\$ecrets of the Tax \$ystem: Keep More of Your MOOLA

Steven J. Miller
sjml@williams.edu,
Steven.Miller.MC.96@aya.yale.edu

Williams College, \$eptember 19, 2016

Outline

- Extending Your MOOla
- Protecting Your MOOla
- Highering Your MOOla

Outline

- Extending Your MOOla
- Protecting Your MOOla
- Highering Your MOOla

Extending Your MOOla

Let's start with a whiteboard problem today...

Determine a formula for the exponential function whose graph is shown below.

Figure: A typical calculus problem (image from http://images.slideplayer.com/26/8809809/slides/slide_2.jpg).

Many (most?) of you have heard about compound interest, amazing how it works in practice.

Given by exponential function: start with P principal in year 0, interest rate of r, then amount in year n given by

$$A(n) = Pe^{rt}$$
.

Compound Interest: Theory

Many (most?) of you have heard about compound interest, amazing how it works in practice.

Given by exponential function: start with P principal in year 0, interest rate of r, then amount in year n given by

$$A(n) = Pe^{rt}$$
.

This is very Pertinent for your future....

Year	Amount (2%)
0	1000
1	2020
2	3061
3	4123
4	5206
5	6311
6	7439
7	8589
8	9763
9	10960
10	12181

Year	Amount (2%)	Amount (4%)
0	1000	1000
1	2020	2041
2	3061	3124
3	4123	4252
4	5206	5425
5	6311	6647
6	7439	7918
7	8589	9241
8	9763	10618
9	10960	12051
10	12181	13543

Year	Amount (2%)	Amount (4%)	Amount (8%)	
0	1000	1000	1000	
1	2020	2041	2083	
2	3061	3124	3257	
3	4123	4252	4528	
4	5206	5425	5905	
5	6311	6647	7397	
6	7439	7918	9013	
7	8589	9241	10764	
8	9763	10618	12660	
9	10960	12051	14715	
10	12181	13543	16940	

Year	Amount (2%)	Amount (4%)	Amount (8%)	Amount (20%)	
0	1000	1000	1000	1000	
1	2020	2041	2083	2221	
2	3061	3124	3257	3713	
3	4123	4252	4528	5535	
4	5206	5425	5905	7761	
5	6311	6647	7397	10479	
6	7439	7918	9013	13799	
7	8589	9241	10764	17854	
8	9763	10618	12660	22808	
9	10960	12051	14715	28857	
10	12181	13543	16940	36246	

Year	Amount (2%)	Amount (4%)	Amount (8%)	Amount (20%)
0	1000	1000	1000	1000
2	3061	3124	3257	3713
4	5206	5425	5905	7761
6	7439	7918	9013	13799
8	9763	10618	12660	22808
10	12181	13543	16940	36246
12	??	??	??	??
14	??	??	??	??
16	??	??	??	??
18	??	??	??	??
20	??	??	??	??

Year	Amount (2%)	Amount (4%)	Amount (8%)	Amount (20%)	
0	1000	1000	1000	1000	
2	3061	3124	3257	3713	
4	5206	5425	5905	7761	
6	7439	7918	9013	13799	
8	9763	10618	12660	22808	
10	12181	13543	16940	36246	
12	14699	16712	21963	56294	
14	17319	20145	27857	86203	
16	20046	23863	34774	130821	
18	22884	27892	42891	197383	
20	25838	32255	52416	296683	

Year	Amount (2%)	Amount (4%)	Amount (8%)	Amount (20%)
0	1000	1000	1000	1000
2	3061	3124	3257	3713
4	5206	5425	5905	7761
6	7439	7918	9013	13799
8	9763	10618	12660	22808
10	12181	13543	16940	36246
12	14699	16712	21963	56294
14	17319	20145	27857	86203
16	20046	23863	34774	130821
18	22884	27892	42891	197383
20	25838	32255	52416	296683

In 20yrs: one 20% beats ten 2% (getting \$1000 vs \$10,000 annually!).

Compound Lesson

Takeaways.

- Small changes can escalate quickly.
- Optimize time: spend a bit more thinking about stocks!
- Beware debt! Think about this when spending, when financing a house or car

Compound Lesson

Takeaways.

