Convergence rates in generalized Zeckendorf decomposition problems

Ray Li (ryli@andrew.cmu.edu)¹ Steven J Miller (sjm1@williams.edu)² Zhao Pan (zhaop@andrew.cmu.edu)³ Huanzhong Xu (huanzhox@andrew.cmu.edu)⁴

¹Carnegie Mellon ²Williams College ³Carnegie Mellon ⁴Carnegie Mellon

Workshop on Combinatorial and Additive Number Theory New York, NY, May 26, 2016

Summary

• Review Zeckendorf-type decompositions

- Review Zeckendorf-type decompositions
- Discuss new approaches to asymptotic behavior of variance

- Review Zeckendorf-type decompositions
- Discuss new approaches to asymptotic behavior of variance
- Discuss new results on Gaussian behavior of gaps between summands

Previous Results

Definitions: Zeckendorf Decomposition

Theorem (Zeckendorf)

Let $\{F_n\}_{n\in\mathbb{N}}$ denote the Fibonacci numbers with $F_1 = 1$ and $F_2 = 2$. Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Definitions: Zeckendorf Decomposition

Theorem (Zeckendorf)

Let $\{F_n\}_{n\in\mathbb{N}}$ denote the Fibonacci numbers with $F_1 = 1$ and $F_2 = 2$. Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example

$$101 = 89 + 8 + 3 + 1 = F_{10} + F_5 + F_3 + F_1$$

Gaussian Behavior of Gaps

Definitions: Positive Linear Recurrence Sequence

Definition

A Positive Linear Recurrence Sequence (PLRS) is a sequence $\{G_n\}$ satisfying

$$G_n = c_1 G_{n-1} + \cdots + c_L G_{n-L}$$

with nonegative integer coefficients c_i with $c_1, c_L, L \ge 1$ and initial conditions $G_1 = 1$ and $G_n = c_1 G_{n-1} + c_2 G_{n-2} + \cdots + c_{n-1} G_1 + 1$ for $1 \le n \le L$. Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Examples of PLRS

• Fibonacci numbers: $L = 2, c_1 = c_2 = 1$. $G_1 = 1, G_2 = 2, G_3 = 3, G_4 = 5, ...$

Examples of PLRS

- Fibonacci numbers: $L = 2, c_1 = c_2 = 1$. $G_1 = 1, G_2 = 2, G_3 = 3, G_4 = 5, ...$
- 2 Powers of b: $L = 2, c_1 = b 1, c_2 = b$. $G_1 = 1, G_2 = b, G_3 = b^2, G_4 = b^3, \dots$

Examples of PLRS

- Fibonacci numbers: $L = 2, c_1 = c_2 = 1$. $G_1 = 1, G_2 = 2, G_3 = 3, G_4 = 5, ...$
- 2 Powers of b: $L = 2, c_1 = b 1, c_2 = b$. $G_1 = 1, G_2 = b, G_3 = b^2, G_4 = b^3, \dots$
- 3 *d*-bonacci numbers: $L = d, c_1 = c_2 = \cdots = c_d = 1$, $G_n = 2^{n-1}$ for $n \le d$.

Definition: Generalized Zeckendorf Decomposition

Definition (Generalized Zeckendorf Decomposition)

Let $\{G_n\}$ be a PLRS and *m* be a positive integer. Then

$$m=\sum_{i=1}^{N}a_{i}G_{N+1-i}$$

is a **legal** decomposition if $a_1 > 0$ and the other $a_i \ge 0$, and one of the following conditions holds.

• We have N < L and $a_i = c_i$ for $1 \le i \le N$.

³ There exists an
$$s \in \{1, \ldots, L\}$$
 such that $a_1 = c_1, a_2 = c_2, \ldots, a_{s-1} = c_{s-1}, a_s < c_s$, and $\{b_i\}_{i=1}^{N-s}$ (with $b_i = a_{s+i}$) is either legal or empty.

