From the Kentucky Sequence to Benford's Law through Zeckendorf Decompositions.

Steven J. Miller (sjm1@williams.edu)

http://www.williams.edu/Mathematics/sjmiller/public_html

AMS Special Session on Difference Equations Georgetown University, Washington, DC, 3/7/15 Introduction

Collaborators and Thanks

Collaborators:

Kentucky Sequence: Joint with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson.

Benfordness: Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh & Madeleine Weinstein.

Supported by:

NSF Grants DMS1265673, DMS0970067, DMS1347804 and DMS0850577, AIM and Williams College.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 51 =?

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 17 = F_8 + 17$.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$51 = 34 + 13 + 4 = F_8 + F_6 + 4$$
.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + 1$$
.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$$
.

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$. Example: $83 = 55 + 21 + 5 + 2 = F_9 + F_7 + F_4 + F_2$.

Observe: 51 miles \approx 82.1 kilometers.

Old Results

Central Limit Type Theorem

As $n \to \infty$, the distribution of number of summands in Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is Gaussian.

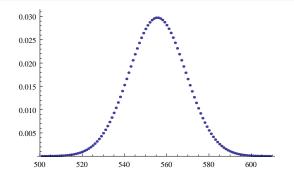


Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

Benford's law

Definition of Benford's Law

A dataset is said to follow Benford's Law (base *B*) if the probability of observing a first digit of *d* is

$$\log_B\left(1+\frac{1}{d}\right)$$
.

- More generally probability a significant at most s is $log_B(s)$, where $x = S_B(x)10^k$ with $S_B(x) \in [1, B)$ and k an integer.
- Find base 10 about 30.1% of the time start with a 1, only 4.5% start with a 9.

Previous Work

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1,

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1, 2,

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1, 2, 3,

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5,

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8,

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13....

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

- Key to entire analysis: $F_{n+1} = F_n + F_{n-1}$.
- View as bins of size 1, cannot use two adjacent bins:

 Goal: How does the notion of legal decomposition affect the sequence and results?

Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with
$$H_1 = 1$$
, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, $n < L$, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if $L = 1$.

- Zeckendorf: Every positive integer can be written uniquely as $\sum a_i H_i$ with natural constraints on the a_i 's (e.g. cannot use the recurrence relation to remove any summand).
- Central Limit Type Theorem

Example: the Special Case of L=1, $c_1=10$

$$H_{n+1} = 10H_n$$
, $H_1 = 1$, $H_n = 10^{n-1}$.

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\}$ $(1 \le i < m), a_m \in \{1, \dots, 9\}$.
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.
- A_i: the corresponding random variable of a_i. The A_i's are independent.
- For large n, the contribution of A_n is immaterial.
 A_i (1 ≤ i < n) are identically distributed random variables with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow \text{Gaussian}$ with mean 4.5n + O(1) and variance 8.25n + O(1).

Kentucky Sequence with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5,

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8],

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11,

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16],

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21,

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

31

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

• $a_{2n} = 2^n$ and $a_{2n+1} = \frac{1}{3}(2^{2+n} - (-1)^n)$: $a_{n+1} = a_{n-1} + 2a_{n-3}, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4.$

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

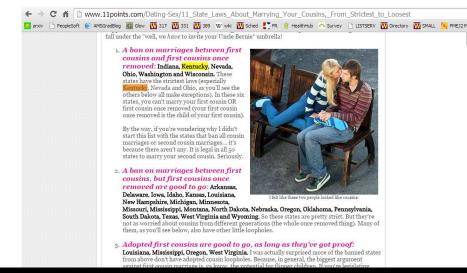
Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

 $[1,\ 2],\ [3,\ 4],\ [5,\ 8],\ [11,\ 16],\ [21,\ 32],\ [43,\ 64],\ [85,\ 128].$

- $a_{2n} = 2^n$ and $a_{2n+1} = \frac{1}{3}(2^{2+n} (-1)^n)$: $a_{n+1} = a_{n-1} + 2a_{n-3}, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4.$
- $a_{n+1} = a_{n-1} + 2a_{n-3}$: New as leading term 0.

What's in a name?



What's in a name?

Theorem: Gaussian Behavior

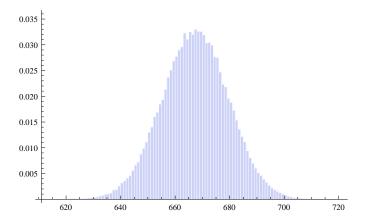


Figure: Plot of the distribution of the number of summands for 100,000 randomly chosen $m \in [1, a_{4000}) = [1, 2^{2000})$ (so m has on the order of 602 digits).

Theorem: Geometric Decay for Gaps

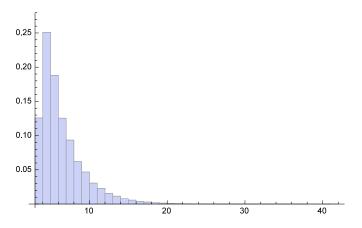


Figure: Plot of the distribution of gaps for 10,000 randomly chosen $m \in [1, a_{400}) = [1, 2^{200})$ (so m has on the order of 60 digits).

