Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	

Extending Agreement in the Katz-Sarnak Density Conjecture

Peter Cohen and Carsten Sprunger

Young Mathematician's Conference The Ohio State University, August 20th, 2016

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	

Introduction

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
•000000		000	00	⊙	0000
D:					

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Hypothesis (RH):

All non-trivial zeros have $\operatorname{Re}(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Observation: Spacings b/w zeros appear same as between eigenvalues of Complex Hermitian matrices.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
•000000		000	00	O	0000
Comorel I	6				

$$L(s,f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s,f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s,f) = \Lambda_{\infty}(s,f)L(s,f) = \epsilon_f \Lambda(1-s,f).$$

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have $\operatorname{Re}(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Observation: Spacings between zeros appear same as b/w eigenvalues of Complex Hermitian matrices.

Introduction 000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
Caussian	Unitary Ensemble	.			

• The GUE: complex Hermitian matrices

$$A = \begin{cases} X_{ij} \sim \mathcal{N}(0, 1/\sqrt{2}) + i\mathcal{N}(0, 1/\sqrt{2}) & \text{if } i \neq j \\ X_{ij} \sim \mathcal{N}(0, 1) & \text{if } i = j \end{cases}$$

Introduction	Random Matrix Theory	Our Results 000	Acknowledgements 00	Bibliography O	Notes 0000
Zeros of ((c) and Pair Corr	elation			

• Given zeros of $\zeta(s)$ of the form $\frac{1}{2} + i\gamma_n$ for $n \in \mathbb{N}$.

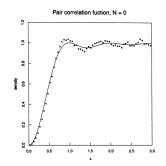
$$\delta_n = (\gamma_{n+1} - \gamma_n) \frac{\log \gamma_n}{4\pi^2}$$

• Montgomery's Pair Correlation Conjecture:

$$N^{-1}|\{(n,k): 1 \le n \le N, \ k \ge 0, \ \sum_{i=n}^{n+k} \delta_i \in [\alpha,\beta]\}|$$
$$\sim \int_{\alpha}^{\beta} \left(1 - \left(\frac{\sin\pi u}{\pi u}\right)^2\right) \ du$$

• Dyson noticed something extraordinary [2]

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
Zeros of ((s) vs GUE				



Pair correlation of zeros of the zeta function vs. GUE prediction (solid line). Scatter plot is empirical data based on γ_n for $1 \le n \le 10^5$.[1]

Introduction	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
Other stat	istics				

• Pair correlation fails to discriminate between different families of *L*-functions and different classical compact groups.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
Other stat	istics				

- Pair correlation fails to discriminate between different families of *L*-functions and different classical compact groups.
- It is also insensitive to finitely many zeros.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography 0	Notes 0000
Other stat	istics				

- Pair correlation fails to discriminate between different families of *L*-functions and different classical compact groups.
- It is also insensitive to finitely many zeros.
- In order to discriminate and also preserve information about low-lying zeros, need to study different statistics.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
W 4 C					

Katz-Sarnak density conjecture

• The Katz-Sarnak density conjecture states that the scaling limits of the distributions of zeros of families of automorphic *L*-functions near the central point agree with the scaling limits of eigenvalue distributions near 1 of classical subgroups of the unitary groups U(N).

Introduction ○○○○○●○	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography 0	Notes 0000
Katz-Sarı	nak density conjec	ture			

- The Katz-Sarnak density conjecture states that the scaling limits of the distributions of zeros of families of automorphic *L*-functions near the central point agree with the scaling limits of eigenvalue distributions near 1 of classical subgroups of the unitary groups U(N).
- This conjecture is often tested by way of computing particular statistics, like the *n*-level density.

Introduction	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography 0	Notes 0000
1-Level De	ensitv				

- We want to study the behavior of zeros for *L*-functions near the point $s = \frac{1}{2}$.
- We define the 1-level density for an L-function L(s,f) and φ an even Schwartz function, where φ is compactly supported, by

$$D_f(\phi) = \sum_{\gamma_f} \phi\left(\gamma_f rac{\log R}{2\pi}
ight)$$

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		000	00	0	0000
Random 1	Matrix Theory An	alogue			

• For an even Schwartz function ϕ on $\mathbb R$ define

$$F_M(heta) := \sum_{j=-\infty}^\infty \phi\left(rac{M}{2\pi}(heta+2\pi j)
ight).$$

• For U and $M \times M$ unitary matrix with eigenvalues $e^{i\theta_n}$ let

$$Z_{\phi}(U):=\sum_{n=1}^M F_M(heta_n)$$

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography 0	Notes 0000
The Ques	tion				

