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General L-functions

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = εf Λ(1− s, f ).

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.

Observation: Spacings between zeros appear same as b/w
eigenvalues of Complex Hermitian matrices.
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Pair and n-level correlations

Good: Remarkable agreement b/w Number Theory and
GUE.

Bad: Insensitive to finitely many zeros.
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1-Level Density

Study the behavior of zeros for L-functions near s = 1/2.

We define the 1-level density for an L-function L(s, f ) and
φ an even Schwartz function, where φ̂ is compactly
supported, by

Df (φ) :=
∑
γf

φ

(
γf

log R
2π

)
.
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use log C =
|FN|−1∑

f∈FN
log Cf ). Hope: φ a good even test function with

compact support, as |F| → ∞,

1
|FN|

∑
f∈FN

Dn,f (φ) =
1
|FN|

∑
f∈FN

∑
j1,...,jn
ji 6=±jk

∏
i

φi

(
log Cf

2π
γ
(ji)
E

)

→
∫
· · ·
∫
φ(x)Wn,G(F)(x)dx.

Katz-Sarnak Conjecture
As Cf →∞ the behavior of zeros near 1/2 agrees with N →∞
limit of eigenvalues of a classical compact group.
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n-Level Density: Determinant Expansions from RMT

U(N), Uk(N): det
(

K0(xj, xk)
)

1≤j,k≤n

USp(N): det
(

K−1(xj, xk)
)

1≤j,k≤n

SO(even): det
(

K1(xj, xk)
)

1≤j,k≤n

SO(odd): det (K−1(xj, xk))1≤j,k≤n +∑n
ν=1 δ(xν) det

(
K−1(xj, xk)

)
1≤j,k 6=ν≤n

where

Kε(x, y) =
sin
(
π(x− y)

)
π(x− y)

+ ε
sin
(
π(x + y)

)
π(x + y)

.
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Random Matrix Theory Analogue

For an even Schwartz function φ on R define

FM(θ) :=
∞∑

j=−∞

φ

(
M
2π

(θ + 2πj)
)
.

For U and M ×M unitary matrix with eigenvalues eiθn let

Zφ(U) :=
M∑

n=1

FM(θn)
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The Question

What are the moments of Zφ(U) for matrices from the
classical compact groups for given φ?

Katz and Sarnak: Compute for any test function, but often
intractable.
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Attacking The Question

Rather than moments µ′n of 1-level density, we study
cumulants Ci given by

logE[etX] =
∞∑

i=0

Ci
tn

n!

Related to moments by

µ′n =
∑(

C2

2!

)k2

· · ·
(

Cn

n!

)kn n!

k2! · · · kn!
,

summing over kj such that
∑n

j=2 jkj = n.
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Cumulants and the Classical Compact Groups

For φ ∈ S(R) with supp(φ̂) ⊆
[
−2

n ,
2
n

]
and n ≥ 3, we have

CU
n (φ) = 0

CSO(even)
n (φ) = 2nQn(φ)

CSO(odd)
n (φ) = −2nQn(φ)
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What is Qn(φ)

Qn(φ) = −1
2

n∑
m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
n!

λ1! · · ·λm!

∫
Rm

(
m∏

j=1

φλj(xj)

)
× S(x1 − x2) · · · S(xm−1 − xm)

× S(xm + x1)dx1 · · · dxm

where S(x) = sin(πx)
πx .
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What is Qn(φ)

Qn(φ) =
1
4

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)K(y1, . . . , yn)dy1 · · · dyn,
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What is Qn(φ)

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
n!

λ1! · · ·λm!

∑
ε1,...,εn=±1

m∏
`=1

χ{|∑n
j=1 η(`,j)εjyj|≤1}

and

η(`, j) =

{
+1 if j ≤

∑`
k=1 λk

−1 if j >
∑`

k=1 λk.
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The Main Concept

Simplifying integrals of products of indicator functions
becomes combinatorial.

For fixed (y1, . . . , yn) take sum of all terms of
K(y1, . . . , yn), subtract those which have certain vanishing
χ’s in them, add those which have certain pairs of
vanishing χ’s in them, etc.

Example: Suppose Supp(φ̂) ⊂
[
− 1

n−1 ,
1

n−1

]
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The Main Concept: An Example

Suppose that 0 ≤ yj ≤ 1
n−1 and

∑
yj ≥ 1.

χ{|∑n
j=1 η(`,j)εjyj|≤1} = 0 iff either η(l, j)εj = 1 for all j or

η(l, j)εj = −1 for all j.
We have 2m choices for (ε1, . . . , εn) which give

m∏
`=1

χ{|∑n
j=1 η(`,j)εjyj|≤1} = 0. (1)

The remaining 2n − 2m choices yield 1.
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The Main Concept: Example

So

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+···+λm=n

(−1)m+1

m
n!

λ1! · · ·!λm
(2n−2m)

if (y1, . . . , yn) ∈
[
0, 1

n−1

]
and

∑n
i=1 yi ≥ 1.
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The Main Concept: Combinatorial Trick

Notice that

e−z =
∞∑

n=0

(−1)n

n!
zn.

Also

1
1 + ez − 1

=
∞∑

n=1

zn
n∑

m=1

∑
λ1+···+λm=n

(−1)m 1
λ1! · · ·λm!

.
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The Main Concept: Example Conclusion

So

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+···+λm=n

(−1)m+1

m
n!

