Dynamics of the Fibonacci Order of Appearance Map

Molly FitzGibbons ${ }^{1}$, Steven J. Miller ${ }^{1}$, Amanda Verga ${ }^{2}$ Joint Mathematical Meetings, 4 January 2024
${ }^{1}$ Williams College, ${ }^{2}$ Trinity College

Introduction

The Fibonacci sequence with initial conditions $F_{0}=0$ and $F_{1}=1$ is defined recursively for $n>1$ as $F_{n}=F_{n-1}+F_{n-2}$.

$$
0,1,1,2,3,5,8,13,21,34,55, \ldots
$$

The order of appearance $z(n)$ for a natural n is the smallest positive integer ℓ such that $n \mid F_{\ell}$.

n	1	2	3	4	5	6	7	8	9	10	11	12
$z(n)$	1	3	4	6	5	12	8	6	12	15	10	12

Table 1: The order of appearance $z(n)$

Example

Let $n=4$. Then $z(4)=6$ and the $6^{\text {th }}$ Fibonacci number is 8 , which is the first Fibonacci that divides 4.

Fixed Points

A fixed point in the Fibonacci sequence occurs when $z(n)=n$.

n	1	2	3	4	5	6	7	8	9	10	11	12
$z(n)$	1	3	4	6	5	12	8	6	12	15	10	12

Table 2: Highlighted values are fixed points

Theorem (Marques)
$z(n)=n$ if and only if $n=5^{k}$ or $n=12 \cdot 5^{k}$ for some $k \geq 0$.
The fixed point order $z^{k}(n)$ for a natural n is the smallest positive integer k such that $z^{k}(n)$ is a fixed point. If n is a fixed point, the fixed point order is 0 .

Fixed Point Order

$n \backslash k$	1	2	3	4
1	1			
2	3	4	6	12
3	4	6	12	
4	6	12		
5	5			
6	12			
7	8	6	12	
8	6	12		
9	12			
10	15	20	30	60

Table 3: Iterations of z on n, highlighted values are fixed points

Infinitely Many Integers k-Steps Away

Theorem (FMV)

For all positive integers k, there exist infinitely many n with fixed point order k.

Lemma (FMV)
Suppose $z^{k}\left(5^{a} \cdot n\right)=c_{k} 5^{a_{i}}$, where $\operatorname{gcd}\left(c_{k}, 5\right)=1$. For all non-negative integers a, the coefficient c_{k} remains constant.

Lemma (FMV)
For all integers k and m with $k \geq 0, m \geq 4$ and $2 k+2 \leq m$, we have

$$
z^{k}\left(10^{m}\right)=3 \cdot 5^{m} \cdot 2^{m-2 k} .
$$

Lemma 1

Lemma (FMV)

Suppose $z^{k}\left(5^{a} \cdot n\right)=c_{k} 5^{a_{i}}$, where $\operatorname{gcd}\left(c_{k}, 5\right)=1$. For all
non-negative integers a, the coefficient c_{k} remains constant.
Example
Suppose $n=11$. Observe that

$$
\begin{gathered}
z(11)=10=10 \cdot 5^{0} \\
z(11 \cdot 5)=z(55)=10=10 \cdot 5^{0} \\
z\left(11 \cdot 5^{2}\right)=z(275)=50=10 \cdot 5^{1} \\
z\left(11 \cdot 5^{3}\right)=z(1375)=250=10 \cdot 5^{2}
\end{gathered}
$$

Lemma 2

Lemma (FMV)

For all integers k and m with $k \geq 0, m \geq 4$ and $2 k+2 \leq m$, we have

$$
z^{k}\left(10^{m}\right)=3 \cdot 5^{m} \cdot 2^{m-2 k}
$$

Proof.

When $k=1$

$$
z\left(10^{m}\right)=\operatorname{lcm}\left(z\left(2^{m}\right), z\left(5^{m}\right)\right)=\operatorname{lcm}\left(3 \cdot 2^{m-2}, 5^{m}\right)=3 \cdot 5^{m} \cdot 2^{m-2}
$$

For $k>1$

$$
\begin{aligned}
z^{k+1}\left(10^{m}\right) & =z\left(z^{k}\left(10^{m}\right)\right) \\
& =\operatorname{lcm}\left(z(3), z\left(5^{m}\right), z\left(2^{m-2 k}\right)\right) \\
& =\operatorname{lcm}\left(4,5^{m}, 2^{m-2 k-2} \cdot 3\right)
\end{aligned}
$$

$$
=3 \cdot 5^{m} \cdot 2^{m-2(k+1)} \quad \text { since } m \geq 2(k+1)+2=2 k+4
$$

Proof Sketch of Theorem

Theorem (FMV)

For all positive integers k, there exist infinitely many n with fixed point order k.

Proof.

Let $r \in \mathbb{Z}_{>0}$ be arbitrary.
Case 1: n goes to a fixed point of the form 5^{a} in k-steps. Then $z^{k-1}(n)=c \cdot 5^{b}$ for $c, b \in \mathbb{Z}_{>0}$. Applying Lemma 1, we know $5^{r} \cdot n$ exactly k iterations to reach a fixed point.

Case 2: n goes to a fixed point of the form $12 \cdot 5^{a}$ in k-steps. Then $z^{k-1}\left(5^{r} \cdot n\right)=c \cdot 5^{b}$ for $c, b \in \mathbb{Z}_{>0}$. Thus, $5^{r} \cdot n$ requires exactly k iterations to reach a fixed point.

Future Directions

1. Where are fixed points located when initial conditions are varied?
2. How does $z^{k}(n)$ behave for related sequences?

- e.g., Lucas numbers and Tribonacci sequence

3. For a given integer, can the fixed point order be bounded as a function of n ?

k	1	2	3	4	5	6	7	8	9	10
n	1	4	3	2	11	89	1069	2137	4273	59833
FP	1	12	12	12	60	60	60	60	60	60

Table 4: First n that takes k iterations to reach a fixed point

References

1. Jirí Klaška. "Donald Dines Wall’s Conjecture". In: Fibonacci Quarterly 56.1 (Feb.2018), pp. 43-51.
2. Diego Marques. "Fixed points of the order of appearance in the Fibonacci sequence". In: Fibonacci Quarterly 50.4 (Nov. 2012), pp. 346-352.
3. Eva Trojovská. "On the Diophantine Equation $z(n)=(2-1 / k) n$ Involving the Order of Appearance in the Fibonacci Sequence". In: Mathematics 8.1 (Jan. 2020), pp. 124.
4. Eva Trojovská. "On periodic points of the order of appearance in the Fibonacci sequence". In: Mathematics 8.5 (May 2020), pp. 773.

Acknowledgements

We thank our mentor Dr. Steven J. Miller. This work was supported by NSF Grants No. DMS-2241623, DMS-1947438, and DMS-2015553 while in residence at Williams College in Williamstown, MA during the SMALL REU.

