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Introduction
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Goals of the Talk

Generalize Zeckendorf decompositions

Analyze gaps (in the bulk and longest)

Power of generating functions

Some open problems (if time permits)
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Previous Results

Central Limit Type Theorem [KKMW]

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is Gaussian
(normal).

Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.

8



Intro Bulk Gaps Longest Gap Future Research References

Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.
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Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf
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Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf

Lekkerkerker: Average number summands is CLekn + d .
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Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf

Lekkerkerker: Average number summands is CLekn + d .

Central Limit Type Theorem
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Gaps Between Summands
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Distribution of Gaps

For Hi1 + Hi2 + · · ·+ Hin , the gaps are the differences:

in − in−1, in−1 − in−2, . . . , i2 − i1.

14



Intro Bulk Gaps Longest Gap Future Research References

Distribution of Gaps

For Hi1 + Hi2 + · · ·+ Hin , the gaps are the differences:

in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For H1 + H8 + H18, the gaps are 7 and 10.
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Distribution of Gaps

For Hi1 + Hi2 + · · ·+ Hin , the gaps are the differences:

in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For H1 + H8 + H18, the gaps are 7 and 10.

Definition
Let Pn(m) be the probability that a gap for a decomposition in
[Hn,Hn+1) is of length m.
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Distribution of Gaps

For Hi1 + Hi2 + · · ·+ Hin , the gaps are the differences:

in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For H1 + H8 + H18, the gaps are 7 and 10.

Definition
Let Pn(m) be the probability that a gap for a decomposition in
[Hn,Hn+1) is of length m.

Big Question: What is P(m) = limn→∞ Pn(m)?
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Main Results

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/φk for k ≥ 2, with
φ = 1+

√
5

2 the golden mean.

Theorem (Zeckendorf Gap Distribution (SMALL 2012))

Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/φk for k ≥ 2.
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Main Results

Theorem (Zeckendorf Gap Distribution (SMALL 2012))

Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/φk for k ≥ 2.

Theorem
Let Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn+1−L be a positive linear
recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L. Then
P(j) =















1 − ( a1
CLek

)(λ−n+2
1 − λ−n+1

1 + 2λ−1
1 + a−1

1 − 3) : j = 0

λ−1
1 ( 1

CLek
)(λ1(1 − 2a1) + a1) : j = 1

(λ1 − 1)2
(

a1
CLek

)

λ−j
1 : j ≥ 2
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi ,i+k

Fn−1
n

φ2+1

.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have Fi , don’t
have Fi−1. Follows by Zeckendorf: like the interval [Fi ,Fi+1) as
have Fi , number elements is Fi+1 − Fi = Fi−1.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have Fi , don’t
have Fi−1. Follows by Zeckendorf: like the interval [Fi ,Fi+1) as
have Fi , number elements is Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Have Fn, don’t have Fi+k+1. Like Zeckendorf with potential
summands Fi+k+2, . . . ,Fn. Shifting, like summands
F1, . . . ,Fn−k−i−1, giving Fn−k−i−2.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices. Why? Have Fi , don’t
have Fi−1. Follows by Zeckendorf: like the interval [Fi ,Fi+1) as
have Fi , number elements is Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Have Fn, don’t have Fi+k+1. Like Zeckendorf with potential
summands Fi+k+2, . . . ,Fn. Shifting, like summands
F1, . . . ,Fn−k−i−1, giving Fn−k−i−2.

So total choices number of choices is Fn−k−2−iFi−1.
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Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.

28



Intro Bulk Gaps Longest Gap Future Research References

Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.

P(k) = C/φk for some constant C, so P(k) = 1/φk .
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Proof sketch of almost sure convergence

m =
∑k(m)

j=1 Fij ,

νm;n(x) = 1
k(m)−1

∑k(m)
j=2 δ

(

x − (ij − ij−1)
)

.

µm,n(t) =
∫

x t dνm;n(x).

Show Em[µm;n(t)] equals average gap moments, µ(t).