- Small changes can escalate quickly.
- Optimize time: spend a bit more thinking about stocks!
- Beware debt! Think about this when spending, when financing a house or car

Winter Study Talks (all in Mabie Room):

- 1st week: Budgeting 101.
- 2nd week: Life After Williams.
- 3rd week: Understanding First Paycheck & Benefits.
- 4th week: Credit, Debt, & Loans OH MY!

Protecting Your MOOla

Intellectual Exercises

No one here is unscrupulous, of course, but elsewhere in the world....

Goal is to see how math can flag behavior.

Important: protect your identity, detect when things are going wrong (being given faulty advice), allocate resources well.

Will concentrate on Benford's law: one of MANY ways (and one most are not aware of).

Interesting Question

Motivating Question: For a nice data set, such as the Fibonacci numbers, stock prices, street addresses of college employees and students, ..., what percent of the leading digits are 1?

Interesting Question

Motivating Question: For a nice data set, such as the Fibonacci numbers, stock prices, street addresses of college employees and students, ..., what percent of the leading digits are 1?

Natural guess: 10% (but immediately correct to 11%!).

Interesting Question

Motivating Question: For a nice data set, such as the Fibonacci numbers, stock prices, street addresses of college employees and students, ..., what percent of the leading digits are 1?

Answer: Benford's law!

Fibonacci numbers

Fibonacci numbers

Most common iPhone passcodes

Fibonacci numbers

Most common iPhone passcodes

Twitter users by # followers

Fibonacci numbers

Most common iPhone passcodes

Twitter users by # followers

Distance of stars from Earth

Summary

- Explain Benford's Law.
- Discuss examples and applications.

Caveats!

 A math test indicating fraud is not proof of fraud: unlikely events, alternate reasons.

Caveats!

• A math test indicating fraud is *not* proof of fraud: unlikely events, alternate reasons.

Some Examples

- recurrence relations
- special functions (such as *n*!)
- iterates of power, exponential, rational maps
- products of random variables
- financial data
- many, many more....

Applications

- Analyzing round-off errors.
- Determining the optimal way to store numbers.
- Detecting tax and image fraud, and data integrity.

Applications: Images (Steganography)

Cover image.

Applications: Images (Steganography)

Cover image.

Extracted image.

Benford's Law: Newcomb (1881), Benford (1938)

Statement

For many data sets, probability of observing a first digit of d is $\log_{10}\left(\frac{d+1}{d}\right)$; thus about 30% are 1's.

Benford's Law (probabilities)

Background Material

• Modulo: $a = b \mod c$ if a - b is an integer times c; thus $17 = 5 \mod 12$, and $4.5 = .5 \mod 1$.

Background Material

- Modulo: $a = b \mod c$ if a b is an integer times c; thus $17 = 5 \mod 12$, and $4.5 = .5 \mod 1$.
- Significand: $x = S_{10}(x) \cdot 10^k$, k integer, $1 \le S_{10}(x) < 10$.

Background Material

- Modulo: $a = b \mod c$ if a b is an integer times c; thus $17 = 5 \mod 12$, and $4.5 = .5 \mod 1$.
- Significand: $x = S_{10}(x) \cdot 10^k$, *k* integer, $1 \le S_{10}(x) < 10$.
- $S_{10}(x) = S_{10}(\tilde{x})$ if and only if x and \tilde{x} have the same leading digits. Note $\log_{10} x = \log_{10} S_{10}(x) + k$.

Background Material

- Modulo: $a = b \mod c$ if a b is an integer times c; thus $17 = 5 \mod 12$, and $4.5 = .5 \mod 1$.
- Significand: $x = S_{10}(x) \cdot 10^k$, k integer, $1 \le S_{10}(x) < 10$.
- $S_{10}(x) = S_{10}(\tilde{x})$ if and only if x and \tilde{x} have the same leading digits. Note $\log_{10} x = \log_{10} S_{10}(x) + k$.
- Key observation: $\log_{10}(x) = \log_{10}(\tilde{x}) \mod 1$ if and only if x and \tilde{x} have the same leading digits.

Thus often study $y = \log_{10} x \mod 1$. Advanced: $e^{2\pi i u} = e^{2\pi i (u \mod 1)}$.