Example

Consider the PLRS:

$$G_n = 3G_{n-1} + 2G_{n-2} + 2G_{n-4}.$$

Examples of legal decompositions:

•
$$m = 3G_9 + 2G_8 + G_6 + 3G_5 + G_4 + 2G_1$$
.

•
$$m = 3G_9 + 2G_8 + G_6 + 3G_5 + G_4 + 3G_1$$
.

Examples of NOT legal decompositions:

•
$$m = 4G_9$$
.

•
$$m = 3G_9 + 2G_8 + G_7$$
.

• $m = 3G_9 + 2G_8 + 2G_6$.

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Theorem: Generalized Zeckendorf Decomposition

Theorem

Let $\{G_n\}$ be a PLRS. Then there is a unique legal decomposition for every positive integer m.

Definitions and Notations

Definition

- Probability Space Ω_n: The set of legal decompositions of integers in [G_n, G_{n+1}).
- Probability Measure: Let each of the $G_{n+1} G_n$ legal decompositions be weighted equally.
- Random Variables K_n: Set K_n(ω) equal to the number of summands of ω ∈ Ω_n.

Asymptotic Behavior of Variance

Old Result

Theorem (Miller and Wang, 2012)

When $\{G_n\}$ is a PLRS, there exists constants $A, B, C, D, \gamma_1 \in (0, 1), \gamma_2 \in (0, 1)$ such that

$$\mathbf{E}[K_n] = An + B + o(\gamma_1^n) \tag{1}$$

$$\operatorname{Var}[K_n] = Cn + D + o(\gamma_2^n) \tag{2}$$

Remark

- Proof of (1) is easy.
- Proof of (2) is hard. Key difficulty: bound of C.

Main New Result

Theorem

When $\{G_n\}$ is a PLRS with length L, there exists $C_{min} > 0$ such that

$$\operatorname{Var}[K_n] > C_{\min} \cdot n$$

for all n > L.

Definition of Blocks

Definition

- We define a Type 1 block as an integer sequence corresponding to Condition 1.
- We define a Type 2 block as an integer sequence corresponding to Condition 2.

Example

$$G_n = 2G_{n-1} + 2G_{n-2} + 2G_{n-4}$$

Suppose $m = G_5 + 2G_3 + G_2 + 2G_1$, we write the decomposition into an integer sequence: [1,0,2,1,2].

- The Type 2 Blocks: [1], [0], [2, 1].
- The Type 1 Block: [2].

Definition of Blocks

Definition

- We define the size of a block as the total number of summands in it.
- We define the length of a block as the total number of indices in it.

Example

$$G_n = 2G_{n-1} + 3G_{n-3} + 2G_{n-4}$$

A possible Type 2 Block is [2, 0, 3, 1]. It has size 6 and length 4.

Key Observations of Type 1 Blocks

Properties:

- It appears at most once in any legal decomposition.
- It has to be the last block if it does exist.

Key Observations of Type 1 Blocks

Properties:

- It appears at most once in any legal decomposition.
- It has to be the last block if it does exist.

So,

- Type 1 block matters little when *n* is large.
- Second to last block has to be a Type 2 block.

Key Observations of Type 2 Blocks

The length of a Type 2 block is fully determined by its size. So we can define a function ℓ(t) such that a Type 2 block with size t has length ℓ(t).

Key Observations of Type 2 Blocks

- The length of a Type 2 block is fully determined by its size. So we can define a function ℓ(t) such that a Type 2 block with size t has length ℓ(t).
- A Type 2 block always has nonnegative size and strictly positive length.

Key Observations of Type 2 Blocks

- The length of a Type 2 block is fully determined by its size. So we can define a function ℓ(t) such that a Type 2 block with size t has length ℓ(t).
- A Type 2 block always has nonnegative size and strictly positive length.
- A legal decomposition will stay legal if we add a Type 2 block to it or remove a Type 2 block from it.

