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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
( s

2

)
π−

s
2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.

Observation: Spacings b/w zeros appear same as between
eigenvalues of Complex Hermitian matrices.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = εf Λ(1− s, f ).

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.

Observation: Spacings between zeros appear same as b/w
eigenvalues of Complex Hermitian matrices.
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Gaussian Unitary Ensemble

The GUE: complex Hermitian matrices

A =

{
Xij ∼ N (0, 1/

√
2) + iN (0, 1/

√
2) if i 6= j

Xij ∼ N (0, 1) if i = j
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Zeros of ζ(s) and Pair Correlation

Given zeros of ζ(s) of the form 1
2 + iγn for n ∈ N.

δn = (γn+1 − γn)
log γn

4π2

Montgomery’s Pair Correlation Conjecture:

N−1|{(n, k) : 1 ≤ n ≤ N, k ≥ 0,
n+k∑
i=n

δi ∈ [α, β]}|

∼
∫ β

α

(
1−

(
sinπu
πu

)2
)

du

Dyson noticed something extraordinary [2]
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Zeros of ζ(s) vs GUE

Pair correlation of zeros of the zeta function vs. GUE prediction
(solid line). Scatter plot is empirical data based on γn for
1 ≤ n ≤ 105.[1]
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Other statistics

Pair correlation fails to discriminate between different
families of L-functions and different classical compact
groups.

It is also insensitive to finitely many zeros.
In order to discriminate and also preserve information
about low-lying zeros, need to study different statistics.
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Katz-Sarnak density conjecture

The Katz-Sarnak density conjecture states that the scaling
limits of the distributions of zeros of families of
automorphic L-functions near the central point agree with
the scaling limits of eigenvalue distributions near 1 of
classical subgroups of the unitary groups U(N).

This conjecture is often tested by way of computing
particular statistics, like the n-level density.
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1-Level Density

We want to study the behavior of zeros for L-functions near
the point s = 1

2 .
We define the 1-level density for an L-function L(s, f ) and
φ an even Schwartz function, where φ̂ is compactly
supported, by

Df (φ) =
∑
γf

φ

(
γf

log R
2π

)
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Random Matrix Theory Analogue

For an even Schwartz function φ on R define

FM(θ) :=
∞∑

j=−∞

φ

(
M
2π

(θ + 2πj)
)
.

For U and M ×M unitary matrix with eigenvalues eiθn let

Zφ(U) :=
M∑

n=1

FM(θn)
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The Question

What are the moments of Zφ(U) for matrices from the
classical compact groups?

Katz and Sarnak: Compute for any test function, but there
is a catch.

15



Introduction Random Matrix Theory Our Results Acknowledgements Bibliography Notes

The Question

Rather than moments, we study cumulants.

µ′n =
∑(

C2

2!

)k2

· · ·
(

Cn

n!

)kn n!

k2! · · · kn!
,

summing over kj such that
∑n

j=2 jkj = n.
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Cumulants and the Classical Compact Groups

For φ ∈ S(R) with supp(φ̂) ⊆
[
−2

n ,
2
n

]
and n ≥ 3, we have

CU
n (φ) = 0

CSO(even)
n (φ) = 2nQn(φ)

CSO(odd)
n (φ) = −2nQn(φ)
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What is Qn(φ)

Qn(φ) = −1
2

n∑
m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
n!

λ1! · · ·λm!

∫
Rm

(
m∏

j=1

φλj(xj)

)
× S(x1 − x2) · · · S(xm−1 − xm)

× S(xm + x1)dx1 · · · dxm

where S(x) = sin(πx)
πx .
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What is Qn(φ)

Qn(φ) =
1
4

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)

K(y1, . . . , yn)dy1 · · · dyn,
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What is Qn(φ)

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
n!

λ1! · · ·λm!

