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Summary

Review Zeckendorf-type decompositions

Discuss new approaches to asymptotic behavior of
variance

Discuss new results on Gaussian behavior of gaps
between summands
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Definitions: Zeckendorf Decomposition

Theorem (Zeckendorf)
Let {Fn}n∈N denote the Fibonacci numbers with F1 = 1
and F2 = 2. Every positive integer can be written uniquely
as a sum of non-consecutive Fibonacci numbers.

Example

101 = 89 + 8 + 3 + 1 = F10 + F5 + F3 + F1
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Definitions: Positive Linear Recurrence Sequence

Definition
A Positive Linear Recurrence Sequence (PLRS) is a
sequence {Gn} satisfying

Gn = c1Gn−1 + · · ·+ cLGn−L

with nonegative integer coefficients ci with c1, cL,L ≥ 1
and initial conditions G1 = 1 and
Gn = c1Gn−1 + c2Gn−2 + · · ·+ cn−1G1 + 1 for 1 ≤ n ≤ L.
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Examples of PLRS

1 Fibonacci numbers: L = 2, c1 = c2 = 1.
G1 = 1,G2 = 2,G3 = 3,G4 = 5, . . . .

2 Powers of b: L = 2, c1 = b − 1, c2 = b.
G1 = 1,G2 = b,G3 = b2,G4 = b3, . . . .

3 d-bonacci numbers: L = d , c1 = c2 = · · · = cd = 1,
Gn = 2n−1 for n ≤ d .
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Definition: Generalized Zeckendorf Decomposition

Definition (Generalized Zeckendorf Decomposition)
Let {Gn} be a PLRS and m be a positive integer. Then

m =
N∑

i=1

aiGN+1−i

is a legal decomposition if a1 > 0 and the other ai ≥ 0,
and one of the following conditions holds.

1 We have N < L and ai = ci for 1 ≤ i ≤ N.
2 There exists an s ∈ {1, . . . ,L} such that

a1 = c1,a2 = c2, . . . ,as−1 = cs−1, as < cs, and {bi}N−s
i=1

(with bi = as+i) is either legal or empty.
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Example
Consider the PLRS:

Gn = 3Gn−1 + 2Gn−2 + 2Gn−4.

Examples of legal decompositions:
m = 3G9 + 2G8 + G6 + 3G5 + G4 + 2G1.
m = 3G9 + 2G8 + G6 + 3G5 + G4 + 3G1.

Examples of NOT legal decompositions:
m = 4G9.
m = 3G9 + 2G8 + G7.
m = 3G9 + 2G8 + 2G6.
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Theorem: Generalized Zeckendorf Decomposition

Theorem
Let {Gn} be a PLRS. Then there is a unique legal
decomposition for every positive integer m.
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Definitions and Notations

Definition
Probability Space Ωn: The set of legal
decompositions of integers in [Gn,Gn+1).

Probability Measure: Let each of the Gn+1 −Gn legal
decompositions be weighted equally.

Random Variables Kn: Set Kn(ω) equal to the number
of summands of ω ∈ Ωn.
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Asymptotic Behavior of Variance
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Old Result

Theorem (Miller and Wang, 2012)
When {Gn} is a PLRS, there exists constants
A,B,C,D, γ1 ∈ (0,1), γ2 ∈ (0,1) such that

E[Kn] = An + B + o(γn
1 ) (1)

Var[Kn] = Cn + D + o(γn
2 ) (2)

Remark
Proof of (1) is easy.
Proof of (2) is hard. Key difficulty: bound of C.

17



Previous Results Asymptotic Behavior of Variance Gaussian Behavior of Gaps

Main New Result

Theorem
When {Gn} is a PLRS with length L, there exists Cmin > 0
such that

Var[Kn] > Cmin · n

for all n > L.
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Definition of Blocks

Definition
We define a Type 1 block as an integer sequence
corresponding to Condition 1.
We define a Type 2 block as an integer sequence
corresponding to Condition 2.

Example

Gn = 2Gn−1 + 2Gn−2 + 2Gn−4

Suppose m = G5 + 2G3 + G2 + 2G1, we write the
decomposition into an integer sequence: [1,0,2,1,2].

The Type 2 Blocks: [1], [0], [2,1].
The Type 1 Block: [2].
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Definition of Blocks

Definition
We define the size of a block as the total number of
summands in it.
We define the length of a block as the total number of
indices in it.

Example

Gn = 2Gn−1 + 3Gn−3 + 2Gn−4

A possible Type 2 Block is [2, 0, 3, 1]. It has size 6 and
length 4.
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Key Observations of Type 1 Blocks

Properties:
It appears at most once in any legal decomposition.

It has to be the last block if it does exist.

So,
Type 1 block matters little when n is large.

Second to last block has to be a Type 2 block.
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Key Observations of Type 2 Blocks

The length of a Type 2 block is fully determined by its
size. So we can define a function `(t) such that a
Type 2 block with size t has length `(t).

A Type 2 block always has nonnegative size and
strictly positive length.

