Introduction	Examples	Results	Open Problems

Explicit Constructions of Generalized MSTD Sets

Steven J. Miller, Sean Pegado and Luc Robinson Williams College

http://www.williams.edu/Mathematics/sjmiller/public_html

CANT 2011

Introdu 00	lction	Examples 00000	Results 00000	Open Problems

- History of the problem.
- Examples.
- Main results and proofs.
- Open problems and conjectures.

Introduction	Examples	Results	Open Problems

Introduction

Introduction	Examples	Results	Open Problems
●○	00000	00000	
Statement			

Let A be a finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_j : a_j, a_j \in A\}.$
- Difference set: $A A = \{a_i a_j : a_j, a_j \in A\}$.

Introduction	Examples	Results	Open Problems
●○	00000	00000	
Statement			

Let A be a finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_j : a_j, a_j \in A\}$.
- Difference set: $A A = \{a_i a_j : a_j, a_j \in A\}$.

Definition

We say *A* is difference dominated if |A - A| > |A + A|, balanced if |A - A| = |A + A| and sum dominated (or an MSTD set) if |A + A| > |A - A|.

Introduction	Examples	Results	Open Problems
○●	00000	00000	
Questions			

We expect generic set to be difference dominated:

- Addition is commutative, subtraction isn't.
- Generic pair (x, y) gives 1 sum, 2 differences.

Introduction	Examples	Results	Open Problems
○●	00000	00000	
Questions			

We expect generic set to be difference dominated:

- Addition is commutative, subtraction isn't.
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

- Do there exist sum-dominated sets?
- If yes, how many?

Introduction	Examples	Results	Open Problems

Examples

R

Introduction	Examples	Results	Open Problems
00	●○○○○	00000	
Examples			

- Conway: {0,2,3,4,7,11,12,14}.
- Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.
- Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29}.
- Computer search of random subsets of {1,...,100}: {2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39, 41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65, 66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95, 98,100}.
- Recently infinite families (Hegarty, Nathanson).

Introduction	Examples	Results	Open Problems
oo	○●○○○	00000	
Infinite Families			

Key observation

If A is an arithmetic progression, |A + A| = |A - A|.

Proof:

- WLOG, $A = \{0, 1, ..., n\}$ as $A \rightarrow \alpha A + \beta$ doesn't change |A + A|, |A A|.
- $A + A = \{0, ..., 2n\}, A A = \{-n, ..., n\}$, both of size 2n + 1.

Introduction	Examples	Results	Open Problems
oo	○o●○○	00000	
Previous Cons	structions		

Many constructions perturb an arithmetic progression.

Example:

• MSTD set $A = \{0, 2, 3, 4, 7, 11, 12, 14\}.$

• $A = \{0,2\} \cup \{3,7,11\} \cup (14 - \{0,2\}) \cup \{4\}.$

Introduction	Examples	Results	Open Problems
oo	○○○●○	00000	
Notation			

- Define $[a, b] = \{k \in \mathbb{Z} : a \le k \le b\}.$
- A is a P_n^2 -set if its sumset A + A and difference set A A contain all but the first and last *n* possible elements (may or may not contain some of fringe elements).
- A P_n^4 -set is a set where A + A + A + A and A + A A A each contain all but the first and last *n* elements.

Introduction	Examples	Results	Open Problems
00	00000	00000	000

Theorem (Miller-Orosz-Scheinerman)

 $A = L \cup R$ an MSTD, P_n^2 -set, O_k is k consecutive elements, M no runs of k missing elements, then $A' = L \cup O_k \cup M \cup O'_k \cup R'$ an MSTD set and at least $C2^r/r^4$ of subsets of $\{0, \ldots, r-1\}$ are MSTD.

Introduction	Examples	Results	Open Problems
00	00000	00000	000

Theorem (Miller-Orosz-Scheinerman)

 $A = L \cup R$ an MSTD, P_n^2 -set, O_k is k consecutive elements, M no runs of k missing elements, then $A' = L \cup O_k \cup M \cup O'_k \cup R'$ an MSTD set and at least $C2^r/r^4$ of subsets of $\{0, \ldots, r-1\}$ are MSTD.

Proof: If *M* never misses *k* consecutive elements, have all possible sums/differences.

Introduction	Examples	Results	Open Problems
00	00000	00000	000

Theorem (Miller-Orosz-Scheinerman)

 $A = L \cup R$ an MSTD, P_n^2 -set, O_k is k consecutive elements, M no runs of k missing elements, then $A' = L \cup O_k \cup M \cup O'_k \cup R'$ an MSTD set and at least $C2^r/r^4$ of subsets of $\{0, \ldots, r-1\}$ are MSTD.

Proof: If *M* never misses *k* consecutive elements, have all possible sums/differences.

