00) = 0(1).

y
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Benford Good Process

Xt is Benford Good if there is a nice f st
y 1 t
CDFg_(¥) = /OO = (?) dt+Er(y) :== Gr(y)
and monotonically increasing h (h(|T|) — o)
e Small tails: Gr(oc0) — Gr(Th(T)) = o(1),
Gr(=Th(T)) — Gr(—00) = 0(1).
e Decay of the Fourier Transform:

D140 ‘@‘ =0(1).

y
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Benford Good Process

Xt is Benford Good if there is a nice f st

CDFy_ (Y) = /y %f (%) dt+Er(y) := Gr(y)

and monotonically increasing h (h(|T|) — o)
e Small tails: Gr(oc0) — Gr(Th(T)) = o(1),
Gr(=Th(T)) — Gr(—00) = 0(1).
e Decay of the Fourier Transform:
0| 2| = 02).
e Small translated error: £(a,b, T)) =
2 jy<thry [ET(b 4+ €) —Er(a+£)] = o(1).

y
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Main Theorem

Theorem (Kontorovich and M—, 2005)

Xt converging to X as T — oo (think spreading
Gaussian). If Xt is Benford good, then X is
Benford.




Benford Good
ooe

Main Theorem

Theorem (Kontorovich and M—, 2005)

Xt converging to X as T — oo (think spreading
Gaussian). If Xt is Benford good, then X is
Benford.

e Examples
¢ L-functions
¢ characteristic polynomials (RMT)
¢ 3X + 1 problem
© geometric Brownian motion.
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Sketch of the proof

e Structure Theorem:
© main term is something nice spreading out
o apply Poisson summation
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Sketch of the proof

e Structure Theorem:
© main term is something nice spreading out
o apply Poisson summation

e Control translated errors:
¢ hardest step
o techniques problem specific
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Sketch of the proof (continued)

i P(a+l<Yrp<b+i)

{=—00
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Sketch of the proof (continued)

> P(a+€§ Yis < b+£>
f=—00

= Y [Gr(b+0)—Gr(a+0)]+0(1)
[(|<Th(T)




Benford Good
Sketch of the proof (continued)

oo

> IP’(a+€ < 7T,B < b+£>
f=—00

= Y [Gr(b+0)—Gr(a+0)]+0(1)
[4]<Th(T)

:/a > —f( )dt+5(abT)+0(1)

|| <Th(T




Benford Good
Sketch of the proof (continued)

oo

> IP’(a+€ < 7T,B < b+£>
f=—00

= Y [Gr(b+0)—Gr(a+0)]+0(1)
[4]<Th(T)

:/ > —f( )dt+5(abT)+o(1)
a <Th(T
2nibl _ A2rial
- f(O)-(b—a)+Zf(T€)e sz" +o(1).
(0
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Some Results

Theorem (Kontorovich and M—, 2005)

L(s,f) a good L-function, as T — o,
L(or +it, f) is Benford.

- -

Theorem (Kontorovich and M—, 2005)

As N — oo, the distribution of digits of the
absolute values of the characteristic
polynomials of N x N unitary matrices (with
respect to Haar measure) converges to the
Benford probabilities.
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and

The 3x + 1 Problem
Benford’s Law J
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o Kakutani (conspiracy), Erdos (not ready).
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e Conjecture: for some n = n(x), T"(x) = 1.
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3x + 1 Problem

o Kakutani (conspiracy), Erdos (not ready).

o x odd, T(x) = 2, 2%|[3x + 1.

e Conjecture: for some n = n(x), T"(x) = 1.

o/ —111
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3x + 1 Problem

o Kakutani (conspiracy), Erdos (not ready).

o x odd, T(x) = 2, 2%|[3x + 1.

e Conjecture: for some n = n(x), T"(x) = 1.

07—)111—)117
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3x + 1 Problem

o Kakutani (conspiracy), Erdos (not ready).

o x odd, T(x) = 2, 2%|[3x + 1.

e Conjecture: for some n = n(x), T"(x) = 1.

o/ —111—117 —, 13
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3x + 1 Problem

o Kakutani (conspiracy), Erdos (not ready).

o x odd, T(x) = 2, 2%|[3x + 1.
e Conjecture: for some n = n(x), T"(x) = 1.

o/ —>111 —»,17 —»,13 —35
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3x + 1 Problem

o Kakutani (conspiracy), Erdos (not ready).

o x odd, T(x) = 2, 2%|[3x + 1.
e Conjecture: for some n = n(x), T"(x) = 1.

o/ —111 5117 —213 535 =41
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3x + 1 Problem

o Kakutani (conspiracy), Erdos (not ready).

o x odd, T(x) = 2, 2%|[3x + 1.
e Conjecture: for some n = n(x), T"(x) = 1.

o/ —111 5117 —213 535 >4 1 —>, 1,
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©00

3x + 1 Problem

o Kakutani (conspiracy), Erdos (not ready).

o x odd, T(x) = 2, 2%|[3x + 1.

e Conjecture: for some n = n(x), T"(x) = 1.

o/ —111 5117 —213 535 >4 1 —>, 1,
2-path (1,1), 5-path (1,1,2, 3,4).
m-path: (Ki, ..., Km).

QR
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Heuristic Proof of 3x + 1 Conjecture

dn+1 = T (an)
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Heuristic Proof of 3x + 1 Conjecture

dn+1 = T (an)

~. 1 3a
E[logan.1] ~ Zglog ( 2k”>
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Heuristic Proof of 3x + 1 Conjecture

T
>

an+1 =

n)

1 3a
E[logan.1] ~ glog < 2k”>
1

3
= logan + log (Z) :

Geometric Brownian Mation, drift log(3/4) < 1

x
Il
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Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
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Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
IP)(A) - “mNHOO #{n<N:n=1,5 mod 6}

(K1, ..., Kkm): two full arithm progressions:
6 - 2k1+~~~+kmp +q.
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ooe

Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
P(A) - “mN%OO #{n<N:n=15mod 6}

(K1, ..., Kkm): two full arithm progressions:
6 - 2k1+~~~+kmp +q.

Theorem (Sinai, Kontorovich-Sinai)

ki-values are i.i.d.r.v. (geometric, 1/2):

<a
Vv2m

. |092[()x0}§a :P<%_>
m




3x + 1 Problem

[e]e] J

Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
P(A) - “mN%OO #{n<N:n=1,5 mod 6}

(K1, ..., Kkm): two full arithm progressions:
6 - 2k1+~~~+kmp +q.

Theorem (Sinai, Kontorovich-Sinai)
ki-values are i.i.d.r.v. (geometric, 1/2):

Iogzl X"ﬂnx}
P (B ] g IP’( Sm — 2 <a>

(log, B)v2m —
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Structure Theorem: Sinai, Kontorovich-Sinai

T #{n<N:n=1,5 mod 6,ncA}
P(A) - “mN%OO #{n<N:n=1,5 mod 6}

(K1, ..., Kkm): two full arithm progressions:
6 - 2k1+~~~+kmp +q.

Theorem (Sinai, Kontorovich-Sinai)

ki-values are i.i.d.r.v. (geometric, 1/2):

log [ Xm } (Sm—2m)
B (%) XO < a — ]P) IOgZB

vam T v2m

P <a




3x + 1 Problem
3x + 1 and Benford

Theorem (Kontorovich and M—, 2005)

As m — oo, Xm/(3/4)™Xo is Benford.

Theorem (Lagarias-Soundararajan 2006)

X > 2N, for all but at most ¢c(B)N /36X initial
seeds the distribution of the first N iterates of
the 3x + 1 map are within 2N ~1/36 of the
Benford probabilities.

1
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[ Jelolele}

Sketch of the proof

o Failed Proof: lattices, bad errors.

o CLT: (S —2m)/v/2m — N(0, 1):

P(Sm —2m =k) = ”(k\%m) +0 (g(mi/m).