A legal decomposition will stay legal if we add a Type
2 block to it or remove a Type 2 block from it.
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Key Idea

Lemma
For a fixed t, there is a bijection ht between:

all legal decompositions with total length n and the
second to last block with size t, and
all legal decompositions with total length n − `(t).

Example

Gn = 2Gn−1 + 2Gn−2 + 0 + 2Gn−4.

m = G6 + G5 + 2G4 + G1.

Its block representation: [1], [1], [2,0], [0], [1].
After removing [0]: [1], [1], [2,0], [1].
The resulting legal decomposition: G5 + G4 + 2G3 + G1.
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Key Idea

Set Zn(ω) equal to the size of the second to last block
for the legal decomposition ω ∈ Ωn. Then if Zn(ω) = t ,
we have

Kn(ω) = Kn−`(t)(ht(ω)) + t .

In other words, we get the conditional expectations:

E[Kn|Zn = t ] = E[Kn−l(t)] + t

E[K 2
n |Zn = t ] = E[(Kn−l(t) + t)2]

= E[K 2
n−l(t)] + 2t E[Kn−l(t)] + t2.
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Proof of Main Theorem

We first explicitly choose Cmin. Then, we use strong
induction on n to prove Var[Kn] > Cmin · n.

From previous results, we know E[Kn] = An + B + f (n)
for some f (n) = o(γn

1 ).

From induction hypothesis, we can bound E[K 2
n−`(t)]

by estimating Var[Kn−`(t)] + (E[Kn−`(t)])
2.

In inductive step, we will be able to bound Var[Kn] by
estimating E[K 2

n ]− (E[Kn])2.
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Further Works

Can we lift the constraint that the recurrence
relationship is positive linear?

Can we generalize to more general sequences? Even
without a recurrence relation?

Can we define legal decompositions and blocks for
other sequences?
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Gaussian Behavior of Gaps
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Technical Note

For the rest of the talk, assume PLRS refers to
recurrences

Gn = c1Gn−1 + · · ·+ cLGn−L

with ci > 0 for 1 ≤ i ≤ L.

(Previoiusly, we only needed c1, cL > 0 and ci ≥ 0 for
1 < i < L.)
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Gaps in Decompositions

Definition
Let m be a positive integer with decomposition

m =
N∑

i=1

aiGN+1−i = Gi1 + Gi2 + · · ·+ Gik

and i1 ≥ i2 ≥ · · · ≥ ik . Then the gaps in the decomposition
of m are the numbers i1 − i2, i2 − i3, . . . , ik−1 − ik .

Example
The gaps for the decomposition of m = 101 are 5,2,2.

101 = F10 + F5 + F3 + F1.
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Gaps in Decompositions

Recall:
Let k(m) be the number of summands in the
decomposition of m.

Let Kn be k(m) for an m chosen uniformly in
[Gn,Gn+1).

Let kg(m) be the number of size-g gaps in the
decomposition of m.

Let Kg,n be kg(m) for an m chosen uniformly in
[Gn,Gn+1).
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Gaps in Decompositions

k(m) : number of summands in m
kg(m) : number of size-g gaps in m

Example

101 = F10 + F5 + F3 + F1

k(101) = 4, k2(101) = 2, k3(101) = k4(101) = 0,
k5(101) = 1

Fact

k(m) = 1 +
∞∑

g=0

kg(m)
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Results

Understand: Distribution of number of summands: Kn

Don’t Understand: Distribution of number of size-g gaps:
Kg,n
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Results: Mean and Variance

Kn: number of summands in random m ∈ [Gn,Gn+1)

Theorem (Lekkerkerker, 1951)
When {Gn} is Fibonacci, E[Kn] = CLekn + O(1) for
CLek = 1

ϕ2+1 . (Clek ≈ 0.276)

Theorem (Miller and Wang, 2012)
When {Gn} is a PLRS, there exists A > 0,B, and
γ1 ∈ (0,1) such that E[Kn] = An + B + O(γn

1 ).

Theorem (Miller and Wang, 2012)
When {Gn} is a PLRS, there exists C > 0,D, and
γ2 ∈ (0,1) such that Var[Kn] = Cn + D + O(γn

2 ).
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Results: Mean and Variance

Kg,n: number of size-g gaps in random m ∈ [Gn,Gn+1)

Theorem (Main Result 1: Lekkerkerker for gaps)
When {Gn} is a PLRS, for every integer g ≥ 0, there
exists Ag,Bg and γg,1 ∈ (0,1) such that
E[Kg,n] = Agn + Bg + O(γn

g,1). By Bower et al. 2013, Ag is
known for all PLRS {Gn} and g.

Theorem (Main Result 2: Variance is linear for gaps)
When {Gn} is a PLRS, for every integer g ≥ 0, there
exists Cg,Dg and γg,2 ∈ (0,1) such that
Var[Kg,n] = Cgn + Dg + O(γn

g,2).
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Results: Asymptotic Gaussianity

Kn: number of summands in random m ∈ [Gn,Gn+1)
Kg,n: number of size-g gaps in random m ∈ [Gn,Gn+1)

Theorem (Kopp, Kolog̈lu, Miller, and Wang, 2011)
When {Gn} is Fibonacci, as n→∞, Kn approaches
Gaussian.