Key Idea

Lemma

For a fixed t, there is a bijection h_t between:

- all legal decompositions with total length n and the second to last block with size t, and
- all legal decompositions with total length $n \ell(t)$.

Example

$$G_n = 2G_{n-1} + 2G_{n-2} + 0 + 2G_{n-4}.$$

 $m = G_6 + G_5 + 2G_4 + G_1.$

Its block representation: [1], [1], [2, 0], [0], [1]. After removing [0]: [1], [1], [2, 0], [1]. The resulting legal decomposition: $G_5 + G_4 + 2G_3 + G_1$.

 Set Z_n(ω) equal to the size of the second to last block for the legal decomposition ω ∈ Ω_n. Then if Z_n(ω) = t, we have

$$K_n(\omega) = K_{n-\ell(t)}(h_t(\omega)) + t.$$

 Set Z_n(ω) equal to the size of the second to last block for the legal decomposition ω ∈ Ω_n. Then if Z_n(ω) = t, we have

$$K_n(\omega) = K_{n-\ell(t)}(h_t(\omega)) + t.$$

• In other words, we get the conditional expectations:

$$E[K_n | Z_n = t] = E[K_{n-l(t)}] + t$$
$$E[K_n^2 | Z_n = t] = E[(K_{n-l(t)} + t)^2]$$
$$= E[K_{n-l(t)}^2] + 2t E[K_{n-l(t)}] + t^2.$$

We first explicitly choose C_{min}. Then, we use strong induction on n to prove Var[K_n] > C_{min} ⋅ n.

- We first explicitly choose C_{min}. Then, we use strong induction on n to prove Var[K_n] > C_{min} ⋅ n.
- From previous results, we know $\mathbf{E}[K_n] = An + B + f(n)$ for some $f(n) = o(\gamma_1^n)$.

- We first explicitly choose C_{min}. Then, we use strong induction on n to prove Var[K_n] > C_{min} ⋅ n.
- From previous results, we know $\mathbf{E}[K_n] = An + B + f(n)$ for some $f(n) = o(\gamma_1^n)$.
- From induction hypothesis, we can bound E[K²_{n-ℓ(t)}] by estimating Var[K_{n-ℓ(t)}] + (E[K_{n-ℓ(t)}])².

- We first explicitly choose C_{min}. Then, we use strong induction on n to prove Var[K_n] > C_{min} ⋅ n.
- From previous results, we know $\mathbf{E}[K_n] = An + B + f(n)$ for some $f(n) = o(\gamma_1^n)$.
- From induction hypothesis, we can bound E[K²_{n-ℓ(t)}] by estimating Var[K_{n-ℓ(t)}] + (E[K_{n-ℓ(t)}])².
- In inductive step, we will be able to bound Var[K_n] by estimating E[K_n²] (E[K_n])².

Further Works

• Can we lift the constraint that the recurrence relationship is positive linear?

Further Works

- Can we lift the constraint that the recurrence relationship is positive linear?
- Can we generalize to more general sequences? Even without a recurrence relation?

Further Works

- Can we lift the constraint that the recurrence relationship is positive linear?
- Can we generalize to more general sequences? Even without a recurrence relation?
- Can we define legal decompositions and blocks for other sequences?

Gaussian Behavior of Gaps

For the rest of the talk, assume PLRS refers to recurrences

$$G_n = c_1 G_{n-1} + \cdots + c_L G_{n-L}$$

with $c_i > 0$ for $1 \le i \le L$.

(Previously, we only needed c_1 , $c_L > 0$ and $c_i \ge 0$ for 1 < i < L.)

Definition

Let *m* be a positive integer with decomposition

$$m = \sum_{i=1}^{N} a_i G_{N+1-i} = G_{i_1} + G_{i_2} + \cdots + G_{i_k}$$

and $i_1 \ge i_2 \ge \cdots \ge i_k$. Then the *gaps* in the decomposition of *m* are the numbers $i_1 - i_2, i_2 - i_3, \ldots, i_{k-1} - i_k$.

