Fibonacci Quilt Sequences

Legal Index Difference Sequence

Recurrence Theorem

Future Work Acknowled

S-Legal Index Difference Sequences

Guilherme Zeus Dantas e Moura Andrew Keisling Annika Mauro zeusdanmou@gmail.com keislina@umich.edu amauro@stanford.edu

SMALL REU 2022 at Williams College Joint work with Astrid Lilly, Steven J. Miller, Matthew Phang and Santiago M. Velazquez lannuzzelli

> Joint Mathematics Meetings Boston, January 7th, 2023

AMS-SIAM Special Session on Research in Mathematics by Undergraduates and Students in Post-Baccalaureate Programs III

Let
$$F_1 = 1$$
, $F_2 = 2$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Theorem (Zeckendorf)

Every non-negative integer has a unique decomposition as a sum of distinct non-consecutive Fibonacci numbers.

Equivalent Definition (Fibonacci sequence)

Let F_n be the smallest positive integer which cannot be written as as a sum of non-consecutive terms in $\{F_1, \ldots, F_{n-1}\}$.

Interpretation of consecutiveness

We put the Fibonacci sequence in a 1D array of boxes.

F_1	F_2	F ₃	F ₄	F_5	F ₆	F ₇	F ₈]
-------	-------	----------------	----------------	-------	----------------	----------------	----------------	---

1	2	3	5	8	13	21	34	
---	---	---	---	---	----	----	----	--

A legal decomposition does not have summands that correspond to boxes sharing an edge.

Fibonacci Quilt Sequences oooooooooo	S-Legal Index Difference Sequences	Recurrence Theorem	Future Work o	Acknowledgments o
Why stop at	1D?			

<i>F</i> ₁	F_2	F ₃	F ₄	F_5	F ₆	F ₇	F ₈	
-----------------------	-------	----------------	----------------	-------	----------------	----------------	----------------	--

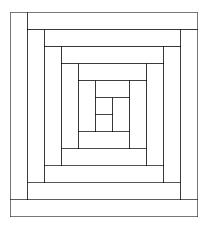
But, an 1D array of boxes is boring...

Catral, Ford, Harris, Nelson, and Miller decided to use the Fibonacci spiral instead, and defined a new sequence.

 Fibonacci Quilt Sequences
 S-Legal Index Difference Sequences
 Recurrence Theorem
 Future Work
 Acknowledgments

 000000000
 0000000
 00000
 0000
 0
 0

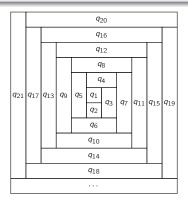
The Fibonacci... spiral?



The Fibonacci quilt sequence

Definition (Fibonacci quilt sequence; CFHMN, 2020)

Let q_n be the smallest positive integer which cannot be written as as a sum of non-adjacent terms in $\{q_1, \ldots, q_{n-1}\}$. Two terms are adjacent if their boxes share an edge in the quilt.

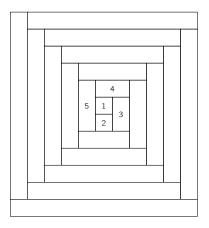


S-Legal Index Difference Sequences

Recurrence Theorem

Future Work Acknowledgmen

Computing the Fibonacci quilt sequence



All legal sums with at least two elements are at least 6, thus:

$$q_1 = 1,$$

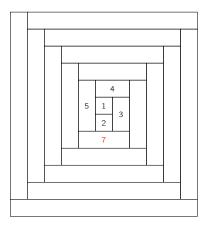
 $q_2 = 2,$
 $q_3 = 3,$
 $q_4 = 4,$
 $q_5 = 5.$

S-Legal Index Difference Sequences

Recurrence Theorem

Future Work Acknowledgme

Computing the Fibonacci quilt sequence



The possible legal sums using $\{1, 2, 3, 4, 5\}$ are:

$$1 = 1,
2 = 2,
3 = 3,
4 = 4,
5 = 5,
6 = 2 + 4,$$

$$8 = 3 + 5.$$

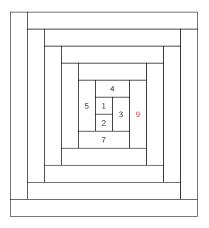
Thus, $q_6 = 7$.