OK if have at least one in blocks of k/2 elements, yields percentage in $\{0, \ldots, r-1\}$ is

$$\gg \sum_{k=n}^{r/4} \frac{1}{2^{2k}} \left(1 - \frac{1}{2^{k/2}} \right)^{\frac{r}{k/2}}$$

Introduction	Examples	Results	Open Problems
		00000	000

Theorem (Miller-Orosz-Scheinerman)

 $A = L \cup R$ an MSTD, P_n^2 -set, O_k is k consecutive elements, M no runs of k missing elements, then $A' = L \cup O_k \cup M \cup O'_k \cup R'$ an MSTD set and at least $C2^r/r^4$ of subsets of $\{0, \ldots, r-1\}$ are MSTD.

Proof: If *M* never misses *k* consecutive elements, have all possible sums/differences.

OK if have at least one in blocks of k/2 elements, yields percentage in $\{0, \ldots, r-1\}$ is

$$\gg \sum_{k=n}^{r/4} \frac{1}{2^{2k}} \left(1 - \frac{1}{2^{k/2}}\right)^{\frac{r}{k/2}}$$

 O_k and O'_k completely determined. If k grows with n, cannot have a positive percentage.

Introduction	Examples	Results	Open Problems

Results

Introduction	Examples	Results	Open Problems
oo	ooooo	●○○○○	

Constructing Sets with |A + A + A + A| > |A + A - A - A|

- Begin by searching for a single set with |A + A + A + A| > |A + A A A|.
- Generate random subsets of [1, 40], include each number with probability 1/4, and check if the generated set has the desired property.
- Two million trials yield

 $\{6, 7, 9, 10, 13, 32, 35, 36, 38, 39, 40\},\$

which has |A + A + A + A| = 136 and |A + A - A - A| = 135.

Introduction	Examples 00000	Results ○●○○○	Open Problems

Constructing Infinite Families |A + A + A + A| > |A + A - A - A|

To use one set to create a large infinite family of sets we modified Miller, Orosz, and Scheinerman's construction. The set must satisfy two properties:

- The set is a subset of [1, 2n] containing 1 and 2n.
- The set must be a P_n^4 set.

Some work yields

with these desired properties.

Introduction	Examples	Results	Open Problems
		00000	

Constructing Infinite Families, Continued

Our new set allows us to prove the following result:

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the percentage of subsets A of [1, n] with |2A + 2A| > |2A - 2A| is at least $C/n^{4/3}$.

Proof: Modify method of Miller-Orosz-Scheinerman.

Better Proof: Use results on length of consecutive heads in coin tosses and replace 4/3 with 2/3.

Introduction	Examples	Results	Open Problems
		00000	

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the percentage of subsets A of [1, n] with |2A + 2A| > |2A - 2A| is at least C/n^r , where $r = \frac{1}{6} \log_2(256/255) < .001$.

Introduction	Examples	Results	Open Problems
		00000	

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the percentage of subsets A of [1, n] with |2A + 2A| > |2A - 2A| is at least C/n^r , where $r = \frac{1}{6} \log_2(256/255) < .001$.

Proof: $A = L \cup R$, consider $A' = L \cup O_1 \cup M \cup O_2 \cup R'$.

O's show up in sums/differences at least in pairs, unless with L + L + L, R' + R' + R' or L + L - R'.

Introduction	Examples	Results	Open Problems
		00000	

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the percentage of subsets A of [1, n] with |2A + 2A| > |2A - 2A| is at least C/n^r , where $r = \frac{1}{6} \log_2(256/255) < .001$.

Proof: $A = L \cup R$, consider $A' = L \cup O_1 \cup M \cup O_2 \cup R'$.

- O's show up in sums/differences at least in pairs, unless with L + L + L, R' + R' + R' or L + L R'.
- Each of L + L + L, R' + R' + R' and L + L R' contain a run of 16 elements in a row.

Introduction	Examples	Results	Open Problems
		00000	

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the percentage of subsets A of [1, n] with |2A + 2A| > |2A - 2A| is at least C/n^r , where $r = \frac{1}{6} \log_2(256/255) < .001$.

Proof: $A = L \cup R$, consider $A' = L \cup O_1 \cup M \cup O_2 \cup R'$.

- O's show up in sums/differences at least in pairs, unless with L + L + L, R' + R' + R' or L + L R'.
- Each of L + L + L, R' + R' + R' and L + L R' contain a run of 16 elements in a row.
- Can relax the MOS structure (each O was k consecutive elements); if each O has no run of 16 missing elements and 20 full for both O's, get all sums/differences.

Introduction	Examples	Results	Open Problems
		00000	

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the percentage of subsets A of [1, n] with |2A + 2A| > |2A - 2A| is at least C/n^r , where $r = \frac{1}{6} \log_2(256/255) < .001$.

Proof: $A = L \cup R$, consider $A' = L \cup O_1 \cup M \cup O_2 \cup R'$.

- O's show up in sums/differences at least in pairs, unless with L + L + L, R' + R' + R' or L + L R'.
- Each of L + L + L, R' + R' + R' and L + L R' contain a run of 16 elements in a row.
- Can relax the MOS structure (each O was k consecutive elements); if each O has no run of 16 missing elements and 20 full for both O's, get all sums/differences.
- Replace the 1/2^{2k} from the Os in MOS with a better exponent.