Theorem: Geometric Decay for Gaps

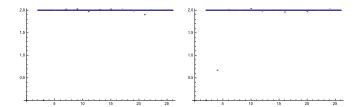


Figure: Plot of the distribution of gaps for 10,000 randomly chosen $m \in [1, a_{400}) = [1, 2^{200})$ (so m has on the order of 60 digits). Left (resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even and odd gaps.

Other Rules (Coming Attractions)

Tilings, Expanding Shapes

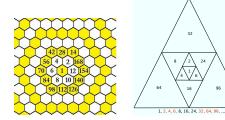


Figure: (left) Hexagonal tiling; (right) expanding triangle covering.

Theorem:

A sequence uniquely exists, and similar to previous work can deduce results about the number of summands and the distribution of gaps.

Fractal Sets

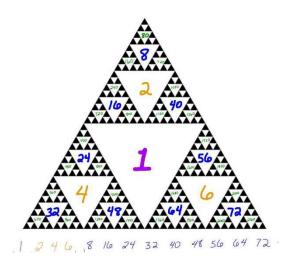


Figure: Sierpinski tiling.

Upper Half Plane / Unit Disk

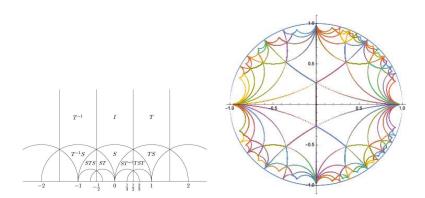


Figure: Plot of tesselation of the upper half plane (or unit disk) by the fundamental domain of $SL_2(\mathbb{Z})$, where T sends z to z+1 and S sends z to z+1.

Benfordness in Interval

Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and Madeleine Weinstein

Benfordness in Interval

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf decompositions, averaged over the entire interval $[F_n, F_{n+1})$, follows Benford's Law.

Benfordness in Interval

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf decompositions, averaged over the entire interval $[F_n, F_{n+1})$, follows Benford's Law.

Example

Looking at the interval $[F_5, F_6) = [8, 13)$

$$8 = 8$$
 $= F_5$
 $9 = 8 + 1 = F_5 + F_1$
 $10 = 8 + 2 = F_5 + F_2$
 $11 = 8 + 3 = F_5 + F_3$
 $12 = 8 + 3 + 1 = F_5 + F_3 + F_1$

Preliminaries for Proof

Density of S

For a subset S of the Fibonacci numbers, define the density q(S, n) of S over the interval $[1, F_n]$ by

$$q(S,n) = \frac{\#\{F_j \in S \mid 1 \leq j \leq n\}}{n}.$$

Asymptotic Density

If $\lim_{n\to\infty} q(S,n)$ exists, define the asymptotic density q(S) by

$$q(S) = \lim_{n\to\infty} q(S, n).$$

Needed Input

Let S_d be the subset of the Fibonacci numbers which share a fixed digit d where $1 \le d < B$.

Theorem: Fibonacci Numbers Are Benford

$$q(S_d) = \lim_{n \to \infty} q(S_d, n) = \log_B \left(1 + \frac{1}{d}\right).$$

Proof: Binet's formula, Kronecker's theorem on equidistribution of $n\alpha \mod 1$ for $\alpha \notin \mathbb{Q}$.

47

Random Variables

Random Variable from Decompositions

Let $X(I_n)$ be a random variable whose values are the Fibonacci numbers in $[F_1, F_n)$ and probabilities are how often they occur in decompositions of $m \in I_n$:

$$P(X(I_n)=F_k) \ := egin{cases} rac{F_{k-1}F_{n-k-2}}{\mu_nF_{n-1}} & ext{if } 1 \leq k \leq n-2 \ \\ rac{1}{\mu_n} & ext{if } k = n \ \\ 0 & ext{otherwise,} \end{cases}$$

where μ_n is the average number of summands in Zeckendorf decompositions of integers in the interval $[F_n, F_{n+1})$.

Approximations

Estimate for $P(X(I_n) = F_k)$

$$P(X(I_n) = F_k) = \frac{1}{\mu_n \phi \sqrt{5}} + O(\phi^{-2k} + \phi^{-2n+2k}).$$

Constant Fringes Negligible

For any r (which may depend on n):

$$\sum_{r < k < n-r} P(X(I_n) = F_k) = 1 - r \cdot O\left(\frac{1}{n}\right).$$

Estimating $P(X(I_n) \in S)$

Set
$$r := \left| \frac{\log n}{\log \phi} \right|$$
.

Density of S over Zeckendorf Summands

We have

$$P(X(I_n) \in S) = \frac{nq(S)}{u_n\phi\sqrt{5}} + o(1) \rightarrow q(s).$$

Remark

- Stronger result than Benfordness of Zeckendorf summands.
- Global property of the Fibonacci numbers can be carried over locally into the Zeckendorf summands.
- If we have a subset of the Fibonacci numbers S with asymptotic density q(S), then the density of the set S over the Zeckendorf summands will converge to this asymptotic density.