@ Quantified Equidistribution: I, = {¢{M, ..., (¢ +1)M — 1},
M=m‘c<1/2

Ky, Ky € Ip: \n (%) _q (%)( small
C = logg 2 of irrationality type x < oo:

#{k €1, : kC € [a,b]} = M(b — a) + O(MT<1/x),




3x + 1 Problem

O@000

Irrationality Type

Irrationality type

« has irrationality type « if x is the supremum of
all v with

a—E‘:O.

q

lim,_,..q” " min

p

q%oo

e Algebraic irrationals: type 1 (Roth’s Thm).
e Theory of Linear Forms: logg 2 of finite type.
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Linear Forms

Theorem (Baker)

ai, ..., an algebraic numbers height A; > 4,
Bi1,..., B € Q with height at most B > 4,

A= p1logag + - -+ + fnlog an.

If A # 0 then |A| > B~C2109 with

d = [@(Ozi,ﬁj) : Q], C = (16nd)2°°”,
Q= HJ— log Aj, ' = Q/log Ay.

Gives log,, 2 of finite type, with x < 1.2 - 10592;
log;o2 — p/a| = |glog 2 — plog 10| /q log 10.




3x + 1 Problem

[e]e]e] Te]

Quantified Equidistribution

Theorem (Erdds-Turan)

_ Sup[a’b] ‘N(b - a) - #{n <N :Xy€ [a7 b]}‘

)

There is a C such that for all m:

% XN: 27ihxn

1 1
DN<C-<—+ =
m —~ h




3x + 1 Problem
0000e

Proof of Erdos-Turan

Consider special case x, = nha, a € Q.

1 1
TsinGrha)] < 2fhal]-

e Exponential sum <

o Must control Y1 ; =
type enter.

| o See irrationality

® type £, Yoty ey = O (M*17), take
m = [N/,




3x + 1 Problem
°

3x + 1 Data: random 10,000 digit number,  2K||3x + 1

80,514 iterations ((4/3)" = ap predicts 80,319);
2 = 13.5 (5% 15.5).

Digit Number Observed Benford
1 24251 0.301 0.301
2 14156 0.176 0.176
3 10227 0.127 0.125
4 7931 0.099 0.097

5 6359 0.079 0.079

6

7

8

9

5372 0.067 0.067
4476 0.056 0.058
4092 0.051 0.051
3650 0.045 0.046




3x + 1 Problem
°

3x + 1 Data: random 10,000 digit number, 2[3x + 1

241,344 iterations, x? = 11.4 (5% 15.5).

Digit Number Observed Benford
72924 0.302 0.301
42357 0.176 0.176
30201 0.125 0.125
23507 0.097 0.097
18928 0.078 0.079
16296 0.068 0.067
13702 0.057 0.058
12356 0.051 0.051
11073 0.046 0.046

O©CoOo~NOULEA, WNPE




3x + 1 Problem
°

5x + 1 Data: random 10,000 digit number,  2K||5x + 1

27,004 iterations, x> = 1.8 (5% 15.5).

Digit Number Observed Benford
8154 0.302 0.301
4770 0.177 0.176
3405 0.126 0.125
2634 0.098 0.097
2105 0.078 0.079
1787 0.066 0.067
1568 0.058 0.058
1357 0.050 0.051
1224 0.045 0.046

O©CoOoO~NOULEA, WNPE




3x + 1 Problem
°

5x + 1 Data: random 10,000 digit number, 2[5x + 1

241,344 iterations, y?> = 3-10~* (5% 15.5).

Digit Number Observed Benford
72652 0.301 0.301
42499 0.176 0.176
30153 0.125 0.125
23388 0.097 0.097
19110 0.079 0.079
16159 0.067 0.067
13995 0.058 0.058
12345 0.051 0.051
11043 0.046 0.046

O©CoOo~NOULEA, WNPE




Products and Chains
of Random Variables




Products F
[ ]
Preliminaries

o X1 Xn & Y1+ -+ Yymod 1, Y; = logg X;
e Density Y; is gi, density Y; + Yj is

(9 *gj)(y) = /O gi(t)g(y — t)dt.

o hn=g1%---%0n, §(§) = 91(§) - - Tn(§).
o Dirac delta functional: [ d.(y)g(y)dy = g(«).