S-Legal Index Difference Sequences

Recurrence Theorem

Future Work Acknowledgm

Computing the Fibonacci quilt sequence



The possible legal sums using $\{1, 2, 3, 4, 5, 7\}$ are:

$$1 = 1,$$

 $2 = 2,$

$$3 = 3,$$

 $4 = 4,$
 $5 = 5$

$$6 = 2 + 4,$$

 $7 = 7,$
 $2 + 5 = 1 + 5$

$$3 = 3 + 5 = 1 + 7$$
,

$$11 = 4 + 7.$$

Thus,
$$q_7 = 9$$
.

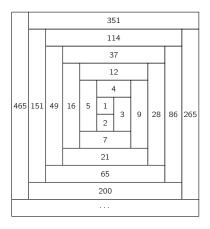
Fibonacci Quilt Sequences

5-Legal Index Difference Sequence

Recurrence Theore

Future Work Acknowledg

Computing the Fibonacci quilt sequence



And so on...

Fibonacci Quilt Sequences ooooooooooo	S-Legal Index Difference Sequences	Recurrence Theorem	Future Work o	Acknowledgments o
Recurrence				

The behavior of the Fibonacci quilt sequence is well understood:

Proposition (CFHMN, 2020)

Let q_n be the Fibonacci quilt sequence. For $n \ge 5$,

$$q_{n+1} = q_n + q_{n-4}.$$

Recurrence Theorem

Future Work Acknowledgme

The triangular quilt sequence

Definition (Triangular quilt sequence; SMALL '22)

Let t_n be the smallest positive integer which cannot be written as as a sum of non-adjacent terms in $\{t_1, \ldots, t_{n-1}\}$. Two terms are adjacent if their boxes share an edge in the Padovan spiral.

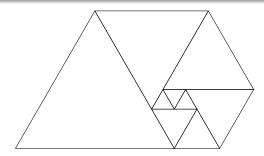


Figure: The Padovan Spiral.

Computing the triangular quilt sequence

We were able to compute the first 50 terms of the triangular quilt sequence.

Question

Like the Fibonacci quilt sequence, does the triangular quilt sequence follow a recurrence?

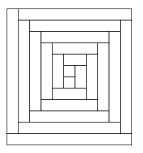
Surprising answer: Based on the first terms, apparently no.

Bonus fact: This sequence is not listed (yet) on the Online Encyclopedia of Integer Sequences.

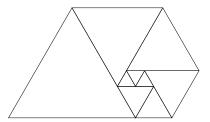
Fibonacci Quilt Sequences S-Legal Index Difference Sequences Recurrence Theorem ocooco Acknowledgments

Simplifying the quilt sequences

Studying 2D constructions is hard. Let's simplify adjacency.



Boxes q_i and q_j are adjacent iff $|i - j| \in \{1, 3, 4\}$ or $\{i, j\} = \{1, 3\}.$



Triangles t_j and t_i are adjacent iff $|i - j| \in \{1, 5\}$ or $\{i, j\} = \{1, 4\}.$

Simplifying the quilt sequences

Fibonacci quilt sequence:

Boxes q_i and q_j are adjacent iff $|i - j| \in \{1, 3, 4\}$ or $\{i, j\} = \{1, 3\}.$

Fibonacci quilt-like sequence:

 a_i and a_j are adjacent iff $|i - j| \in \{1, 3, 4\}$.

Triangular quilt sequence:

Triangles t_j and t_i are adjacent iff $|i - j| \in \{1, 5\}$ or $\{i, j\} = \{1, 4\}.$

Triangular quilt-like sequence:

 a_j and a_i are adjacent iff $|i - j| \in \{1, 5\}$.

S-LID decompositions

Fix a set S of positive integers. (For example, $\{1, 3, 4\}$ or $\{1, 5\}$.)

Definition (S-LID decomposition)

An *S*-Legal Index Difference (*S*-LID) decomposition using $\{a_i\}_{i \in I \subseteq \mathbb{Z}_{>0}}$ is a sum of the form

$$N = \sum_{\ell \in L} a_{\ell}$$

for finite $L \subseteq I$ such that $|\ell_1 - \ell_2| \notin S$ for all $\ell_1, \ell_2 \in L$.