Benfordness of Random and Zeckendorf Decompositions
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian
McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein

Random Decompositions

Theorem 2 (SMALL 2014): Random Decomposition

If we choose each Fibonacci number with probability q, disallowing the choice of two consecutive Fibonacci numbers, the resulting sequence follows Benford's law.

Example: n = 10

$$F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7 + F_8 + F_9 + F_{10}$$

$$= 2 + 8 + 21 + 89$$

$$= 120$$

Choosing a Random Decomposition

Select a random subset A of the Fibonaccis as follows:

- Fix $q \in (0, 1)$.
- Let $A_0 := \emptyset$.
- For $n \ge 1$, if $F_{n-1} \in A_{n-1}$, let $A_n := A_{n-1}$, else

$$A_n = \begin{cases} A_{n-1} \cup \{F_n\} & \text{with probability } q \\ A_{n-1} & \text{with probability } 1 - q. \end{cases}$$

• Let $A := \bigcup_n A_n$.

Main Result

Theorem

With probability 1, A (chosen as before) is Benford.

Stronger claim: For any subset S of the Fibonaccis with density d in the Fibonaccis, $S \cap A$ has density d in A with probability 1.

Preliminaries

Lemma

The probability that $F_k \in A$ is

$$p_k = \frac{q}{1+q} + O(q^k).$$

Using elementary techniques, we get

Lemma

Define $X_n := \#A_n$. Then

$$E[X_n] = \frac{nq}{1+q} + O(1)$$

$$Var(X_n) = O(n).$$

Expected Value of Y_n

Define $Y_{n,S} := \#A_n \cap S$. Using standard techniques, we get

Lemma

$$\mathbb{E}[Y_n] = \frac{nqd}{1+q} + o(n).$$

$$\operatorname{Var}(Y_{n,S}) = o(n^2).$$

57

Expected Value of Y_n

Define $Y_{n,S} := \#A_n \cap S$. Using standard techniques, we get

Lemma

$$\mathbb{E}[Y_n] = \frac{nqd}{1+q} + o(n).$$

$$Var(Y_{n,S}) = o(n^2).$$

Immediately implies with probability 1 + o(1)

$$Y_{n,S} = \frac{nqd}{1+q} + o(n), \lim_{n\to\infty} \frac{Y_{n,S}}{X_n} = d.$$

Hence $A \cap S$ has density d in A, completing the proof.

Zeckendorf Decompositions and Benford's Law

Theorem (SMALL 2014): Benfordness of Decomposition

If we pick a random integer in $[0, F_{n+1})$, then with probability 1 as $n \to \infty$ its Zeckendorf decomposition converges to Benford's Law.

Proof of Theorem

- Choose integers randomly in $[0, F_{n+1})$ by random decomposition model from before.
- Choose $m=F_{a_1}+F_{a_2}+\cdots+F_{a_\ell}\in[0,F_{n+1})$ with probability

$$p_m = \begin{cases} q^{\ell}(1-q)^{n-2\ell} & \text{if } a_{\ell} \leq n \\ q^{\ell}(1-q)^{n-2\ell+1} & \text{if } a_{\ell} = n. \end{cases}$$

• Key idea: Choosing $q = 1/\varphi^2$, the previous formula simplifies to

$$p_m = \begin{cases} \varphi^{-n} & \text{if } m \in [0, F_n) \\ \varphi^{-n-1} & \text{if } m \in [F_n, F_{n+1}), \end{cases}$$

use earlier results.

References

References

 Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions: The Fibonacci Quarterly 51 (2013), 13–27.

http://arxiv.org/abs/1208.5820

- Best, Dynes, Edelsbrunner, McDonald, Miller, Turnage-Butterbaugh and Weinstein, Benford Behavior of Generalized Zeckendorf Decompositions, to appear in the Fibonacci Quarterly. http://arxiv.org/pdf/1409.0482
- Best, Dynes, Edelsbrunner, McDonald, Miller, Turnage-Butterbaugh and Weinstein: Benford Behavior of Generalized Zeckendorf Decompositions, preprint. http://arxiv.org/pdf/1412.6839
- Bower, Insoft, Li, Miller and Tosteson, The Distribution of Gaps between Summands in Generalized Zeckendorf Decompositions, preprint. http://arxiv.org/pdf/1402.3912

References

- Catral, Ford, Harris, Miller and Nelson, Generalizing Zeckendorf's Theorem: The Kentucky Sequence, submitted August 2014 to the Fibonacci Quarterly. http://arxiv.org/pdf/1409.0488.pdf
- Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions: Fibonacci Quarterly 49 (2011), no. 2, 116–130. http:// arxiv.org/pdf/1008.3204
- Miller and Wang: From Fibonacci numbers to Central Limit Type Theorems: Journal of Combinatorial Theory, Series A 119 (2012), no. 7, 1398–1413. http://arxiv.org/pdf/1008.3202
- Miller and Wang: Survey: Gaussian Behavior in Generalized Zeckendorf Decompositions: Combinatorial and Additive Number Theory, CANT 2011 and 2012 (Melvyn B. Nathanson, editor), Springer Proceedings in Mathematics & Statistics (2014), 159–173. http://arxiv.org/pdf/1107.2718