Definition

Let *m* be a positive integer with decomposition

$$m = \sum_{i=1}^{N} a_i G_{N+1-i} = G_{i_1} + G_{i_2} + \cdots + G_{i_k}$$

and $i_1 \ge i_2 \ge \cdots \ge i_k$. Then the *gaps* in the decomposition of *m* are the numbers $i_1 - i_2, i_2 - i_3, \ldots, i_{k-1} - i_k$.

Example

The gaps for the decomposition of m = 101 are 5, 2, 2.

$$101 = F_{10} + F_5 + F_3 + F_1.$$

Recall:

- Let *k*(*m*) be the number of summands in the decomposition of *m*.
- Let K_n be k(m) for an m chosen uniformly in $[G_n, G_{n+1})$.

- Let *k*(*m*) be the number of summands in the decomposition of *m*.
- Let K_n be k(m) for an m chosen uniformly in $[G_n, G_{n+1})$.
- Let $k_g(m)$ be the number of size-*g* gaps in the decomposition of *m*.
- Let $K_{g,n}$ be $k_g(m)$ for an m chosen uniformly in $[G_n, G_{n+1})$.

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Gaps in Decompositions

- k(m) : number of summands in m
- $k_g(m)$: number of size-g gaps in m

Example

$$101 = F_{10} + F_5 + F_3 + F_1$$

k(101) = 4, k₂(101) = 2, k₃(101) = k₄(101) = 0,
k₅(101) = 1

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Gaps in Decompositions

- k(m) : number of summands in m
- $k_g(m)$: number of size-g gaps in m

Example

$$101 = F_{10} + F_5 + F_3 + F_1$$

k(101) = 4, k₂(101) = 2, k₃(101) = k₄(101) = 0,
k₅(101) = 1

Fact

$$k(m) = 1 + \sum_{g=0}^{\infty} k_g(m)$$

Results

Understand: Distribution of number of summands: K_n

Understand: Distribution of number of summands: K_n

Don't Understand: Distribution of number of size-g gaps: $K_{g,n}$

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Results: Mean and Variance

 K_n : number of summands in random $m \in [G_n, G_{n+1})$

Theorem (Lekkerkerker, 1951)

When $\{G_n\}$ is Fibonacci, $\mathbf{E}[K_n] = C_{Lek}n + O(1)$ for $C_{Lek} = \frac{1}{\varphi^2 + 1}$. ($C_{lek} \approx 0.276$)

Theorem (Miller and Wang, 2012)

When $\{G_n\}$ is a PLRS, there exists A > 0, B, and $\gamma_1 \in (0, 1)$ such that $\mathbf{E}[K_n] = An + B + O(\gamma_1^n)$.

Theorem (Miller and Wang, 2012)

When $\{G_n\}$ is a PLRS, there exists C > 0, D, and $\gamma_2 \in (0, 1)$ such that $Var[K_n] = Cn + D + O(\gamma_2^n)$.

Results: Mean and Variance

 $K_{g,n}$: number of size-g gaps in random $m \in [G_n, G_{n+1})$

Theorem (Main Result 1: Lekkerkerker for gaps)

When $\{G_n\}$ is a PLRS, for every integer $g \ge 0$, there exists A_g , B_g and $\gamma_{g,1} \in (0, 1)$ such that $\mathbf{E}[K_{g,n}] = A_g n + B_g + O(\gamma_{g,1}^n)$. By Bower et al. 2013, A_g is known for all PLRS $\{G_n\}$ and g.

Theorem (Main Result 2: Variance is linear for gaps)

When $\{G_n\}$ is a PLRS, for every integer $g \ge 0$, there exists C_g , D_g and $\gamma_{g,2} \in (0, 1)$ such that $Var[K_{g,n}] = C_g n + D_g + O(\gamma_{g,2}^n)$.