Theorem (Miller and Wang, 2012)
When {Gn} is PLRS, as n→∞, Kn approaches
Gaussian.

Theorem (Main Result 3: Gaussian Behavior for Gaps)
When {Gn} is PLRS, as n→∞, Kg,n approaches
Gaussian.
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Results: Summary

Theorem (Main Results, Summary)

The mean µg,n and variance σ2
g,n of Kg,n grow linearly in n,

and (Kg,n − µg,n)/σg,n converges to the standard normal
N(0,1) as n→∞.
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Proof Sketch

Theorem (Main Result 3: Fibonacci Numbers, g = 2)
When {Gn} is Fibonacci, as n→∞, (K2,n − µ2,n)/σ2,n
converges to standard normal.

Let p2,n,k = #{m ∈ [Fn,Fn+1) with k size-2 gaps}|.
Pr[K2,n = k ] ∝ p2,n,k .
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Proof Sketch

p2,n,k = #{m ∈ [Fn,Fn+1) with k size-2 gaps}|.

Lemma

p2,n,k = p2,n−1,k + p2,n−2,k−1 + p2,n−3,k−1 − p2,n−3,k
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Proof Sketch

Lemma (Key Lemma)
If an,k is a “nice” two dimensional homogenous recurrence

an,k =

i0∑
i=1

j0∑
j=0

ti,jan−i,k−j

for constants ti,j , then the random variable Xn given by
Pr[Xn = k ] ∝ an,k approaches Gaussian as n→∞.

Famous example: an,k = an−1,k + an−1,k−1 gives...
the binomials: an,k =

(n
k

)
!

54



Previous Results Asymptotic Behavior of Variance Gaussian Behavior of Gaps

Proof Sketch

Lemma (Key Lemma)
If an,k is a “nice” two dimensional homogenous recurrence
then the random variable Xn given by Pr[Xn = k ] ∝ an,k
approaches Gaussian as n→∞.

Famous example: an,k = an−1,k + an−1,k−1 gives...

the binomials: an,k =
(n

k

)
!

55



Previous Results Asymptotic Behavior of Variance Gaussian Behavior of Gaps

Proof Sketch

Lemma (Key Lemma)
If an,k is a “nice” two dimensional homogenous recurrence
then the random variable Xn given by Pr[Xn = k ] ∝ an,k
approaches Gaussian as n→∞.

Famous example: an,k = an−1,k + an−1,k−1 gives...
the binomials: an,k =

(n
k

)
!

56



Previous Results Asymptotic Behavior of Variance Gaussian Behavior of Gaps

Proof Sketch

Lemma (Key Lemma)
If an,k is a “nice” two dimensional homogenous recurrence
then the random variable Xn given by Pr[Xn = k ] ∝ an,k
approaches Gaussian as n→∞.

Applications
an,k = an−1,k + an−1,k−1

Xn = # heads after n coin flips (Pr[Xn = k ] =
(n

k)
2n )

an,k = an−1,k + an−2,k−1 + an−3,k−1 − an−3,k
Xn = # size-2 gaps of random m ∈ [Fn,Fn+1)
(an,k = p2,n,k ,Xn = K2,n)
an,k = an−1,k + an−2,k−1
Xn = # summands of random m ∈ [Fn,Fn+1)
(Xn = Kn)
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Proof Sketch

Lemma (Key Lemma)
If an,k is a “nice” two dimensional homogenous recurrence
then the random variable Xn given by Pr[Xn = k ] ∝ an,k
approaches Gaussian as n→∞.

Let µ̃n(m) = E[(Xn − µn)m].

Lemma (Method of Moments)
Suffices to prove

lim
n→∞

µ̃n(2m)

µ̃n(2)m = (2m − 1)!! lim
n→∞

µ̃n(2m + 1)

µ̃n(2)m+ 1
2

= 0.
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Proof Sketch

Let µ̃n(m) = E[(Xn − µn)m]. We have

µ̃n(m) =
m∑
`=0

(
m
`

)∑
ti,j 6=0

Fn−i ti,j
Fn

· (j +µn−i −µn)` · µ̃n−i(m− `).

Lemma
For each integer m ≥ 0, there exist degree m polynomials
Q2m,Q2m+1 and γ2m, γ2m+1 ∈ (0,1) such that

µ̃n(2m) = Q2m(n) + O(γn
2m)

µ̃n(2m + 1) = Q2m+1(n) + O(γn
2m+1).

Furthermore, if C2m is the leading coefficient of Q2m, then
for all m, C2m = (2m − 1)!! · Cm

2 .
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Future Work

Are there other meaningful two-dimensional
recurrences to which we can apply our asymptotic
Gaussianity result?

Can you lift the constraint that every coefficient ci
must be positive?

What is the rate at which our Kg,n converges to a
normal distribution?
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