Products F
o
Fourier input

o Fejér kernel:
N

FN (X) — Z (1 _ %) e27rinx.
o Fejér series: Tyf(x) =
(f x Fn)(X) = Z (1 _ %) f(n)e2m™

o Lebesgue’s Theorem: f € L1([0, 1]). As
N — oo, Tnf converges to f in L([0, 1]).
o Tn(f xg) = (Tnf) x g: convolution assoc.




Products F
Modulo 1 Central Limit Theorem

Theorem (M- and Nigrini 2007)

{Ym} independent continuous random variables
on [0,1) (not necc. i.i.d.), densities {gm}.

Y1+ -+ Yym mod 1 converges to the uniform
distribution as M — oo in L([0, 1]) iff Vn # 0,
limy 00 91(N) - - - gm(n) = 0.




Products F
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Generalizations

e Levy proved for i.i.d.r.v. just one year after
Benford’s paper.

e Generalized to other compact groups, with
estimates on the rate of convergence.
¢ Stromberg: n-fold convolution of a regular
probability measure on a compact Hausdorff
group G converges to normalized Haar
measure in weak-star topology iff support of
the distribution not contained in a coset of a
proper normal closed subgroup of G.




Products F
[ ]

Non-Benford Product

Distribution of digits (base 10) of 1000 products

X1 - -+ X1000, Where gigm = ¢11m.
om(xX) =mif |x —1/8| < 1/2m (0 otherwise).

0.5
0.4
0.3

0.2

0.1
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Proof of Modulo 1 CLT

e Density of sumish, =gy % --- x Q.
e Suffices show Ve:
Mmoo fo [ (x) — 1]dx < e.
e Lebesgue’s Theorem: N large,
[[h1 — Tnhal =

€

/1 |h1(X) — TNhl(X)‘dX <
) 2

e Claim: above holds for hy, for all M.




Products F
L o]

Proof of Modulo 1 CLT

Show |i|'T'I|\/|_>OO HhM — 1”1 = 0.
Triangle inequality:

lhm — 1|2 < [lbm = Tz + |[Tnbw = 1.
Choices of N and e:
llhm — Tnhw|lr < €/2.
Show ||Tyhy — 1|1 < €/2.




Products F
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Proof of Modulo 1 CLT

1| N . |
HTNhM—1H1 = / Z (1 — %) hM(n)e27r|nx dx
0

hw () = Ga(n) - - G (") —wicc O.
For fixed N and ¢, choose M large so that
lhm(n)| < €¢/4N whenever n # 0 and |n| < N.




Products F
oe

Conditions for Chains of Random Variables

Conditions

o {Dji(0)}ici: one-parameter distributions,
densities fp,») on [0, 00).
op: N1, X1~D 1(1), Xm ~ Dp(m)(Xm-1)-

> Xm de—l
f fn_ _
/O Dpmy(1) (Xml) m 1(Xm 1) X1

o0 n .
_ 2mil
nlLrQo E | I (Mfp, ) <1 ~Tog B) =0

t=—co m=1
)
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Behavior of Chains of Random Variables

Theorem (JKKKM)

o If conditions hold, as n — oo the distribution
of leading digits of X, tends to Benford’s law.

e The error is a nice function of the Mellin
transforms: if Y,, = logg X,, then

|Prob(Y, mod 1 € [a,b]) — (b +a)| <

b-a) Y J[Mfp,.w) (1 - |igié)

t=—co m=1
640

o'

1
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Example: All X; ~ Unif(0, k)

e X; ~ Unif(0,k): without loss of generality
k € [1,10).
® |Pn(s) —logso(s)] <

k (logk)"* < 1 () -1

210g,,S.
s T(n) 2on T o ) 0910
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Example: All X; ~ Exp(1)

%] X| ~/ EXp(l), Yn — |OgB En.
o Needed ingredients:

o [o7exp(—x)xs~tdx = T(s).

o M1 +ix)| = y/7x/sinh(rx),x € R,
o [Pn(s) —logye(s)| <

272¢/logB  \"*
1G5 S Z <S|nh 2m2/(/ log B)) '
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Example: All X; ~ Exp(1) (continued)

o [Pn(s) —logyps| <
©3.3-103loggs ifn =2,
©1.9-10"*loggs ifn =3,
©1.1-10°loggs ifn=25, and
©3.6-10"1logg s if n = 10.

e Error at most

> 17.148¢ \"/?
< .057"|
10308 ; (exp(8.5726€)) = 0577100108

>




MSTD Sets

More Sums Than
Difference Sets
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Statement

A finite set of integers, |A| its size. Form
o Sumset: A+A={a +a:a,a €A}
o Difference set: A — A = {a; —a; : g, & € A}.