Equidistribution and Benford's Law

Equidistribution

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a$$

Equidistribution and Benford's Law

Equidistribution

 $\{y_n\}_{n=1}^{\infty}$ is equidistributed modulo 1 if probability $y_n \mod 1 \in [a, b]$ tends to b - a:

$$\frac{\#\{n \leq N : y_n \bmod 1 \in [a,b]\}}{N} \rightarrow b - a$$

Theorem: If α is an irrational number, then $n\alpha$ mod 1 is equidistributed.

Example of Equidistribution: $n\sqrt{\pi}$ mod 1

Example of Equidistribution: $n\sqrt{\pi} \mod 1$

Example of Equidistribution: $n\sqrt{\pi}$ mod 1

Example of Equidistribution: $n\sqrt{\pi} \mod 1$

Fundamental Equivalence

 $\{x_i\}$ is Benford if and only if $\{\log_{10} x_i \mod 1\}$ is equidistributed.

Fundamental Equivalence

 $\{x_i\}$ is Benford if and only if $\{\log_{10} x_i \mod 1\}$ is equidistributed.

Compound connection: Exponential growth is Benford! Note $\log_{10} e^{rn}$ is $n \cdot r \log_{10} e$.

Fundamental Equivalence

 $\{x_i\}$ is Benford if and only if $\{\log_{10} x_i \mod 1\}$ is equidistributed.

$$x = S_{10}(x) \cdot 10^k \text{ then}$$

$$\log_{10} x = \log_{10} S_{10}(x) + k = \log_{10} S_{10}x \bmod 1.$$

Prob(leading digit d) = $\log_{10}(d+1) - \log_{10}(d)$ = $\log_{10}(\frac{d+1}{d})$ = $\log_{10}(1+\frac{1}{d})$.

Have Benford's law ↔ mantissa of logarithms of data are uniformly distributed

Applications for the IRS: Detecting Fraud

A Tale of Two Steve Millers....

Applications for the IRS: Detecting Fraud

Applications for the IRS: Detecting Fraud

Bank Fraud

 Audit of a bank revealed huge spike of numbers starting with

Bank Fraud

 Audit of a bank revealed huge spike of numbers starting with 4

Bank Fraud

 Audit of a bank revealed huge spike of numbers starting with 48 and 49, most due to one person.

Bank Fraud

- Audit of a bank revealed huge spike of numbers starting with 48 and 49, most due to one person.
- Write-off limit of \$5,000. Officer had friends applying for credit cards, ran up balances just under \$5,000 then he would write the debts off.

Bank Fraud

- Audit of a bank revealed huge spike of numbers starting with 48 and 49, most due to one person.
- Write-off limit of \$5,000. Officer had friends applying for credit cards, ran up balances just under \$5,000 then he would write the debts off.

Tuesday 11/1: 6:30pm OIT Computer Lab: Mary Kate Shea (Financial Aid): Know What (And Why) You Owe: Become a tuition bill interpreter! Learn the basics of how to read and pay a bill.

Targeting Consumers

TARGET COUPONS PUT DAD ONTO DAUGHTER'S PREGNANCY

February 17, 2012 - By Brande Victorian 15 COMMENTS

Protecting Lesson

Takeaways.

- Can flag questionable events for further study.
- Allocate resources optimally.
- Can take corrective action early (and saw advantages of early).

Highering Your MOOla

Gameplan

Talked about growing and protecting money.

Now discuss how to get money.

Get hired where happy, productive, and benefits....

Law of the Hammer:

- Abraham Kaplan: I call it the law of the instrument, and it may be formulated as follows: Give a small boy a hammer, and he will find that everything he encounters needs pounding.
- Abraham Maslow: I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.
- Bernard Baruch: If all you have is a hammer, everything looks like a nail.