Show Em[(µm;n(t) − µ(t))2] and Em[(µm;n(t)− µ(t))4] tend
to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2)
use Xi ,i+g1,j ,j+g2

.
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Longest Gap
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Question

Given a random number m in the interval [Fn,Fn+1), what is the

probability that m has longest gap equal to r?
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For the Fibonacci Recurrence

Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ
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For the Fibonacci Recurrence

Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ

Immediate Corollary: If f (n) grows slower or faster than
log n/ logφ, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ
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Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ

From this analysis we get the mean:

µn =
log
(

φ2

φ2+1)n
)

logφ
+

γ

logφ
− 1

2
+ ErrorMC + ǫ1(n),

where ǫ(n) → 0 for large n.
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Fibonacci Case Generating Function

Let G(n, k , f ) be the number of m in [Fn,Fn+1) that have k
nonzero summands in their Zeckendorf Decomposition and all
gaps less than f (n).

37



Intro Bulk Gaps Longest Gap Future Research References

Fibonacci Case Generating Function

Let G(n, k , f ) be the number of m in [Fn,Fn+1) that have k
nonzero summands in their Zeckendorf Decomposition and all
gaps less than f (n).

G(n, k , f ) is the coefficient of xn for the generating function

1
1 − x





f (n)−2
∑

j=2

x j





k−1

38
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The Combinatorics

Why the nth coefficient of 1
1−x

[

∑f (n)−1
j=2 x j

]k−1
?
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The Combinatorics

Why the nth coefficient of 1
1−x

[

∑f (n)−1
j=2 x j

]k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The gaps
uniquely identify m because of Zeckendorf’s Theorem! And we
have the following:
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The Combinatorics

Why the nth coefficient of 1
1−x

[

∑f (n)−1
j=2 x j

]k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The gaps
uniquely identify m because of Zeckendorf’s Theorem! And we
have the following:

The sum of the gaps of x is ≤ n.
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The Combinatorics

Why the nth coefficient of 1
1−x

[

∑f (n)−1
j=2 x j

]k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The gaps
uniquely identify m because of Zeckendorf’s Theorem! And we
have the following:

The sum of the gaps of x is ≤ n.

Each gap is ≥ 2.
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The Combinatorics

Why the nth coefficient of 1
1−x

[

∑f (n)−1
j=2 x j

]k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The gaps
uniquely identify m because of Zeckendorf’s Theorem! And we
have the following:

The sum of the gaps of x is ≤ n.

Each gap is ≥ 2.

Each gap is < f (n).
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The Combinatorics

G(n, k , f ) is the number of ways to choose k gaps between 2
and f (n)− 1, that add up to ≤ n .
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The Combinatorics

G(n, k , f ) is the number of ways to choose k gaps between 2
and f (n)− 1, that add up to ≤ n .

Ie: the nth coefficient of

1
1 − x

[

x2 + · · · + x f (n)−2
]k−1

=
x2(k−1)

1 − x

(

1 − x f (n)−3

1 − x

)k−1

.
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The Combinatorics

G(n, k , f ) is the number of ways to choose k gaps between 2
and f (n)− 1, that add up to ≤ n .

Ie: the nth coefficient of

1
1 − x

[

x2 + · · · + x f (n)−2
]k−1

=
x2(k−1)

1 − x

(

1 − x f (n)−3

1 − x

)k−1

.

For fixed k , this is surprisingly hard to analyze. We only care
about the sum over all k.
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The Generating Function

If we sum over k we get the total number of m ∈ [Fn,Fn+1)
with longest gap < f (n), call it G(n, f ).
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The Generating Function

If we sum over k we get the total number of m ∈ [Fn,Fn+1)
with longest gap < f (n), call it G(n, f ). It’s the nth coefficient of

F (x) =
1

1 − x

∞
∑

k=1

(

x2 − x f−2

1 − x

)k−1

=
x

1 − x − x2 + x f (n)
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The Generating Function