- What are the moments of $Z_{\phi}(U)$ for matrices from the classical compact groups?
- Katz and Sarnak: Compute for any test function, but there is a catch.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000	○○●○○○○○○○	000	00	O	0000
The Ques	stion				

• Rather than moments, we study cumulants.

$$\mu'_n = \sum \left(\frac{C_2}{2!}\right)^{k_2} \cdots \left(\frac{C_n}{n!}\right)^{k_n} \frac{n!}{k_2! \cdots k_n!},$$

summing over k_j such that $\sum_{j=2}^n jk_j = n$.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	
	000000000				

Cumulants and the Classical Compact Groups

• For
$$\phi \in \mathcal{S}(\mathbb{R})$$
 with $\operatorname{supp}(\widehat{\phi}) \subseteq \left[-\frac{2}{n}, \frac{2}{n}\right]$ and $n \ge 3$, we have

$$egin{aligned} C^U_n(\phi) &= 0 \ C^{SO(even)}_n(\phi) &= 2^n Q_n(\phi) \ C^{SO(odd)}_n(\phi) &= -2^n Q_n(\phi) \end{aligned}$$

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000

What is $Q_n(\phi)$

$$Q_n(\phi) = -\frac{1}{2} \sum_{m=1}^n \sum_{\substack{\lambda_1 + \dots + \lambda_m = n \\ \lambda_j \ge 1}} \frac{(-1)^{m+1}}{m} \frac{n!}{\lambda_1! \cdots \lambda_m!}$$
$$\int_{\mathbb{R}^m} \left(\prod_{j=1}^m \phi^{\lambda_j}(x_j) \right) \times S(x_1 - x_2) \cdots S(x_{m-1} - x_m)$$
$$\times S(x_m + x_1) dx_1 \cdots dx_m$$

where
$$S(x) = \frac{\sin(\pi x)}{\pi x}$$
.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
What is Q	$Q_n(\phi)$				

$$Q_n(\phi) = \frac{1}{4} \int_0^\infty \cdots \int_0^\infty \widehat{\phi}(y_1) \cdots \widehat{\phi}(y_n) \\ K(y_1, \dots, y_n) dy_1 \cdots dy_n,$$

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
What is Q	$Q_n(\phi)$				

$$K(y_1, \dots, y_n) = \sum_{m=1}^n \sum_{\substack{\lambda_1 + \dots + \lambda_m = n \\ \lambda_j \ge 1}} \frac{(-1)^{m+1}}{m} \frac{n!}{\lambda_1! \cdots \lambda_m!}$$
$$\sum_{\epsilon_1, \dots, \epsilon_n = \pm 1} \prod_{\ell=1}^m \chi_{\{|\sum_{j=1}^n \eta(\ell, j) \epsilon_j y_j| \le 1\}}$$

and

$$\eta(\ell, j) = \begin{cases} +1 & \text{if } j \leq \sum_{k=1}^{\ell} \lambda_k \\ -1 & \text{if } j > \sum_{k=1}^{\ell} \lambda_k. \end{cases}$$

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography 0	Notes 0000
Proceedin	g Combinatorially	V			

• Simplifying integrals of products of indicator functions becomes combinatorial.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000
Proceedin	g Combinatorially	V			

- Simplifying integrals of products of indicator functions becomes combinatorial.
- Can attack specific cases *ad hoc* using some form of inclusion-exclusion.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		000	00	O	0000
Proceedin	g Combinatorially	V			

- Simplifying integrals of products of indicator functions becomes combinatorial.
- Can attack specific cases *ad hoc* using some form of inclusion-exclusion.
- For fixed (y₁,..., y_n) take sum of all terms of K(y₁,..., y_n), subtract those which have certain vanishing χ's in them, add those which have certain pairs of vanishing χ's in them, etc.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		000	00	O	0000

Technical Obstructions to Inclusion-Exclusion

• The number of terms in the inclusion-exclusion calculation is dependent on $\mathrm{supp}(\widehat{\phi})$, and it grows too quickly to be manageable.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000

Technical Obstructions to Inclusion-Exclusion

- The number of terms in the inclusion-exclusion calculation is dependent on $\mathrm{supp}(\widehat{\phi})$, and it grows too quickly to be manageable.
- Moreover, the indicator functions that come out become more and more complicated (hard to integrate).

