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Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = Fg + 17.
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First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13 +4 = Fg + Fg + 4.




Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+Fg+F3+ 1.




Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13+3+1=Fg+ Fg+ F3+ Fy.




Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13+3+1=Fg+ Fg+ F3+ Fy.
Example: 83 =55+4+21+5+2=F9g+F7 +F; + F>.
Observe: 51 miles ~ 82.1 kilometers.




Old Results

Central Limit Type Theorem

As n — oo, the distribution of number of summands in
Zeckendorf decomposition for m € [F,, F11) is Gaussian.
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Figure: Number of summands in [F2o10, F2011); F2010 ~ 1020,




Benford’s law

Definition of Benford’s Law
A dataset is said to follow Benford’s Law (base B) if the
probability of observing a first digit of d is

1
logg (1 + a) .

@ More generally probability a significant at most s is logg(s),
where x = Sg(x)10% with Sg(x) € [1,B) and k an integer.

@ Find base 10 about 30.1% of the time start with a 1, only
4.5% start with a 9.
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Previous Work
°
Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13....

@ Key to entire analysis: Fn,1 = Fn + Fp_1.

@ View as bins of size 1, cannot use two adjacent bins:
[1] [2] [3] [5] [8] [23] ---.

@ Goal: How does the notion of legal decomposition affect
the sequence and results?

D1




Previous Work
°

Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hnt1 =CiHn +CoHpo1 + - +C Hp— 41, N> L

with H; =1, Hhi1 =CiHn+CcoHp—1 + - +cpHy + 1, n <L,
coefficients ¢c; > 0;cq,c. >0ifL>2;¢c; >1ifL=1.

@ Zeckendorf: Every positive integer can be written uniquely
as Y ajH; with natural constraints on the a’s (e.g. cannot
use the recurrence relation to remove any summand).

@ Central Limit Type Theorem
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°

Example: the Special Caseof L =1,c; =10

Hn+l = 10Hn, Hl = 1, Hn = 10”71_

Legal decomposition is decimal expansion: >, a;H;:
a€{0,1,....9} (1 <i<m),ame{l,...,9}.

For N € [Hn, Hny1), first term is a,H, = a,10" 1.

A;: the corresponding random variable of a;. The A;’s are
independent.

For large n, the contribution of A, is immaterial.

Ai (1 <i < n)are identically distributed random variables
with mean 4.5 and variance 8.25.

Central Limit Theorem: A + Az + - -- + A, — Gaussian
with mean 4.5n + O(1) and variance 8.25n + O(1).
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Kentucky Sequence
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@ if have an element from a bin, cannot take anything from
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Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

@ ay, = 2" and agnyq = 3(22H" — (—1)"):
any1 =an_1t+2ap-3,a81 =1l,a=2,a3=3,a4 =4.
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

@ ay, = 2" and agnyq = 3(22H" — (—1)"):
ant1 =ap1t+2a 3,8 =1la=2,a3=3,a3=4.
@ a,.1 = ap_1 + 2ap_3: New as leading term O.
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Kentucky Sequence
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What's in a name?

€ C f [ www.1l1points.com About_Marry Your_

andv || PeopleSoft & AMSGradslog Glow 'Wm 331 (389 Wik [fjsched BYFR 17 HealthHub Survey
[ as

usins,_|

e PMEI2 P
all under the "well, we have to invite your Uncle Bernie” umbrella!
fall under th 11, we have t your Uncle B brella!

1. A ban on marriages betiveen first

cousins and first cousins once

removed: Indiana, Kentucky, Nevada,

Ohio, Wnshmgmn aml Wisconsin. These
vs

w m mule P\Lepanﬂ In these six
o1 r first cousin DR

marriages or second eousin marriages... it's
because there aren't any lega; inall 50
states to marry your second cousin. Seriously.

1

A ban en marriages between first
cousins, but first cousins once
removed are good to go: Arkansas,
Delaware, Iowa, Idaho, Kansas, Louisiana,
New Hampdum Mldugan, Minnesota,
Missouri, i, Mont: North Dakota, Oregon, O] i
South Dakota, Texas, West Virginia and Wyoming. 5o these states are pretty strict. But the

t \mned about ED s from different generations (the whole once rem

3 have other little loopholes.

ko thess two

Adopted first cousins are good to go, as long as they've got proof:

w

Louisiana, M]sszsslppl,ﬂmgln, Weskama. Tnvas actually surprised more of the banned states
B




Kentucky Sequence
[ ]

What's in a name?

What's in a name?
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Kentucky Sequence
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Theorem: Gaussian Behavior
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Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m € [1, ao00) = [1,22°%%) (so m has on the
order of 602 digits).
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Kentucky Sequence
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Theorem: Geometric Decay for Gaps
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Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,22%9) (so m has on the order of 60 digits).




Kentucky Sequence
L]

Theorem: Geometric Decay for Gaps

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,2%%9) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even
and odd gaps.




Other Rules

Other Rules
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Other Rules
[ ]

Tilings, Expanding Shapes

Figure: (left) Hexagonal tiling; (right) expanding triangle covering.