∑
ε1,...,εn=±1

m∏
`=1

χ{|∑n
j=1 η(`,j)εjyj|≤1}

and

η(`, j) =

{
+1 if j ≤

∑`
k=1 λk

−1 if j >
∑`

k=1 λk.
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Proceeding Combinatorially

Simplifying integrals of products of indicator functions
becomes combinatorial.

Can attack specific cases ad hoc using some form of
inclusion-exclusion.
For fixed (y1, . . . , yn) take sum of all terms of
K(y1, . . . , yn), subtract those which have certain vanishing
χ’s in them, add those which have certain pairs of
vanishing χ’s in them, etc.
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Technical Obstructions to Inclusion-Exclusion

The number of terms in the inclusion-exclusion calculation
is dependent on supp(φ̂), and it grows too quickly to be
manageable.

Moreover, the indicator functions that come out become
more and more complicated (hard to integrate).
Need to be more organized and ditch inclusion-exclusion.
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Developing combinatorial framework

We developed a combinatorial framework for the problem
which allows us to write Qn(φ) as a linear combination of
integrals over distinct classes of indicator functions.

In this framework, can show elegant cancellation of most
terms.
Remaining terms have simple indicator functions and can
be simplified nicely.
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Final expression

Theorem

For φ ∈ S(R) even such that supp(φ̂) ⊆
[
− 1

n−w ,
1

n−w

]
with

w ≤ n/2, we have

Qn(φ) =

w−1∑
`=0

(−1)n+`+1(n
`

)
2

(∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x`+1) · · · φ̂(x2)

∫ ∞
−∞

φn−`(x1)
sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1 −

1
2
φn(0)

)
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Comparing with number theory

Again, the point of all this simplification is to compare
with L-functions.

On the number theory side, we look at L-functions
associated to cuspidal newforms, splitting by the sign of
their functional equaitons.
Can extend what is known there to test functions φ with
supp(φ̂) ⊆

[
− 1

n−3 ,
1

n−3

]
and show agreement with random

matrix theory using the previous theorem.
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Big picture

It is not understood why there is such a strong connection
between random matrix theory and families of L-functions.

Many connections are proven, some only strongly believed
(we should prove them).
Random matrix theory provides models for a wide range of
statistical behavior of these families.
Consequently, we can gain information about questions
about L-functions that we couldn’t before, and we can
confidently predict the answer to new questions.
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How Does Soshnikov’s Trick Work

We use the identities that

z = log(1 + (ez − 1) =
∞∑

n=1

zn
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
1

λ1! · · ·λm!

and
∞∑

n=0

(−1)n

n!
zn = e−z =

1
1 + (ez − 1)

=

∞∑
n=1

zn
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m 1
λ1! · · ·λm!
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The
[
− 1

n−1 ,
1

n−1

]
Case

Suppose that we want Qn(φ) for supp(φ̂) ⊆
[
− 1

n−1 ,
1

n−1

]
.

Suffices to analyze K(y1, . . . , yn) when 0 ≤ yj ≤ 1
n−1 for all

j.
If
∑

i yi > 1 then χ{|∑n
j=1 η(`,j)εjyj|≤1} = 0 if and only if all

η(`, j)εj have same sign.
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The
[
− 1

n−1 ,
1

n−1

]
Case

We have exactly 2m choices for (ε1, . . . , εn) which cause
the product to vanish.

So

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
n!

λ1! · · ·λm!

×
(

2n − 2mχ{|∑n
j=1 η(`,j)εjyj|≥1}

)
.
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The
[
− 1

n−1 ,
1

n−1

]
Case

Using a combinatorial trick from Soshnikov, we use
generating functions to evaluate the sum above. This gives

K(y1, . . . , yn) = 2(−1)nχ{|∑n
j=1 η(`,j)εjyj|≥1}.
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The
[
− 1

n−1 ,
1

n−1

]
Case

Integration using standard techniques from Fourier analysis
gives us,

Qn(φ) =
(−1)n−1

2

(∫
R
φ(x)n sin 2πx

2πx
− 1

2
φ(0)n

)
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