λ1! · · ·!λm
(2n−2m)

= 2(−1)n

if (y1, . . . , yn) ∈
[
0, 1

n−1

]
and

∑n
i=1 yi ≥ 1.
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The Main Concept: Example Conclusion

Therefore

Qn(φ) =
(−1)n

2

∫ 1
n−1

0
· · ·
∫ 1

n−1

0
φ̂(y1) · · · φ̂(yn)χ{y1+...+yn≥1}

By Fourier computations and changes of variable

Qn(φ) =
(−1)n−1

2

(∫ ∞
−∞

φ(x)n sin 2πx
2πx

− 1
2
φ(0)n

)
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Inclusion-Exclusion for Support 1
n−2

Now two indicator functions in
∏m

`=1 χ{|∑n
j=1 η(`,j)εjyj|≤1}

can be zero in same y-region

Subtract off indicator of each region, add back in indicator
of intersection
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Inclusion-Exclusion for Support 1
n−2

K(y1, . . . , yn) =


n∑

m=1

∑
λ1+···+λm=n

λj≥1

2n (−1)m+1

m

n!

λ1! · · ·λm!

χ{y1+···+yn>1}

−


n∑

m=1

∑
λ1+···+λm=n

λj≥1

2m
(−1)m+1

m

n!

λ1! · · ·λm!

χ{y1+···+yn>1}

−
n∑

j=1


n∑

m=1

∑
λ1+···+λm=n

λj≥1

2m
(−1)m+1

m

n!

λ1! · · ·λm!

χ{y1+···+yn>1+2yj}

+
n∑

j=1


n∑

m=1

m∑
`=1

∑
λ1+···+λ`−1=j−1

λ`=1
λl+1+···+λm=n−j

4
(−1)m+1

m

n!

λ1! · · ·λm!


χ{y1+···+yn>1+2yj}.
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Barriers to Extension

The inclusion-exclusion technique does not scale nicely

For (φ̂) ⊂ [− 1
n−2 ,

1
n−2 ] or [− 1

n−1 ,
1

n−1 ], get integrals against
χ{y1+...+yn≥1} and χ{y1+...+yj−1−yj+yj+1+...+yn≥1}, amenable to
Fourier computations

For (φ̂) ⊂ [− 1
n−w ,

1
n−w ] with w ≥ 3, get integrals against

products of indicator functions, NOT amenable to these
techniques
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A new combinatorial framework

We developed a combinatorial framework for the problem
which allows us to write Qn(φ) as a linear combination of
integrals over distinct classes of indicator functions.

In this framework, can show elegant cancellation of most
terms.
Remaining terms have simple indicator functions and can
be simplified nicely.

31



Introduction Random Matrix Theory Our Results Acknowledgements Bibliography Notes

A new combinatorial framework

We developed a combinatorial framework for the problem
which allows us to write Qn(φ) as a linear combination of
integrals over distinct classes of indicator functions.
In this framework, can show elegant cancellation of most
terms.

Remaining terms have simple indicator functions and can
be simplified nicely.

32



Introduction Random Matrix Theory Our Results Acknowledgements Bibliography Notes

A new combinatorial framework

We developed a combinatorial framework for the problem
which allows us to write Qn(φ) as a linear combination of
integrals over distinct classes of indicator functions.
In this framework, can show elegant cancellation of most
terms.
Remaining terms have simple indicator functions and can
be simplified nicely.

33



Introduction Random Matrix Theory Our Results Acknowledgements Bibliography Notes

Final expression

Theorem

For φ ∈ S(R) even such that supp(φ̂) ⊆
[
− 1

n−w ,
1

n−w

]
with

w ≤ n/2, we have

Qn(φ) =

w−1∑
`=0

(−1)n+`+1(n
`

)
2

(∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x`+1) · · · φ̂(x2)

∫ ∞
−∞

φn−`(x1)
sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1 −

1
2
φn(0)

)
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Comparing with number theory

Again, the point of all this simplification is to compare
with L-functions.

On the number theory side, we look at L-functions
associated to cuspidal newforms, splitting by the sign of
their functional equations.
Can extend what is known there to test functions φ with
supp(φ̂) ⊆

[
− 1

n−3 ,
1

n−3

]
and show agreement with random

matrix theory using the previous theorem.
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How Does Soshnikov’s Trick Work

We use the identities that

z = log(1 + (ez − 1) =
∞∑

n=1

zn
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
1

λ1! · · ·λm!

and
∞∑

n=0

(−1)n

n!
zn = e−z =

1
1 + (ez − 1)

=

∞∑
n=1

zn
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m 1
λ1! · · ·λm!
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The
[
− 1

n−1 ,
1

n−1

]
Case

Suppose that we want Qn(φ) for supp(φ̂) ⊆
[
− 1

n−1 ,
1

n−1

]
.

Suffices to analyze K(y1, . . . , yn) when 0 ≤ yj ≤ 1
n−1 for all

j.
If
∑

i yi > 1 then χ{|∑n
j=1 η(`,j)εjyj|≤1} = 0 if and only if all

η(`, j)εj have same sign.
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The
[
− 1

n−1 ,
1

n−1

]
Case

We have exactly 2m choices for (ε1, . . . , εn) which cause
the product to vanish.

So

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m
n!

λ1! · · ·λm!

×
(

2n − 2mχ{|∑n
j=1 η(`,j)εjyj|≥1}

)
.
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The
[
− 1

n−1 ,
1

n−1

]
Case

Using a combinatorial trick from Soshnikov, we use
generating functions to evaluate the sum above. This gives

K(y1, . . . , yn) = 2(−1)nχ{|∑n
j=1 η(`,j)εjyj|≥1}.
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The
[
− 1

n−1 ,
1

n−1

]
Case

Integration using standard techniques from Fourier analysis
gives us,

Qn(φ) =
(−1)n−1

2

(∫
R
φ(x)n sin 2πx

2πx
− 1

2
φ(0)n

)
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