Results: Asymptotic Gaussianity

 K_n : number of summands in random $m \in [G_n, G_{n+1})$ $K_{g,n}$: number of size-g gaps in random $m \in [G_n, G_{n+1})$

Theorem (Kopp, Koloğlu, Miller, and Wang, 2011)

When $\{G_n\}$ is Fibonacci, as $n \to \infty$, K_n approaches Gaussian.

Theorem (Miller and Wang, 2012)

When $\{G_n\}$ is PLRS, as $n \to \infty$, K_n approaches Gaussian.

Theorem (Main Result 3: Gaussian Behavior for Gaps)

When $\{G_n\}$ is PLRS, as $n \to \infty$, $K_{g,n}$ approaches Gaussian.

Results: Summary

Theorem (Main Results, Summary)

The mean $\mu_{g,n}$ and variance $\sigma_{g,n}^2$ of $K_{g,n}$ grow linearly in n, and $(K_{g,n} - \mu_{g,n})/\sigma_{g,n}$ converges to the standard normal N(0,1) as $n \to \infty$.

Theorem (Main Result 3: Fibonacci Numbers, g = 2)

When $\{G_n\}$ is Fibonacci, as $n \to \infty$, $(K_{2,n} - \mu_{2,n})/\sigma_{2,n}$ converges to standard normal.

Theorem (Main Result 3: Fibonacci Numbers, g=2)

When $\{G_n\}$ is Fibonacci, as $n \to \infty$, $(K_{2,n} - \mu_{2,n})/\sigma_{2,n}$ converges to standard normal.

Let $p_{2,n,k} = \#\{m \in [F_n, F_{n+1}) \text{ with } k \text{ size-2 gaps}\}|.$ $\Pr[K_{2,n} = k] \propto p_{2,n,k}.$

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Proof Sketch

$$p_{2,n,k} = \#\{m \in [F_n, F_{n+1}) \text{ with } k \text{ size-2 gaps}\}|.$$

n\k	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0
2	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0
4	2	1	0	0	0	0	0
5	3	1	1	0	0	0	0
6	4	3	1	0	0	0	0
7	6	5	1	1	0	0	0
8	9	7	4	1	0	0	0

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Proof Sketch

$$p_{2,n,k} = \#\{m \in [F_n, F_{n+1}) \text{ with } k \text{ size-2 gaps}\}|.$$

Lemma

$$p_{2,n,k} = p_{2,n-1,k} + p_{2,n-2,k-1} + p_{2,n-3,k-1} - p_{2,n-3,k}$$

Lemma (Key Lemma)

If $a_{n,k}$ is a "nice" two dimensional homogenous recurrence

$$a_{n,k} = \sum_{i=1}^{i_0} \sum_{j=0}^{j_0} t_{i,j} a_{n-i,k-j}$$

for constants $t_{i,j}$, then the random variable X_n given by $\Pr[X_n = k] \propto a_{n,k}$ approaches Gaussian as $n \to \infty$.

Lemma (Key Lemma)

If $a_{n,k}$ is a "nice" two dimensional homogenous recurrence then the random variable X_n given by $\Pr[X_n = k] \propto a_{n,k}$ approaches Gaussian as $n \to \infty$.

Famous example: $a_{n,k} = a_{n-1,k} + a_{n-1,k-1}$ gives...

Lemma (Key Lemma)

If $a_{n,k}$ is a "nice" two dimensional homogenous recurrence then the random variable X_n given by $\Pr[X_n = k] \propto a_{n,k}$ approaches Gaussian as $n \to \infty$.

Famous example: $a_{n,k} = a_{n-1,k} + a_{n-1,k-1}$ gives... the binomials: $a_{n,k} = \binom{n}{k}!$

Lemma (Key Lemma)

If $a_{n,k}$ is a "nice" two dimensional homogenous recurrence then the random variable X_n given by $\Pr[X_n = k] \propto a_{n,k}$ approaches Gaussian as $n \to \infty$.