Definition

We say A is difference dominated if

|A—A| > |A+ A|, balanced if |A—A| = |A+A|
and sum dominated (or an MSTD set) if
A+Al > |A-A|
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Questions

Expect generic set to be difference dominated:
e addition is commutative, subtraction isn’t:

e Generic pair (x,y) gives 1 sum, 2
differences.

o Do there exist sum-dominated sets?

e If yes, how many?




MSTD Sets
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Examples

o Conway: {0,2,3,4,7,11,12,14}.
e Marica (1969): {0,1,2,4,7,8,12,14 15}.

e Freiman and Pigarev (1973): {0,1,2,4,5,
9,12,13, 14,16,17, 21, 24,25, 26, 28, 29}.

e Computer search: random subsets of
{1,...,100}:
{2,6,7,9,13,14,16,18,19,22,23, 25, 30, 31, 33, 37, 39,
41,42, 45,46,47,48,49,51,52,54,57,58,59, 61, 64, 65,
66,67,68,72,73,74,75,81,83,84,87,88,91,93,94, 95,
98,100}.
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Binomial model

Binomial model, parameter p(n)
Each k € {0,...,n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

o Let A< {0,...,n}. Most elements in
{0,...,2n}inA+Aandin{—n,...,n}in
A—A.

o E[[A+A]=2n—11 E[A—Al]=2n—7.




MSTD Sets
Martin and O’Bryant '06

A from {0, ... N} by binomial model with
constant parameter p (so k € A with probability

p). At least ksp.p,2V ™ subsets are sum
dominated.

@ ksp1/2 > 1077, expect about 102.

e Proof (p = 1/2): Generically
Al =5 +O(VN).
o about N — MKl ways write k € A + A.
o about % “j' ways write k € A — A,




MSTD Sets
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Notation

@ X ~f(N) means Ve, e; > 0, AN stVN >N

€1,€2 €1,€2

Prob (X ¢ [(1 — en)f(N), (1 + e)f(N)]) < ea

=|A+A,D=]A-A]
S°=2N+1-S5,D°=2N+1-"D.
New model: Binomial with parameter p(N):
® 1/N = o(p(N)) and p(N) = o(L);
@ Prob(k € A) = p(N).

Conjecture (Martin-O’Bryant)

As N — oo, Ais a.s. difference dominated.
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Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 28" =1=X),
o p(N) = o(N~%2): D ~ 285 ~ (Np(N))?;
o p(N) =cNY¥2: D~ g(c?)N, S ~ g (0—22> N
(c—0,D/S —2;,¢c—00,D/S —1);
o N71/2 = o(p(N)): 8¢ ~ 2D° ~ 4/p(N)>.

Can generalize to binary linear forms, still have
critical threshold.

1
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L]

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t iid binary random variables, Y = Y"1 | t;, then
¥A>0: Prob (|Y —E[Y]| > \/)\n) < 2e7M2,

Need to allow dependent random variables.
Sketch of proofs: X € {S, D, S¢, D}.

© Prove E[X] behaves asymptotically as claimed:;

© Prove X is strongly concentrated about mean.
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Setup for Proofs

Note: only need strong concentration for N—1/2 = o(p(N)).
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Setup for Proofs

Note: only need strong concentration for N—1/2 = o(p(N)).

Will assume p(N) = o(N—%/2) as proofs are elementary (i.e.,
Chebyshev: Prob(]Y — E[Y]| > koy) < 1/k?)).
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Setup for Proofs

Note: only need strong concentration for N—1/2 = o(p(N)).

