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Goals of the Talk

@ Often multiple proofs: Say a proof rather than the proof.
@ Different proofs highlight different aspects.
@ Too often rote algebra: Explore! Generalize! Conjecture!

@ General: How to find / check proofs: special cases, ‘smell’
test.

@ Specific: Pythagorean Theorem.
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Geometry Gem: Pythagorean Theorem

Theorem (Pythagorean Theorem)

Right triangle with sides a, b and hypotenuse c, then
a4 b? = c?.

Most students know the statement, but the proof?

Why are proofs important? Can help see big picture.
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Pythagorean Theorem
.

Geometric Proofs of Pythagoras

¢ Diagram for Euclid
Book 1, Propostion 47

Proof requirements:
SAS congruence,
Triangle area = hb/2

b = base
h = height

Pythagorean Theorem

Figure: Euclid’s Proposition 47, Book I. Why these auxiliary lines?
Why are there equalities?
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Geometric Proofs of Pythagoras
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Figure: Euclid’s Proposition 47, Book |. Why these auxiliary lines?
Why are there equalities?
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Geometric Proofs of Pythagoras
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Figure: A nice matching proof, but how to find these slicings!
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Geometric Proofs of Pythagoras

a _"’

a
DN Big square: (@ +5
i b = a® +2ab +b*

Four tnangles =2ab

Little square = ¢2

S e a®+2ab+b2=c2+ 2ab

S f! al _|_b3 = p2

Figure: Four triangles proof: |
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Geometric Proofs of Pythagoras

c 2

b2

Figure: Four triangles proof: Il
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Geometric Proofs of Pythagoras
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Figure: President James Garfield's (Williams 1856) Proof.
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Geometric Proofs of Pythagoras

Lots of different proofs.
Difficulty: how to find these combinations?

At the end of the day, do you know why it's true?
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Possible Pythagorean Theorems....

oc? =a+bd.
o c? =a’ + 2b2.
oc? =a’— b2
oc?=a?+ab+b?

o c? =a?+110ab + b2
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Possible Pythagorean Theorems....

o ¢? = a3 + b3. No: wrong dimensions.

o ¢? = a? + 2b2. No: asymmetric in a, b.

o c? =a® — b2. No: can be negative.

o c? = a? + ab + b?. Maybe: passes all tests.

o c2 =a? +110ab + b2. No: violatesa+ b > c.
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Dimensional Analysis Proof of the Pythagorean Theorem

b

© Area is a function of hypotenuse ¢ and angle x.
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Dimensional Analysis Proof of the Pythagorean Theorem

b

© Area is a function of hypotenuse ¢ and angle x.

o Area(c,x) = f(x)c? for some function f (similar triangles).
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Dimensional Analysis Proof of the Pythagorean Theorem

b

© Area is a function of hypotenuse ¢ and angle x.
o Area(c,x) = f(x)c? for some function f (similar triangles).

© Must draw an auxiliary line, but where? Need right angles!
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Dimensional Analysis Proof of the Pythagorean Theorem

o Area is a function of hypotenuse ¢ and angle x.
o Area(c,x) = f(x)c? for some function f (CPCTC).
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Dimensional Analysis Proof of the Pythagorean Theorem

o Area is a function of hypotenuse ¢ and angle x.
o Area(c,x) = f(x)c? for some function f (CPCTC).
© Must draw an auxiliary line, but where? Need right angles!

o f(x)a? +f(x)b? = f(x)c?
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Dimensional Analysis Proof of the Pythagorean Theorem

o Area is a function of hypotenuse ¢ and angle x.
o Area(c,x) = f(x)c? for some function f (CPCTC).
© Must draw an auxiliary line, but where? Need right angles!

of(x)a +f(x)b? = f(x)c? = a?+b? =c?,
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Dimensional Analysis and the Pendulum

S

Length: L: meters

Acceleration: g: meters/sec? g
Mass: m: kilograms

Period: T: seconds

Angle: x: radians
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Dimensional Analysis and the Pendulum

S

Length: L: meters

Acceleration: g: meters/sec? g
Mass: m: kilograms

Period: T: seconds

Angle: x: radians

Period: Need combination of quantities to get seconds.
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Dimensional Analysis and the Pendulum

S

Length: L: meters

Acceleration: g: meters/sec? g
Mass: m: kilograms

Period: T: seconds

Angle: x: radians

Period: Need combination of quantities to get seconds.

T = f(X)/L/g.
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Conclusion

© Math is not complete — explore and conjecture!
o Different proofs highlight different aspects.

o Get a sense of what to try / what might work.
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Sabermetrics

Sabermetrics is the art of applying mathematics and statistics
to baseball.

Danger: not all students like sports (Red Sox aren’t making life
easier!).

Lessons: not just for baseball; try to find the right statistics that
others miss, competitive advantage (business, politics).
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Estimating Winning Percentages

Assume team A wins p percent of their games, and team B
wins g percent of their games. Which formula do you think
does a good job of predicting the probability that team A beats
team B? Why?

pP+pg p+pg
P+q+2pq° p-+q-—2pg

P —pQ P —pq
P+dq+2pg° p+4q-—2pq
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Estimating Winning Percentages

p +pq P+ pq P —pq P —pq
p+a+2pq’ p+q-—2pq’ p+a+2pq’ p-+9g-—2pq

How can we test these candidates?