Example

Let
$$S = \{2\}$$
 and $\{a_i\}_{i \in I} = \{a_1, a_2, a_3, a_4\}$. Then

- $a_1 + a_2$ is an S-LID decomposition using $\{a_i\}_{i \in I}$,
- a₁ + a₂ + a₃ is not an S-LID decomposition using {a_i}_{i∈I} because |3 − 1| = 2 ∈ S.

We use S-LID decompositions to construct a sequence.

Definition (S-LID sequence)

The *S*-**LID sequence** $\{a_i\}_{i=1}^{\infty}$ is defined by:

a_n is the smallest positive integer that does not have an S-LID decomposition using {a_i}ⁿ⁻¹_{i=1}.

Example

- The {}-LID sequence is $\{2^{i-1}\}_{i=1}^{\infty}$,
- The $\{1\}$ -LID sequence is the Fibonacci sequence,
- Understanding the {1, 3, 4} and {1, 5}-LID sequences will help us understand the Fibonacci and triangular quilt sequences.

Fibonacci Quilt Sequences	S-Legal Index Difference Sequences 00●00000	Recurrence Theorem	Future Work o	Acknowledgments o
Lower bound				

Lemma

Let $\{a_i\}_{i=1}^{\infty}$ be the S-LID sequence, and let $k = \max S$. Then, for all $n \ge k + 1$,

$$a_{n+1} \geq a_n + a_{n-k}.$$

To prove it, we show that all numbers smaller than $a_n + a_{n-k}$ have an *S*-LID decomposition using a_1, \ldots, a_n .

- 0 has S-LID decomposition using a_1, \ldots, a_{n-k-1} .
- 1 has S-LID decomposition using a_1, \ldots, a_{n-k-1} .

•

• $a_{n-k} - 1$ has S-LID decomposition using a_1, \ldots, a_{n-k-1} .

We add a_n to each decomposition. Since indexes n and n - k - 1 are more than $k = \max S$ apart, we obtain S-LID decompositions.

- numbers $< a_n$ have S-LID decompositions using a_1, \ldots, a_{n-1} .
- a_n has S-LID decomposition using a_1, \ldots, a_n .

•

- $a_n + 1$ has S-LID decomposition using a_1, \ldots, a_n .
- $a_n + a_{n-k} 1$ has S-LID decomposition using a_1, \ldots, a_n .

Since a_{n+1} is the smaller number without a *S*-LID dec. using a_1, \ldots, a_n , thus

$$a_{n+1} \geq a_n + a_{n-k}.$$

Fibonacci Quilt Sequences

S-Legal Index Difference Sequences

Recurrence Theorem

Future Work Acknowledgmen

Equality of lower bound $(a_{n+1} \ge a_n + a_{n-k})$

Example

The {1}-LID sequence (k = 1) is the Fibonacci sequence, which satisfies

$$a_{n+1}=a_n+a_{n-1}.$$

Recurrence Theorem

Equality of lower bound $(a_{n+1} \ge a_n + a_{n-k})$

Example

The first terms of the $\{1, 2, 4\}$ -LID sequence (k = 4) are

- $a_1 + a_5 = 1 + 6 = 7 = a_6$
- $a_2 + a_6 = 2 + 7 = 9 = a_7$
- $a_3 + a_7 = 3 + 9 = 12 = a_8$
- and so on... (up to our computing power, $n \approx 50$)

Recurrence Theorem

Weirdness of lower bound $(a_{n+1} \ge a_n + a_{n-k})$

Example

The first terms of the $\{1, 5\}$ -LID sequence (k = 5) are

$$a_{3} + a_{8} = 3 + 21 = 24 = a_{9}$$

$$a_{4} + a_{9} = 5 + 24 < 43 = a_{10}$$

$$a_{5} + a_{10} = 8 + 43 = 51 = a_{11}$$

$$a_{6} + a_{11} = 13 + 51 < 67 = a_{12}$$

$$a_{7} + a_{12} = 14 + 67 < 105 = a_{13}$$
For $6 \le n \le 47$,

 $a_{n+1} = a_n + a_{n-5}$

iff $n \in \{6, 8, 10, 21, 23, 25, 27, 29, 34, 36, 38, 40, 42, 44, 46\}$.

Fibonacci Quilt Sequences S-Legal Index Difference Sequences Recurrence Theorem of Acknowledgmen

Dream False Theorem

Dream Goal (this may be false)

The S-LID sequence $(k = \max S)$ satisfies

$$a_{n+1} = a_n + a_{n-k}$$

for all sufficiently large n.

Still, the $\{1, 2, ..., k\}$ -LID sequence and a couple others satisfy

$$a_{n+1} = a_n + a_{n-k}$$

for all sufficiently large *n*.

Recurrence Theorem

Theorem (SMALL '22)

Fix any finite set T of positive integers with $c = \max T$. Let $k \gg 0$, and $S = \{1, ..., k\} \setminus (k - T)$. Then, the S-LID sequence satisfies

$$a_{n+1} = a_n + a_{n-k}$$

for all n > k + c.

Proof is by simultaneous induction on three statements:

$$\begin{array}{lll} A(n): & a_{n+1} &= a_n + a_{n-k}, \\ B(n): & a_n + a_{n-k} > a_{n-1} + a_{n-1-(k-c)} + a_{n-1-2(k-c)} + \cdots, \\ C_d(n): & a_{n+1} + a_n > a_{n+c} + a_{n-d}. \end{array}$$

To prove that $a_{n+1} = a_n + a_{n-k}$ in certain cases, we bound the largest possible *S*-LID decomposition using a_1, \ldots, a_n .

Lemma

For any finite set S and c > 0, if $k = \max S$, then for all $n \ge 1$ we have

$$a_n > a_{n-(k-c)} + a_{n-2(k-c)} + \cdots$$

whenever $k \geq 2(c+1)$.

We prove this by iteratively applying the lower bound lemma.

Bounding possible sums

Using the previous lemma and the inequality

$$C_d(n-k-1)$$
: $a_{n-k}+a_{n-k-1} > a_{n-k-1+c}+a_{n-k-1-d}$,

where d > 0 is a constant not depending on k, we obtain

$$B(n): a_n + a_{n-k} > a_{n-1} + a_{n-1-(k-c)} + a_{n-1-2(k-c)} + \cdots$$

The RHS is an upper bound on any *S*-LID decomposition using a_1, \ldots, a_{n-1} , hence

$$A(n): \quad a_{n+1} = a_n + a_{n-k}.$$

Finishing the proof

Terms appearing in $C_d(n-k-1)$ are much farther back in the sequence than n, so we can prove it using the recurrence relation!

Theorem (SMALL '22)

Suppose that there exists d > 0 such that

•
$$k \ge 2d - 4c + 2$$
,

- $C_d(n)$ holds for $c + d + 1 \le n \le k + c + 1 + d$, and
- B(n) holds for $k + c + 1 \le n \le 2k + c + d + 2$.

Then

$$a_{n+1} = a_n + a_{n-k}$$

for all integers n > k + c.

We proved that these base cases hold for all $k \gg 0$ for fixed T.

Fibonacci Quilt Sequences 0000000000	S-Legal Index Difference Sequences	Recurrence Theorem	Future Work	Acknowledgments o
Future work				

- Understand behavior for *S* that do not give a recurrence relation, as well as infinite sets *S*.
- Study statistics for the number of *S*-LID decompositions of integers for fixed *S*.
- Find more efficient algorithms to generate *S*-LID sequences.

 Fibonacci Quilt Sequences
 S-Legal Index Difference Sequences
 Recurrence Theorem
 Future Work
 Acknowledgments

 Acknowledgments
 Acknowledgments
 Acknowledgments
 Acknowledgments
 Acknowledgments

Thank you!

This research was conducted as part of the **2022 SMALL REU program** at Williams College, and was funded by **NSF Grant DMS1947438** and **Williams College** funds. We thank our colleagues from the 2022 SMALL REU program for many helpful conversations.

arXiv: 2210.10577.