Introduction	Examples	Results	Open Problems
		00000	

Selecting the Difference Between Sumset and Difference Set

We can construct a set S_x such that the difference between the sumset and the difference set of S_x is x for any integer x.

Theorem (MPR)

Given $x \in \mathbb{Z}$ there exists $S_x \subset [0, 157|x|]$ with $|2S_x + 2S_x| - |2S_x - 2S_x| = x$. For large x, there exists $S_x \subset [0, 35|x|]$.

Proof: Start with S_1 with x = 1. Shift and amalgamate gives S_5 , and repeat with shifts of S_1 and get S_x for $x \equiv 1 \mod 4$.

Cull the S_x 's to move backwards to get missing $x \mod 4$.

Introduction	Examples	Results	Open Problems

Open Problems

Initial observations: sets including 0 and primes up to p for small primes p are difference-dominated.

But also, typically |A + A| - |A - A| = |2A + 2A| - |2A - 2A|
 = |4A + 4A| - |4A - 4A| = |8A + 8A| - |8A - 8A| =
 |16A + 16A| - |16A - 16A|, and continued to hold in higher sums including |1024A + 1024A|.

Initial observations: sets including 0 and primes up to p for small primes p are difference-dominated.

- But also, typically |A + A| |A A| = |2A + 2A| |2A 2A|
 = |4A + 4A| |4A 4A| = |8A + 8A| |8A 8A| =
 |16A + 16A| |16A 16A|, and continued to hold in higher sums including |1024A + 1024A|.
- True for all checked sets containing 0 and {primes +1} and even random (normalized sets) tested.

Initial observations: sets including 0 and primes up to p for small primes p are difference-dominated.

- But also, typically |A + A| |A A| = |2A + 2A| |2A 2A|= |4A + 4A| - |4A - 4A| = |8A + 8A| - |8A - 8A| =|16A + 16A| - |16A - 16A|, and continued to hold in higher sums including |1024A + 1024A|.
- True for all checked sets containing 0 and {primes +1} and even random (normalized sets) tested.
- Only occasional exception: |A + A| |A A| sometimes different. All other differences are equal.

Introduction	Examples	Results	Open Problems
			000

When is a Set Sum-Dominated?

A	A+A	IA-AI	IA	*A+A+A	[A+A-A-A]	[4A + 4A]	4A-4A	[8A+8A]	[8A-8A]	[16A+16A]	[16A-16A]
primes to 7		12	13	26	27	54	55	110	111	222	223
to 11		17	21	39	43	83	87	171	175	347	351
to 13		21	25	:47	51	99	103	203	207	411	415
to 17		26	33	-80	67	128	135	264	271	536	543
to 19		30	37	66	1 76	144	151	296	303	600	607
to 23		35	45	81	. 91	173	183	357	367	725	735
to 29		40	55	98	115	214	231	446	463	910	927
to 31		46	59	110	123	234	247	482	495	978	991
to 37		52	89	127	147	275	295	571	591	1163	1183
Looking at primes off	by 1										
(0,3,4,6)		9	. 11	21	23	45	8	93	95	189	191
(0.3.4.6.8)		12	15	26	31	60	63	124	127	252	265
(0.3,4,6,8,12)		16	19	40	43	88	91	184	187	376	378
(0,3,4,6,8,12,14)		20	25	45	55	105	111	217	223	441	447
(0,3,4,6,8,12,14,18)		24	29	61	67	133	139	277	283	565	571
(0,3,4,6,8,12,14,18,20)) [28	35	70	79	150	159	310	319	630	639
(0,3,4,6,8,12,14,18,20	0.1	32	39	82	91	178	187	370	379	764	763
(0.3,4,6,8,12,14,18,20	0.1	36	47	97	115	217	235	457	475	937	955
(0,3,4,6,8,12,14,18,20). I	42	-53	112	127	240	255	496	511	1008	1023
(0,3,4,6,8,12,14,18,20	0.	47	59	127	147	279	299	583	603	1191	1211
(Mormalized) Dandom											
AD 4 5 83		0		21	24	45	40	93	97	180	103
023578		16	17	30	() a	1 84		128	129	255	267
AD 2 3 5 8 9 101		20	21	40	4	HO	A1	100	161	320	321
(0.1.2.3.6.13.16)		22	29		85	122	129	250	257	506	513
10 3 5 9 12 13 15	1	30	33	74	n	158	161	326	329	662	665
10. 3. 5. 7. 11. 12. 17.	11	41	49	99	103	207	211	423	427	855	859
(0, 3, 4, 5, 6, 7, 8, 12,	1	30	35	66	71	138	143	282	287	570	575

Introduction	Examples	Results	Open Problems
00	00000	00000	○○●
Questions Raised			

- Does this property hold for all sets with probability 1?
- Originally, this looked to be something unique to the sets of primes, but that was not the case. Are sets including primes interesting or unique in any other way?