Can you think of answers for special choices of p and q?
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Estimating Winning Percentages

p +pq P+ pg P —pq P —pq
p+a+2pq’ p+q-—2pg’ p+a+2pq’ p-+9g-—2pq

Homework: explore the following:
op =1, q < 1(do notwant the battle of the undefeated).

op =0, q > 0 (do not want the Toilet Bowl).
op=4d.
op>q(candoqg<1l/2andq > 1/2).

o Anything else where you ‘know’ the answer?
A0)
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Estimating Winning Percentages

P +pq P+ pq P —pq P — pq
p+a+2pq’ p+q—2pq’ p+a+2pq’ p-+qg-—2pq

Homework: explore the following:
op =1, q < 1(do notwant the battle of the undefeated).

op =0, q > 0 (do not want the Toilet Bowl).
op=4d.
op>q(candoqg<1l/2andq > 1/2).

o Anything else where you ‘know’ the answer?
1
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Estimating Winning Percentages

p—pq p(l—q)

p+q—2pq p(l—a)+(1-p)

Homework: explore the following:
op =1, q < 1(do not want the battle of the undefeated).

op =0, q > 0 (do not want the Toilet Bowl).
op=4d.
op>q(candoqg<1l/2andq > 1/2).

o Anything else where you ‘know’ the answer?
QD
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Estimating Winning Percentages: ‘Proof’

Start

A has a good game with probability p

B has a good game with probability q

| Figure: First see how A doesi then B.
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Estimating Winning Percentages: ‘Proof’

Start

®
- \
® @

A has a bad game A has good game

i Figure: Two Eossibilities: A has a good dan or A doesn't.
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Estimating Winning Percentages: ‘Proof’

Start
®
V \
@ @
A has a bad game A has good game
ILI/ \ 1_q/ \
® @ @ ®
Bhasabad game Bhasa good game Bhasabad game Bhasa good game

| Figure: B has a good day, or doesn't.
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Estimating Winning Percentages: ‘Proof’

Start
®
- \
® L
A has a bad game A has good game
'[q/ X 1_5/ \
® ® ® ®
Bhasabad game Bhasa good game Bhasabad game Bhasa good game
Play again A loses A wins Play again

(1-p)q p(-q

| Figure: Two Eaths terminatei two start again.
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Estimating Winning Percentages: ‘Proof’

Start
¢
. \
@
A has a bad game A has good game
I_q/ \ I_q/ \
® @ ® @
Bhasabad game Bhasagood game Bhasabadgame Bhasagood game
Play again Aloses A wins Play again
(1pq p(1q)
p(1-q) pP-pPq
Probability A wins is } -
p{1-gt +(1-p) g p+g-2pq

| Figure: Probabilitx A beats B.
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Lessons

Special cases can give clues.
Algebra can suggests answers.

Better formula: Bill James’ Pythagorean Won-Loss formula.
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Numerical Observation: Pythagorean Won-Loss Formula

Parameters

@ RSy average number of runs scored per game;
@ RAus: average number of runs allowed per game;
@ ~: some parameter, constant for a sport.

James’ Won-Loss Formula (NUMERICAL Observation)

Rsobs’y

Won — Loss Percentage =

Rsobs7 + RAobs’y

~ originally taken as 2, numerical studies show best ~ is about
1.82. Used by ESPN, MLB.

See http://arxiv.org/abs/ mat h/ 0509698 for a
‘derivation’.
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Sums of Integers

A1
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Sums of Integers

Sp = 1+424--4n =

Proof 1: Induction.
Proof 2. Grouping:
2S5, = (l+n)+(2+(n—1))+---+(n+1).

A7
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Sums of Integers

Sy, = 1+2+---4+n =
Proof 1: Induction.
Proof 2. Grouping:
2S5, = (l+n)+(2+(n—1))+---+(n+1).

Instead of determining sum useful to get sense of size.

AR
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Sums of Integers

Sy = 14+2+---4n =

Proof 1: Induction.

Proof 2. Grouping:

2Sh = (L+n)+ 2+ —1))+---+(n+1).

Instead of determining sum useful to get sense of size.

Have 35 < S, < n;thus S, is between n?/4 and n?, have the
correct order of magnitude of n.

A
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Sums of Integers

Sp = 1+424--4n =

Proof 1: Induction.
Proof 2. Grouping:
2S5, = (l+n)+(2+(n—1))+---+(n+1).

Instead of determining sum useful to get sense of size.

Have 35 < S, < n;thus S, is between n?/4 and n?, have the
correct order of magnitude of n.

Can improve: divide and conquer again: lather, rinse, repeat....
nn n2n n3n 2
i —n° < S,.
24722 Tag S5 ® g = S
AT
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Geometric Irrationality Proofs:

a-b b
Figure: Geometric proof of the irrationality of /2.

A
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Geometric Irrationality Proofs:

a

Figure: Geometric proof of the irrationality of /3

A
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Geometric Irrationality Proofs:

.a-2b
S

b

Figure: Geometric proof of the irrationality of v/5.

A
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Geometric Irrationality Proofs:

A

fa-2b4

Figure: Geometric proof of the irrationality of /5: the kites, triangles
and the small pentagons.

A
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Other Gems
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Geometric Irrationality Proofs:

-t Fb—{\

| a |

Figure: Geometric proof of the irrationality of v/6.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (57 1).
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The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (57 1).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (1) ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (57 1).

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (1) ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C =8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5P ). Solved x; +--- +xp = C, x; > 0.

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (1) ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C =8, P = 5):

D
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