Will assume p(N) = o(N—%/2) as proofs are elementary (i.e.,
Chebyshev: Prob(]Y — E[Y]| > koy) < 1/k?)).

For convenience let p(N) = N—¢%, § € (1/2,1).

[ID binary indicator variables:

w1 with probability N—°
"N 10 with probability 1 — N,

X =N Xons, E[X] = N179,




MSTD Sets

Pi(N) =4N~-(=9 0 = #{(m,n):m <n e {1,...,N} A}
With probability at least 1 — P;(N) have

©Q X e [3N9 3NI-7).

1-6 1-6 1-6 1-6
@ HUUNTIY o INGNy




MSTD Sets

Pi(N) =4N~-(=9 0 = #{(m,n):m <n e {1,...,N} A}
With probability at least 1 — P;(N) have

©Q X e [3N9 3NI-7).

1-6 1-6 1-6 1-6
@ HUUNTIY o INGNy

Proof:
@ (1) is Chebyshev: Var(X) = NVar(Xn.n) < N2,

@ (2) follows from (1) and () ways to choose 2 fromr.




MSTD Sets

Concentration

Lemma

@ f(5) = min (3, 2221), g(6) any function st 0 < g(5) < f(9).

@ p(N)=N"%,6¢€(1/2,1), P1(N) = 4N—(1=9),
P,(N) = CN—(f(9)=9(9),

With probability at least 1 — P;(N) — P»(N) have
D/S =2+ O(N99).




MSTD Sets

Concentration

Lemma

@ f(5) = min (3, 2221), g(6) any function st 0 < g(5) < f(9).

@ p(N)=N"%,6¢€(1/2,1), P1(N) = 4N—(1=9),
P,(N) = CN—(f(9)=9(9),

With probability at least 1 — P;(N) — P»(N) have
D/S =2+ O(N99).

Proof: Show D ~ 20 + O(N3~%4), S ~ O + O(N3~4),

As O is of size N>~2% with high probability, need 2 — 25 > 3 — 44 or
d>1/2.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
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m,n,m’,n’ — .
0 otherwise.
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0 otherwise.

E[Y] <N3.N"% £ N2.N"3 < 2N3% As§>1/2,
Expected number bad pairs <« |O|.




MSTD Sets

Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
Difficulty: (m,n) and (m’,n’) could yield same differences.

Notation: m < n,m’ <n’,m <m’,

v 1 fn—m=n"-m’
m,n,m’,n’ — .
0 otherwise.

E[Y] <N3.N"% £ N2.N"3 < 2N3% As§>1/2,
Expected number bad pairs <« |O|.

Claim: oy < N'®with r(5) = 2 max(3 — 44,5 — 74). This and
Chebyshev conclude proof of theorem.




MSTD Sets

Proof of claim

Cannot use CLT as Ym nm o are not independent.




MSTD Sets

Proof of claim

Cannot use CLT as Ym nm o are not independent.

Use Var(U + V) < 2Var(U) + 2Var(V).




MSTD Sets

Proof of claim

Cannot use CLT as Ym nm o are not independent.
Use Var(U + V) < 2Var(U) + 2Var(V).

Write
Z Ym,n,m/,n/ = Z Um,n,m/,n’ + va,n,n/

with all indices distinct (at most one in common, if so must be n = m’).

Var(U) = Var(Umnmw)+2 > CoVar(Umnm o, Us g mr v )-

(mN,nN,mN/,nN/);‘
(W, A,m’ /")




MSTD Sets

Analyzing Var(Um nm n)

At most N2 tuples.
Each has variance N—49 — N—8% < N—49,

ThUS ZVar(Umyn’m/’n/) S N3746.




MSTD Sets

Analyzing CoVar(Umnm n, Us & 7 i)

@ All 8 indices distinct: independent, covariance of 0.

@ 7 indices distinct: At most N2 choices for first tuple, at most N2
for second, get

E[UnUe)] — E[Ug)]E[U@z)] =N~ = N"*N" < N7

@ Argue similarly for rest, get < N5—79 4 N3—49,
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