A sequence uniguely exists, and similar to previous work can
deduce results about the number of summands and the
distribution of gaps.
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Fractal Sets

g M 29 32 40 4% 56 6¥ TA

Figure: Siereinski tiIing.
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Other Rules
[ ]

Upper Half Plane / Unit Disk

Figure: Plot of tesselation of the upper half plane (or unit disk) by
the fundamental domain of SL,(Z), where T sendsztoz +1and S
sends z to —1/z.
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Benfordness in Interval
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian
McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein
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Benfordness in Interval

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf
decompositions, averaged over the entire interval [Fn, Fn11),
follows Benford’s Law.
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Benfordness in Interval

A

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf
decompositions, averaged over the entire interval [Fn, Fn11),
foIIows Benford’s Law.

Looking at the interval [Fs, Fg) = [8,13)

8=8 —Fs

9=8 + 1 =Fs+Fy
10=8 + 2 =Fs+F,
11=8 + 3 =Fs+Fs3
12=8+3+1=Fs+Fs+F




Benfordness in Interval
°

Preliminaries for Proof

For a subset S of the Fibonacci numbers, define the density
q(S,n) of S over the interval [1, Fy] by

q(S.n) = #{F €S !nléjﬁn}'

Asymptotic Density
If limn_, o (S, n) exists, define the asymptotic density q(S) by

a(s) = lim q(S.n).

AR




Benfordness in Interval
°

Needed Input

Let Sq4 be the subset of the Fibonacci numbers which share a
fixed digit d where 1 < d < B.

Theorem: Fibonacci Numbers Are Benford

. 1
aSa) = fim a(Se.n) ~logs (1+3 ).

Proof: Binet's formula, Kronecker’s theorem on equidistribution
of na mod 1 for o & Q.

A7




Benfordness in Interval
°

Random Variables

Random Variable from Decompositions

Let X(I,) be a random variable whose values are the Fibonacci
numbers in [F1, F,) and probabilities are how often they occur
in decompositions of m € I:

Seties i < k< () 2
HnFpn—1
P(X(In)=Fk) == ¢+ ifk=n

otherwise,

where u,, is the average number of summands in Zeckendorf
decompositions of integers in the interval [Fn, Fr.1).

AR



Benfordness in Interval
°

Approximations

Estimate for P (X(In) = Fy)

1

P(X(In):Fk) = Mn¢\/§

10 <¢—2k i ¢—2n+2k) .

Constant Fringes Negligible

For any r (which may depend on n):

S P (X(lh)=Fi) = 1r-0<%).

r<k<n-—r

A




Benfordness in Interval
°

Estimating P (X(In) € S)

. |logn
Setr .= LWJ

Density of S over Zeckendorf Summands

We have




Benfordness in Interval
°

@ Stronger result than Benfordness of Zeckendorf
summands.

@ Global property of the Fibonacci numbers can be carried
over locally into the Zeckendorf summands.

@ If we have a subset of the Fibonacci numbers S with
asymptotic density q(S), then the density of the set S over
the Zeckendorf summands will converge to this asymptotic
density.




Random + Zeck Decomposition

Benfordness of Random and Zeckendorf Decompositions
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian
McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein




Random + Zeck Decomposition
°

Random Decompositions

Theorem 2 (SMALL 2014): Random Decomposition

If we choose each Fibonacci number with probability q,
disallowing the choice of two consecutive Fibonacci numbers,
the resulting sequence follows Benford’s law.

Example: n =10

+ F2 + Fs + F7 + F1o
=2+ 8+ 21 + 89
= 120




Random + Zeck Decomposition
°

Choosing a Random Decomposition

Select a random subset A of the Fibonaccis as follows:
@ Fixq e (0,1).
@ Let Ao = @
@ Forn>1,ifF,_1 € Ap_q, let A, (= A _, else

A — An_1U{F,} with probability q
" AL with probability 1 — q.

o LetA = U, An.




Random + Zeck Decomposition
°

Main Result

With probability 1, A (chosen as before) is Benford.

Stronger claim:  For any subset S of the Fibonaccis with
density d in the Fibonaccis, S N A has density d in A with
probability 1.




Random + Zeck Decomposition
°

Preliminaries

The probability that Fy € Ais

q

—— +0(q").
i+g  °@)

Pk =

Using elementary techniques, we get

Define X, := #A,. Then

EX)] = 1Tq+ou)

Var(X,) = O(n).




Random + Zeck Decomposition
°

Expected Value of Y,

Define Y, s := #An N S. Using standard techniques, we get




Random + Zeck Decomposition
°

Expected Value of Y,

Define Y, s := #An N S. Using standard techniques, we get

Va(Yos) = o(n?).

Immediately implies with probability 1 + o(1)

nqd . Yns
Y = o(n lim =2 = d.
s = 1ag oM I

Hence AN S has density d in A, completing the proof.




Random + Zeck Decomposition
°

Zeckendorf Decompositions and Benford's Law

Theorem (SMALL 2014): Benfordness of Decomposition

If we pick a random integer in [0, Fn. 1), then with probability 1
as n — oo its Zeckendorf decompaosition converges to Benford’s

Law.




Random + Zeck Decomposition
.

Proof of Theorem

@ Choose integers randomly in [0, F.1) by random
decomposition model from before.

® Choose m = Fy, +Fa, + -+ Fa, € [0,Fq41) with
probability

~ffa =g ifay<n
Pm = qé(l _ q)n72£+1 if a, = n.

@ Key idea: Choosing q = 1/¢?, the previous formula
simplifies to

{(pn if m e [0,Fy)
Pm =

SOinil |f m 6 [Fn, Fn+1),

use earlier results.

GO
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