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Introduction
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Statement

Let A be a finite set of integers, ∣A∣ its size. Form

Sumset: A + A = {ai + aj : aj ,aj ∈ A}.

Difference set: A − A = {ai − aj : aj ,aj ∈ A}.
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Statement

Let A be a finite set of integers, ∣A∣ its size. Form

Sumset: A + A = {ai + aj : aj ,aj ∈ A}.

Difference set: A − A = {ai − aj : aj ,aj ∈ A}.

Definition
We say A is difference dominated if ∣A − A∣ > ∣A + A∣, balanced
if ∣A − A∣ = ∣A + A∣ and sum dominated (or an MSTD set) if
∣A + A∣ > ∣A − A∣.
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Questions

We expect generic set to be difference dominated:

Addition is commutative, subtraction isn’t.

Generic pair (x , y) gives 1 sum, 2 differences.
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Questions

We expect generic set to be difference dominated:

Addition is commutative, subtraction isn’t.

Generic pair (x , y) gives 1 sum, 2 differences.

Questions
Do there exist sum-dominated sets?

If yes, how many?
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Examples

Conway: {0,2,3,4,7,11,12,14}.

Marica (1969): {0,1,2,4,7,8,12,14,15}.

Freiman and Pigarev (1973): {0,1,2,4,5, 9,12,13,
14,16,17, 21,24,25,26,28,29}.

Computer search of random subsets of {1, . . . ,100}:
{2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39,
41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65,
66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95,
98,100}.

Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation

If A is an arithmetic progression, ∣A + A∣ = ∣A − A∣.

Proof:

WLOG, A = {0,1, . . . ,n} as A → �A + � doesn’t change
∣A + A∣, ∣A − A∣.

A + A = {0, . . . ,2n}, A − A = {−n, . . . ,n}, both of size
2n + 1. □

10



Introduction Examples Results Open Problems

Previous Constructions

Many constructions perturb an arithmetic progression.

Example:

MSTD set A = {0,2,3,4,7,11,12,14}.

A = {0,2} ∪ {3,7,11} ∪ (14 − {0,2}) ∪ {4}.
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Notation

Define [a,b] = {k ∈ ℤ : a ≤ k ≤ b}.

A is a P2
n -set if its sumset A + A and difference set A − A

contain all but the first and last n possible elements (may
or may not contain some of fringe elements).

A P4
n -set is a set where A + A + A + A and A + A − A − A

each contain all but the first and last n elements.
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A = L ∪ R an MSTD, P2
n -set, Ok is k consecutive elements, M

no runs of k missing elements, then A′ = L ∪ Ok ∪M ∪O′

k ∪R′

an MSTD set and at least C2r/r4 of subsets of {0, . . . , r − 1}
are MSTD.
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A = L ∪ R an MSTD, P2
n -set, Ok is k consecutive elements, M

no runs of k missing elements, then A′ = L ∪ Ok ∪M ∪O′

k ∪R′

an MSTD set and at least C2r/r4 of subsets of {0, . . . , r − 1}
are MSTD.

Proof: If M never misses k consecutive elements, have all
possible sums/differences.
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A = L ∪ R an MSTD, P2
n -set, Ok is k consecutive elements, M

no runs of k missing elements, then A′ = L ∪ Ok ∪M ∪O′

k ∪R′

an MSTD set and at least C2r/r4 of subsets of {0, . . . , r − 1}
are MSTD.

Proof: If M never misses k consecutive elements, have all
possible sums/differences.
OK if have at least one in blocks of k/2 elements, yields
percentage in {0, . . . , r − 1} is

≫

r/4
∑

k=n

1
22k

(

1 −
1

2k/2

)
r

k/2

.
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A = L ∪ R an MSTD, P2
n -set, Ok is k consecutive elements, M

no runs of k missing elements, then A′ = L ∪ Ok ∪M ∪O′

k ∪R′

an MSTD set and at least C2r/r4 of subsets of {0, . . . , r − 1}
are MSTD.

Proof: If M never misses k consecutive elements, have all
possible sums/differences.
OK if have at least one in blocks of k/2 elements, yields
percentage in {0, . . . , r − 1} is

≫

r/4
∑

k=n

1
22k

(

1 −
1

2k/2

)
r

k/2

.

Ok and O′

k completely determined. If k grows with n, cannot
have a positive percentage.
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Results
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Constructing Sets with ∣A + A + A + A∣ > ∣A + A − A − A∣

Begin by searching for a single set with
∣A + A + A + A∣ > ