Dynamics of the Fibonacci Order of Appearance Map

Molly FitzGibbons¹, Steven J. Miller¹, Amanda Verga² Joint Mathematical Meetings, 4 January 2024

¹Williams College, ²Trinity College

Introduction

The **Fibonacci sequence** with initial conditions $F_0 = 0$ and $F_1 = 1$ is defined recursively for n > 1 as $F_n = F_{n-1} + F_{n-2}$.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...

The order of appearance z(n) for a natural n is the smallest positive integer ℓ such that $n | F_{\ell}$.

n	1	2	3	4	5	6	7	8	9	10	11	12
z(n)	1	3	4	6	5	12	8	6	12	15	10	12

Table 1: The order of appearance z(n)

Example

Let n = 4. Then z(4) = 6 and the 6^{th} Fibonacci number is 8, which is the first Fibonacci that divides 4.

A fixed point in the Fibonacci sequence occurs when z(n) = n.

n	1	2	3	4	5	6	7	8	9	10	11	12
z(n)	1	3	4	6	5	12	8	6	12	15	10	12

Table 2: Highlighted values are fixed points

Theorem (Marques) z(n) = n if and only if $n = 5^k$ or $n = 12 \cdot 5^k$ for some $k \ge 0$.

The **fixed point order** $z^k(n)$ for a natural n is the smallest positive integer k such that $z^k(n)$ is a fixed point. If n is a fixed point, the fixed point order is 0.

Fixed Point Order

 Table 3: Iterations of z on n, highlighted values are fixed points

Theorem (FMV)

For all positive integers k, there exist infinitely many n with fixed point order k.

Lemma (FMV) Suppose $z^k (5^a \cdot n) = c_k 5^{a_i}$, where $gcd(c_k, 5) = 1$. For all non-negative integers a, the coefficient c_k remains constant.

Lemma (FMV)

For all integers k and m with $k \ge 0, m \ge 4$ and $2k + 2 \le m$, we have

$$z^k(10^m) = 3 \cdot 5^m \cdot 2^{m-2k}.$$

Lemma 1

Lemma (FMV) Suppose $z^k (5^a \cdot n) = c_k 5^{a_i}$, where $gcd(c_k, 5) = 1$. For all non-negative integers a, the coefficient c_k remains constant.

Example Suppose n = 11. Observe that

 $z(11) = 10 = 10 \cdot 5^0$

 $z(11 \cdot 5) = z(55) = 10 = 10 \cdot 5^{0}$

 $z(11 \cdot 5^2) = z(275) = 50 = 10 \cdot 5^1$

$$z(11 \cdot 5^3) = z(1375) = 250 = 10 \cdot 5^2$$

Lemma 2

Lemma (FMV) For all integers k and m with $k \ge 0, m \ge 4$ and $2k + 2 \le m$, we have

$$z^k \left(10^m \right) = 3 \cdot 5^m \cdot 2^{m-2k}$$

Proof.

When k = 1

$$z(10^{m}) = \text{lcm}(z(2^{m}), z(5^{m})) = \text{lcm}(3 \cdot 2^{m-2}, 5^{m}) = 3 \cdot 5^{m} \cdot 2^{m-2}.$$

For k > 1

$$z^{k+1} (10^{m}) = z \left(z^{k} (10^{m}) \right)$$

= lcm $\left(z (3), z (5^{m}), z(2^{m-2k}) \right)$
= lcm $\left(4, 5^{m}, 2^{m-2k-2} \cdot 3 \right)$
= $3 \cdot 5^{m} \cdot 2^{m-2(k+1)}$ since $m \ge 2(k+1) + 2 = 2k + 4$

Theorem (FMV)

For all positive integers k, there exist infinitely many n with fixed point order k.

Proof. Let $r \in \mathbb{Z}_{>0}$ be arbitrary.

Case 1: n goes to a fixed point of the form 5^a in *k*-steps. Then $z^{k-1}(n) = c \cdot 5^b$ for $c, b \in \mathbb{Z}_{>0}$. Applying Lemma 1, we know $5^r \cdot n$ exactly *k* iterations to reach a fixed point.

Case 2: n goes to a fixed point of the form $12 \cdot 5^a$ in *k*-steps. Then $z^{k-1}(5^r \cdot n) = c \cdot 5^b$ for $c, b \in \mathbb{Z}_{>0}$. Thus, $5^r \cdot n$ requires exactly *k* iterations to reach a fixed point.

Future Directions

- 1. Where are fixed points located when initial conditions are varied?
- 2. How does $z^k(n)$ behave for related sequences?
 - e.g., Lucas numbers and Tribonacci sequence
- 3. For a given integer, can the fixed point order be bounded as a function of *n*?

k	1	2	3	4	5	6	7	8	9	10
n	1	4	3	2	11	89	1069	2137	4273	59833
FP	1	12	12	12	60	60	60	60	60	60

 Table 4: First n that takes k iterations to reach a fixed point

- 1. Jirí Klaška. "Donald Dines Wall's Conjecture". In: *Fibonacci Quarterly* 56.1 (Feb.2018), pp. 43–51.
- Diego Marques. "Fixed points of the order of appearance in the Fibonacci sequence". In: *Fibonacci Quarterly* 50.4 (Nov. 2012), pp. 346–352.
- Eva Trojovská. "On the Diophantine Equation z(n) = (2 - 1/k) n Involving the Order of Appearance in the Fibonacci Sequence". In: *Mathematics* 8.1 (Jan. 2020), pp. 124.
- Eva Trojovská. "On periodic points of the order of appearance in the Fibonacci sequence". In: *Mathematics* 8.5 (May 2020), pp. 773.

We thank our mentor Dr. Steven J. Miller. This work was supported by NSF Grants No. DMS-2241623, DMS-1947438, and DMS-2015553 while in residence at Williams College in Williamstown, MA during the SMALL REU.