If we sum over k we get the total number of m ∈ [Fn,Fn+1)
with longest gap < f (n), call it G(n, f ). It’s the nth coefficient of

F (x) =
1

1 − x

∞
∑

k=1

(

x2 − x f−2

1 − x

)k−1

=
x

1 − x − x2 + x f (n)

Use partial fractions and Rouché to find the CDF.
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Partial Fractions

Write the roots of x f − x2 − x − 1 as {αi}f
i=1. We can write our

generating function

F (x) =
x

1 − x − x2 + x f (n)
=
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Partial Fractions

Write the roots of x f − x2 − x − 1 as {αi}f
i=1. We can write our

generating function

F (x) =
x

1 − x − x2 + x f (n)
=

f (n)
∑

i=1

−αi

f (n)αf (n)
i − 2α2

i − αi

∞
∑

j=1

(

x
αi

)j

.
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Partial Fractions

Write the roots of x f − x2 − x − 1 as {αi}f
i=1. We can write our

generating function

F (x) =
x

1 − x − x2 + x f (n)
=

f (n)
∑

i=1

−αi

f (n)αf (n)
i − 2α2

i − αi

∞
∑

j=1

(

x
αi

)j

.

We can take the nth coefficient of this expansion to find the
number of y with gaps less than f (n).
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Partial Fractions

Divide the number of m ∈ [Fn,Fn+1) with longest gap

< f (n), by the total number of m, which is Fn+1 − Fn ∼ 1√
5
φn.
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Partial Fractions

Divide the number of m ∈ [Fn,Fn+1) with longest gap

< f (n), by the total number of m, which is Fn+1 − Fn ∼ 1√
5
φn.

Theorem (Exact CDF)

The proportion of m ∈ [Fn,Fn+1) with L(x) < f (n) is exactly

f (n)
∑

i=1

−
√

5(αi)

f (n)αf (n)
i − 2α2

i − αi

(

1
αi

)n+1 1
(φn − (−1/φ)n)

54



Intro Bulk Gaps Longest Gap Future Research References

Partial Fractions

Divide the number of m ∈ [Fn,Fn+1) with longest gap

< f (n), by the total number of m, which is Fn+1 − Fn ∼ 1√
5
φn.

Theorem (Exact CDF)

The proportion of m ∈ [Fn,Fn+1) with L(x) < f (n) is exactly

f (n)
∑

i=1

−
√

5(αi)

f (n)αf (n)
i − 2α2

i − αi

(

1
αi

)n+1 1
(φn − (−1/φ)n)

Now, we find out about the roots of x f − x2 − x + 1.

55



Intro Bulk Gaps Longest Gap Future Research References

Rouché’s Theorem

A useful consequence of the argument principle is Rouché’s
Theorem:

Theorem (Rouché’s Theorem)

Suppose we have two functions f and g on a region K and that
|f (x)− g(x)| < |g(x)| for all x on the boundary δK . Then f and
g have the same number of roots inside K .
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Rouché and Roots

When f (n) is large z f (n) is very small, for |z| < 1. Thus, by
Rouché’s theorem from complex analysis:
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Rouché and Roots

When f (n) is large z f (n) is very small, for |z| < 1. Thus, by
Rouché’s theorem from complex analysis:

Lemma (Critical Root Behavior)

For f ∈ N and f ≥ 4, the polynomial pf (z) = z f − z2 − z + 1 has
exactly one root zf with |zf | < .9. Further, zf ∈ R and

zf =
1
φ
+
∣

∣

∣

z f
f

zf+φ

∣

∣

∣
, so as f → ∞, zf converges to 1

φ
.
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Rouché and Roots

When f (n) is large z f (n) is very small, for |z| < 1. Thus, by
Rouché’s theorem from complex analysis:

Lemma (Critical Root Behavior)

For f ∈ N and f ≥ 4, the polynomial pf (z) = z f − z2 − z + 1 has
exactly one root zf with |zf | < .9. Further, zf ∈ R and

zf =
1
φ
+
∣

∣

∣

z f
f

zf+φ

∣

∣

∣
, so as f → ∞, zf converges to 1

φ
.