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000	○○○○○○○●○		00	O	0000

Technical Obstructions to Inclusion-Exclusion

- The number of terms in the inclusion-exclusion calculation is dependent on $\mathrm{supp}(\widehat{\phi})$, and it grows too quickly to be manageable.
- Moreover, the indicator functions that come out become more and more complicated (hard to integrate).
- Need to be more organized and ditch inclusion-exclusion.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000	○○○○○○○●	000	00	O	0000
Developi	ng combinatorial fi	ramowork			

• We developed a combinatorial framework for the problem which allows us to write $Q_n(\phi)$ as a linear combination of integrals over distinct classes of indicator functions.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000	○○○○○○○●	000	00	O	0000
Developir	ng combinatorial fi	ramework			

- We developed a combinatorial framework for the problem which allows us to write $Q_n(\phi)$ as a linear combination of integrals over distinct classes of indicator functions.
- In this framework, can show elegant cancellation of most terms.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000	○○○○○○○●	000	00	O	0000
Developin	σ combinatorial fi	ramework			

- We developed a combinatorial framework for the problem which allows us to write $Q_n(\phi)$ as a linear combination of integrals over distinct classes of indicator functions.
- In this framework, can show elegant cancellation of most terms.
- Remaining terms have simple indicator functions and can be simplified nicely.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		●○○	00	O	0000

Final expression

Theorem

For $\phi \in S(\mathbb{R})$ even such that $supp(\widehat{\phi}) \subseteq \left[-\frac{1}{n-w}, \frac{1}{n-w}\right]$ with $w \leq n/2$, we have

$$Q_{n}(\phi) = \sum_{\ell=0}^{w-1} \frac{(-1)^{n+\ell+1} \binom{n}{\ell}}{2} \left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \widehat{\phi}(x_{\ell+1}) \cdots \widehat{\phi}(x_{2}) \right. \\ \left. \int_{-\infty}^{\infty} \phi^{n-\ell}(x_{1}) \frac{\sin(2\pi x_{1}(1+|x_{2}|+\cdots+|x_{\ell+1}|))}{2\pi x_{1}} dx_{1} \cdots dx_{\ell+1} - \frac{1}{2} \phi^{n}(0) \right)$$

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		○●○	00	O	0000
Compari	ng with number th	eorv			

• Again, the point of all this simplification is to compare with *L*-functions.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000	000000000	○●○	00	O	0000
Compari	ng with number th	leorv			

- Again, the point of all this simplification is to compare with *L*-functions.
- On the number theory side, we look at *L*-functions associated to cuspidal newforms, splitting by the sign of their functional equaitons.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		○●○	00	O	0000
Compari	ng with number th	eorv			

- Again, the point of all this simplification is to compare with *L*-functions.
- On the number theory side, we look at *L*-functions associated to cuspidal newforms, splitting by the sign of their functional equaitons.
- Can extend what is known there to test functions ϕ with $\operatorname{supp}(\widehat{\phi}) \subseteq \left[-\frac{1}{n-3}, \frac{1}{n-3}\right]$ and show agreement with random matrix theory using the previous theorem.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		○○●	00	O	0000
Big pictur	re				

• It is not understood why there is such a strong connection between random matrix theory and families of *L*-functions.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		○○●	00	O	0000
Big pictur	e				

- It is not understood why there is such a strong connection between random matrix theory and families of *L*-functions.
- Many connections are proven, some only strongly believed (we should prove them).

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		○○●	00	O	0000
Big pictur	re				

- It is not understood why there is such a strong connection between random matrix theory and families of *L*-functions.
- Many connections are proven, some only strongly believed (we should prove them).
- Random matrix theory provides models for a wide range of statistical behavior of these families.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		○○●	00	O	0000
Big pictur	e				

- It is not understood why there is such a strong connection between random matrix theory and families of *L*-functions.
- Many connections are proven, some only strongly believed (we should prove them).
- Random matrix theory provides models for a wide range of statistical behavior of these families.
- Consequently, we can gain information about questions about *L*-functions that we couldn't before, and we can confidently predict the answer to new questions.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements ●○	Bibliography O	Notes 0000
Acknowle	adgements				

We thank Williams College and NSF Grants DMS1265673, DMS1561945, and DMS1347804 for support. This work was joint work with Geoffrey Iyer, Nicholas Triantafillou, Nhi Truong, Roger Van Peski under the visage of Professor Steven J. Miller at the SMALL REU.

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		000	○●	O	0000
Contact I	nformation				

Peter Cohen Bowdoin College pcohen@bowdoin.edu

Carsten Sprunger University of Michigan csprun@umich.edu

Introduction	Random Matrix Theory	Our Results	Acknowledgements	Bibliography	Notes
0000000		000	00	•	0000
Biblograp	hy				

- Odlyzko, A. M. "On the Distribution of Spacings between Zeros of the Zeta Function." *Mathematics of Computation Math. Comp.* 48.177 (1987): 273. Web.
- Montgomery, H. L. "The Pair Correlation of Zeros of the Zeta Function", *Proc. Sympos. Pure Mat.*, vol. 24, Amer. Math. Soc., Providence, R. I. 1973, pp 181-193
- C. Hughes, S. J. Miller, *Low-Lying Zeroes of L-Functions with Orthogonal Symmetry*, Duke Mathematical Journal 136 (2007), no. 1, 115 172.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes 0000

