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Zeckendorf Decompositions

Definition (Zeckendorf Decompositions)
A Zeckendorf Decomposition is a way to write a natural
number as the sum of non-adjacent Fibonacci Numbers.

Theorem (Zeckendorf’s Theorem)
Every natural number has a unique Zeckendorf Decomposition.

Example: 335 = 13 + 89 + 233

Example: 1033 = 1 + 3 + 8 + 34 + 987
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Construction of Zeckendorf Diagonal Sequence

We construct a 2-dimensional sequence to motivate our
combinatorial analysis.

Set z0,0 = 1.

For each n ∈ N+, check if any downward/leftward path
sums to the number. If not, add the number to the
sequence so that it is added to the shortest unfilled
diagonal moving from the bottom right to the top left.
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Construction of Zeckendorf Diagonal Sequence



6992 · · · · · · · · · · · · · · · · · · · · · · · ·
2200 6054 · · · · · · · · · · · · · · · · · · · · ·
954 2182 5328 · · · · · · · · · · · · · · · · · ·
364 908 2008 5100 · · · · · · · · · · · · · · ·
138 342 862 1522 4966 · · · · · · · · · · · ·
44 112 296 520 1146 2952 · · · · · · · · ·
16 38 94 184 476 1102 2630 · · · · · ·
4 10 22 56 168 370 1052 2592 · · ·
1 2 6 18 46 140 366 1042 2270


Our goal is to enumerate how many paths are required for
a linear search of a Zeckendorf decomposition.
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Compound Jump Paths

Definition (Compound Jump Paths)
A compound jump path is a path on the lattice grid moving
only down and to the left, where movements may be greater
than one unit at a time in either direction.

We count compound jump paths from (a,b) to (0,0).

Let the number of compound jump paths from (a,b) to
(0,0) be denoted as qa,b.

Any compound jump path must include the use of (a,b)
and (0,0).

Let the number of compound jump paths from (a,b) to
(0,0) with k steps be denoted ra,b,k .
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Simple Jump Paths

Definition (Simple Jump Paths)
A simple jump path is a path on the lattice grid where each
movement on the lattice grid consists of at least one unit
movement to the left and one unit movement downward.

We count simple jump paths from (a,b) to (0,0).

Let the number of simple jump paths from (a,b) to (0,0)
be denoted sa,b.

Any simple jump path must include the use of (a,b) and
(0,0).

Let the number of simple jump paths from (a,b) to (0,0)
with k steps be denoted ta,b,k .
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Basic Identities

Lemma (Compound Jump Path Partition Lemma)

∀a,b ∈ N, qa,b =
∑a+b

k=1 ra,b,k .

Lemma (Simple Jump Path Partition Lemma)

∀a,b ∈ N, sa,b =
∑min{a,b}

k=1 ta,b,k .
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Basic Identities

Lemma (Enumerating Simple Jump Paths)

∀a,b ∈ N, k ∈ min{a,b}, ta,b,k =
(a−1

k−1

)(b−1
k−1

)
.

First factor is number of ways to group a objects into k
nonempty groups

Second factor is number of ways to group b objects into k
nonempty groups

Groupings are independently determined
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Preliminaries

Represents {t10,10,k}10
k=1

Special case: simple jump paths over a square lattice for
n = 10
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Preliminaries

Want to show convergence to a normal distribution as
n→∞

The distribution will be taken over values of k that give
legal jump paths for the given n.

Simple jump paths: k ∈ [n]
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Normal Distribution - Proof of Special Case

Densities: number of simple jump paths with a fixed
number of steps

Study square lattice, i.e. where a = b.
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Density, Mean, Standard Deviation

Theorem (Mean on Square Lattice)

∀n ∈ N+, µn+1,n+1 = 1
2n + 1 ∼ n

2 .

Derive directly from definition of first moment

Use index shift
∑n+1

k=1 k
( n

k−1

)2
=
∑n

k=0 k
(n

k

)2
+
∑n

k=0
(n

k

)2

Use standard techniques for evaluating binomial
coefficients
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Density, Mean, Standard Deviation

Theorem (Standard Deviation on Square Lattice)

∀n ∈ N+, σn+1,n+1 = n
2
√

2(n−1)
∼
√

n
2
√

2
.

Derive directly from definition of second standardized
moment

Use index shift
∑n+1

k=1
(
k −

(1
2n + 1

))2 ( n
k−1

)2
=∑n

k=0(k + 1−
(1

2n + 1
)
)2(n

k

)2

Split into three sums via binomial expansion

Use standard techniques for evaluating binomial
coefficients
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Stirling Formula Expansion

Density function: fn(k + 1) :=
tn+1,n+1,k+1

sn+1,n+1
=

(n
k)

2

(2n
n )

Simplifying binomial coefficients gives (n!)4

(k!)2((n−k)!)2(2n)!

Use Stirling’s Approximation on each factor:
m! ∼ mme−m

√
2πm
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Stirling Formula Expansion

End result of Stirling expansion is
fn(k + 1) = n2n

k2k ·(n−k)2n−2k ·22n· 14 ·
√

4πn

Let Pn(k + 1) := nn

kk (n−k)n−k 2n and Sn(k + 1) = 1
1
2

√
πn

,

then fn(k + 1) = Pn(k + 1)2Sn(k + 1).

Let k := µn+1,n+1 + xσn+1,n+1, then
fn(k +1)dk = fn(µn+xσn+1)σndx ∼ fn(µn+xσn+1)

√
n

2 dx
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Gaussianity Calculation

Apply logarithm to Pn(k + 1) = nn

kk (n−k)n−k 2n :

logPn(k +1) = n log(n)−k log(k)− (n−k) log(n−k)−n log(2)

Rewrite k = n
2 + x

√
n

2
√

2
= n

2

(
1 + x√

2n

)
to expand log(k) and

log(n − k):

log(k) = log

(
n
2

(
1− x√

2n

))
≈ log(n)−log(2)+log

(
1− x√

2n

)

log(n−k) = log

(
n
2

(
1 +

x√
2n

))
≈ log(n)−log(2)+log

(
1 +

x√
2n

)
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Gaussianity Calculation

Substitute logarithm expansions and approximate
log
(

1 + x√
2n

)
and log

(
1− x√

2n

)
to second order to conclude

logPn(k + 1) ∼ −n
2
log

(
1− x2

2n

)
− x
√

n
2

(
x√
n
+ O

(
1

n
3
2

))
Approximate log

(
1− x2

2n

)
up to second order:

−n
2

(
− x2

2n
+ O

(
1
n2

))
− x
√

n
2

(
x√
n
+ O

(
1

n
3
2

))
∼ −x2

4



Outline Introduction Motivation Jump Paths Data and Identities Gaussianity Future Work Acknowledgments

Gaussianity Calculation

It follows that

Pn(k + 1) ∼ e−
x2
4 ⇒ Pn(k + 1)2 ∼ e−

x2
2 ⇒

fn(k + 1) ∼ e−
x2
2

√
2π

Normal distribution, mean 0, standard deviation 1.
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Finish generalizations of Gaussian convergence: simple
jump paths where a 6= b

Generalize result to compound jump paths
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