We only care about the smallest root .
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Getting the CDF

As f grows, only one root goes to 1/φ. The other roots don’t
matter. So,
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Getting the CDF

As f grows, only one root goes to 1/φ. The other roots don’t
matter. So,

Theorem (Approximate Cumulative Distribution Function)

If limn→∞ f (n) = ∞, the proportion of m with L(m) < f (n) is, as
n → ∞

lim
n→∞

(φzf )
−n = lim

n→∞

(

1 +

∣

∣

∣

∣

∣

φz f (n)
f

φ+ zf

∣

∣

∣

∣

∣

)−n

.

If f (n) is bounded, then Pf = 0.
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Getting the CDF

As f grows, only one root goes to 1/φ. The other roots don’t
matter. So,

Theorem (Approximate Cumulative Distribution Function)

If limn→∞ f (n) = ∞, the proportion of m with L(m) < f (n) is, as
n → ∞

lim
n→∞

(φzf )
−n = lim

n→∞

(

1 +

∣

∣

∣

∣

∣

φz f (n)
f

φ+ zf

∣

∣

∣

∣

∣

)−n

.

If f (n) is bounded, then Pf = 0.

We can see the double exponential by taking logarithms, Taylor
expanding, and re-exponentiating.
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Mean/Variance

Note

µ =
n
∑

j=1

j( CDF (j)− CDF (j − 1) )

Using Partial Summation , Euler-Maclaurin, and evaluating the
resulting integrals, we calculate the mean and variance.
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Mean/Variance

Note

µ =
n
∑

j=1

j( CDF (j)− CDF (j − 1) )

Using Partial Summation , Euler-Maclaurin, and evaluating the
resulting integrals, we calculate the mean and variance.

µn =
log
(

φ2

φ2+1)n
)

logφ
+

γ

logφ
− 1

2
+ ErrorMC + ǫ1(n),

and

σ2
n =

π2

6 logφ
− 1

12
+ Error2

MC + ǫ2(n),

where ǫ1(n), ǫ2(n) go to zero in the limit.
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences ie: linear recurrences with
non-negative coefficients. WLOG:

Hn+1 = c1Hn−(j1=0) + c2Hn−j2 + · · · + cLHn−jL.

Theorem (Zeckendorf’s Theorem for PLRS recurrences)

Any b ∈ N has a unique legal decomposition into sums of Hn,
b = a1Hi1 + · · ·+ aik Hik .

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · · + (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+ · · · + x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · · + (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+ · · · + x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.

A geometric series!
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Let f > jL. The number of x ∈ [Hn,Hn+1), with longest gap < f
is given by the coefficient of sn in the generating function

F (s) =
1 − sjL

M(s) + sfR(s)
,

where
M(s) = 1 − c1s − c2sj2+1 − · · · − cLsjL+1,

and
R(s) = cj1+1sj1 + cj2+1sj2 + · · · + (cjL+1 − 1)sjL .

and ci and ji are defined as above .
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The coefficients in the partial fraction expansion might blow
up from multiple roots.
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The coefficients in the partial fraction expansion might blow
up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn,Hn+1), the mean longest gap µn and
the variance of the longest gap σ2

n are given by

µn =

log
(

R( 1
λ1

)

G( 1
λ1

)
n
)

logλ1
+

γ

logλ1
− 1

2
+ Error1

MC + ǫ1(n),

and

σ2
n =

π2

6 logλ1
− 1

12
+ Error2

MC + ǫ2(n),

where ǫi(n) tends to zero in the limit, and ErrorMC comes from
the Euler-Maclaurin Formula.
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Future Research
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Future Research

Future Research

Determine the distribution of the k(n)th longest gap, with
k(n) either constant or slowly growing in n.

Extend to recurrences with zero coefficients.

Generalize to signed decompositions
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