How Does Soshnikov's Trick Work

We use the identities that

$$z = \log(1 + (e^{z} - 1)) = \sum_{n=1}^{\infty} z^{n} \sum_{m=1}^{n} \sum_{\substack{\lambda_{1} + \dots + \lambda_{m} = n \\ \lambda_{j} \ge 1}} \frac{(-1)^{m+1}}{m} \frac{1}{\lambda_{1}! \cdots \lambda_{m}!}$$

and

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} z^n = e^{-z} = \frac{1}{1 + (e^z - 1)}$$
$$= \sum_{n=1}^{\infty} z^n \sum_{m=1}^n \sum_{\substack{\lambda_1 + \dots + \lambda_m = n \\ \lambda_j \ge 1}} (-1)^m \frac{1}{\lambda_1! \cdots \lambda_m!}$$

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes ●○○○
The $\left[-\frac{1}{n-1}\right]$	$\left[\frac{1}{n-1}\right]$ Case				

• Suppose that we want $Q_n(\phi)$ for $\operatorname{supp}(\widehat{\phi}) \subseteq \left[-\frac{1}{n-1}, \frac{1}{n-1}\right]$.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes ●○○○
The $\left[-\frac{1}{n-1}\right]$	$\left[\frac{1}{n-1}\right]$ Case				

- Suppose that we want $Q_n(\phi)$ for $\operatorname{supp}(\widehat{\phi}) \subseteq \left[-\frac{1}{n-1}, \frac{1}{n-1}\right]$.
- Suffices to analyze $K(y_1, \ldots, y_n)$ when $0 \le y_j \le \frac{1}{n-1}$ for all *j*.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes ●○○○
The $\left[-\frac{1}{n-1}\right]$	$\left[\frac{1}{n},\frac{1}{n-1}\right]$ Case				

- Suppose that we want $Q_n(\phi)$ for supp $(\widehat{\phi}) \subseteq \left[-\frac{1}{n-1}, \frac{1}{n-1}\right]$.
- Suffices to analyze $K(y_1, \ldots, y_n)$ when $0 \le y_j \le \frac{1}{n-1}$ for all *j*.
- If $\sum_{i} y_i > 1$ then $\chi_{\{|\sum_{j=1}^{n} \eta(\ell, j) \in_j y_j| \le 1\}} = 0$ if and only if all $\eta(\ell, j) \in_j$ have same sign.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes ○●○○
The $\left[-\frac{1}{n-1}\right]$	$\left[\frac{1}{n-1}\right]$ Case				

• We have exactly 2m choices for $(\epsilon_1, \ldots, \epsilon_n)$ which cause the product to vanish.

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes ○●○○
The $\left[-\frac{1}{n-1}\right]$	$\left[\frac{1}{n-1}\right]$ Case				

• We have exactly 2m choices for $(\epsilon_1, \ldots, \epsilon_n)$ which cause the product to vanish.

• So

$$K(y_1,\ldots,y_n) = \sum_{m=1}^n \sum_{\substack{\lambda_1+\ldots+\lambda_m=n\ \lambda_j\geq 1}} rac{(-1)^{m+1}}{m} rac{n!}{\lambda_1!\cdots\lambda_m!}
onumber \ imes \left(2^n - 2m\chi_{\left\{\left|\sum_{j=1}^n \eta(\ell,j)\epsilon_j y_j\right|\geq 1
ight\}}
ight).$$

Introduction 000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography O	Notes ○○●○
The $\left[-\frac{1}{n-1}\right]$	$\left[\frac{1}{n-1},\frac{1}{n-1}\right]$ Case				

• Using a combinatorial trick from Soshnikov, we use generating functions to evaluate the sum above. This gives

$$K(y_1,\ldots,y_n)=2(-1)^n\chi_{\left\{\left|\sum_{j=1}^n\eta(\ell,j)\epsilon_jy_j\right|\geq 1\right\}}.$$

Introduction 0000000	Random Matrix Theory	Our Results	Acknowledgements 00	Bibliography 0	Notes ○○○●
The $\left[-\frac{1}{n-1}\right]$	$\left[\frac{1}{n-1}\right]$ Case				

• Integration using standard techniques from Fourier analysis gives us,

$$Q_n(\phi) = \frac{(-1)^{n-1}}{2} \left(\int_{\mathbb{R}} \phi(x)^n \frac{\sin 2\pi x}{2\pi x} - \frac{1}{2} \phi(0)^n \right)$$