The Pythagorean Theorem

East	W	L	PCT	GB	L10	STRK	INT	HOME	ROAD	X W-L	LAST GAME	NEXT GAME
Boston	37	25	.597		6-4	W2	3-0	23-5	14-20	36-26	6/4 v TB, W 5-1	6/5 v TB, 6:05P
Tampa Bay	35	24	.593	0.5	6-4	L2	1-2	24-10	11-14	32-27	6/4 @ BOS, L 1-5	6/5 @ BOS, 6:05P
Toronto	32	29	.525	4.5	6-4	L1	2-1	15-11	17-18	34-27	6/4 @ NYY, L 1-5	6/5 @ NYY, 1:05P
New York	29	30	.492	6.5	5-5	W1	0-2	15-13	14-17	28-31	6/4 v TOR, W 5-1	6/5 v TOR, 1:05P
Baltimore	28	30	.483	7.0	4-6	L1	2-1	17-11	11-19	27-31	6/4 @ MIN, L 5-7	6/5 @ MIN, 1:10P
Central	W	L	PCT	GB	L10	STRK	INT	HOME	ROAD	X W-L	LAST GAME	NEXT GAME
Chicago	32	26	.552		6-4	W2	3-0	15-9	17-17	34-24	6/4 v KC, W 6-4	6/5 v KC, 8:11P
Minnesota	31	28	.525	1.5	7-3	W1	1-2	19-15	12-13	29-30	6/4 v BAL, W 7-5	6/5 v BAL, 1:10P
Cleveland	27	32	.458	5.5	4-6	W1	0-3	16-16	11-16	31-28	6/4 @ TEX, W 15-9	6/5 @ TEX, 8:05P
Detroit	24	35	.407	8.5	3-7	L3	1-2	12-14	12-21	27-32	6/4 @ OAK, L 2-10	6/6 v CLE, 7:05P
Kansas City	23	36	.390	9.5	2-8	L2	2-1	12-16	11-20	23-36	6/4 @ CWS, L 4-6	6/5 @ CWS, 8:11P
West	W	L	PCT	GB	L10	STRK	INT	HOME	ROAD	X W-L	LAST GAME	NEXT GAME
Los Angeles	37	24	.607		7-3	W5	2-1	18-13	19-11	31-30	6/4 @ SEA, W 5-4	6/6 @ OAK, 10:05P
Oakland	33	27	.550	3.5	6-4	W4	1-2	20-13	13-14	35-25	6/4 v DET, W 10-2	6/6 v LAA, 10:05P
Texas	30	31	.492	7.0	5-5	L1	2-1	15-14	15-17	29-32	6/4 v CLE, L 9-15	6/5 v CLE, 8:05P
Seattle	21	39	.350	15.5	3-7	L4	2-1	14-19	7-20	24-36	6/4 v LAA, L 4-5	6/6 @ BOS, 7:05P
National League	\$											
East	W	L	PCT	GB	L10	STRK	INT	HOME	ROAD	X W-L	LAST GAME	NEXT GAME
Philadelphia	35	26	.574		8-2	L1	1-2	20-13	15-13	36-25	6/4 v CIN, L 0-2	6/5 v CIN, 1:05P
Florida	32	26	.552	1.5	4-6	W1	1-2	18-12	14-14	29-29	6/4 @ ATL, W 6-4	6/5 @ ATL, 7:00P

2-0 17-11

30-28

6/4 @ SF, W 5-3

6/5 @ SD, 10:05P

7-3 W2

New York

Consulting can be lucrative: sometimes for \$, sometimes for experience, sometimes for academic job!

Two relevant talks:

- Tuesday 10/25: 7pm: Weston: Let'\$ Talk About It: Grads Get Real About Their MOOLA. How do you learn to "do" money? Why doesn't anyone talk about it? Grads tell their money stories.
- Tuesday 11/8: 7pm: Griffin 2: Janine Burt: How to Negotiate Anything: MOOLA and More Higher salary? More vacation or flex time? Learn vital negotiation skills from an experienced HR and Career Services professional.

http://web.williams.edu/Mathematics/sjmiller/
public_html/math/papers/MMProblem10.pdf

Okay, it's important not to get too greedy...

Okay, it's important not to get *too* greedy... ...but Canada, India, Japan....

Brings up grad school: often *paid* to go (and travel!).

Monday 10/3: 7pm in Mabie: Molly Magavern:

MOOLA for Grad School: How To Manage It?

General Advice: Combine Work and Play

General Advice: Combine Work and Play

For \$10,000 we can go for an official Guinness Record....
http://web.williams.edu/Mathematics/
sjmiller/public html/legos/index.htm

General Advice: Combine Work and Play

Many thanks to the Elsevier Educational Outreach Fund!