Applications

•
$$a_{n,k} = a_{n-1,k} + a_{n-1,k-1}$$

 $X_n = \#$ heads after *n* coin flips ($\Pr[X_n = k] = \frac{\binom{n}{k}}{2^n}$)
• $a_{n,k} = a_{n-1,k} + a_{n-2,k-1} + a_{n-3,k-1} - a_{n-3,k}$
 $X_n = \#$ size-2 gaps of random $m \in [F_n, F_{n+1})$
($a_{n,k} = p_{2,n,k}, X_n = K_{2,n}$)
• $a_{n,k} = a_{n-1,k} + a_{n-2,k-1}$
 $X_n = \#$ summands of random $m \in [F_n, F_{n+1})$
($X_n = K_n$)

Lemma (Key Lemma)

If $a_{n,k}$ is a "nice" two dimensional homogenous recurrence then the random variable X_n given by $\Pr[X_n = k] \propto a_{n,k}$ approaches Gaussian as $n \to \infty$.

Let
$$\tilde{\mu}_n(m) = \mathbf{E}[(X_n - \mu_n)^m].$$

Lemma (Method of Moments)

Suffices to prove

$$\lim_{n\to\infty}\frac{\tilde{\mu}_n(2m)}{\tilde{\mu}_n(2)^m} = (2m-1)!! \qquad \lim_{n\to\infty}\frac{\tilde{\mu}_n(2m+1)}{\tilde{\mu}_n(2)^{m+\frac{1}{2}}} = 0.$$

Previous Results

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Proof Sketch

Let
$$\tilde{\mu}_n(m) = \mathbf{E}[(X_n - \mu_n)^m]$$
. We have

$$\tilde{\mu}_n(m) = \sum_{\ell=0}^m \binom{m}{\ell} \sum_{t_{i,j}\neq 0} \frac{F_{n-i}t_{i,j}}{F_n} \cdot (j+\mu_{n-i}-\mu_n)^\ell \cdot \tilde{\mu}_{n-i}(m-\ell).$$

Asymptotic Behavior of Variance

Gaussian Behavior of Gaps

Proof Sketch

Let
$$\tilde{\mu}_n(m) = \mathbf{E}[(X_n - \mu_n)^m]$$
. We have

$$\tilde{\mu}_n(m) = \sum_{\ell=0}^m \binom{m}{\ell} \sum_{t_{i,j}\neq 0} \frac{F_{n-i}t_{i,j}}{F_n} \cdot (j+\mu_{n-i}-\mu_n)^\ell \cdot \tilde{\mu}_{n-i}(m-\ell).$$

Lemma

For each integer $m \ge 0$, there exist degree m polynomials Q_{2m}, Q_{2m+1} and $\gamma_{2m}, \gamma_{2m+1} \in (0, 1)$ such that

$$egin{aligned} & ilde{\mu}_n(2m) = Q_{2m}(n) + O(\gamma_{2m}^n) \ & ilde{\mu}_n(2m+1) = Q_{2m+1}(n) + O(\gamma_{2m+1}^n). \end{aligned}$$

Furthermore, if C_{2m} is the leading coefficient of Q_{2m} , then for all m, $C_{2m} = (2m - 1)!! \cdot C_2^m$.

Future Work

 Are there other meaningful two-dimensional recurrences to which we can apply our asymptotic Gaussianity result?

Future Work

- Are there other meaningful two-dimensional recurrences to which we can apply our asymptotic Gaussianity result?
- Can you lift the constraint that every coefficient c_i must be positive?

Future Work

- Are there other meaningful two-dimensional recurrences to which we can apply our asymptotic Gaussianity result?
- Can you lift the constraint that every coefficient c_i must be positive?
- What is the rate at which our *K*_{*g*,*n*} converges to a normal distribution?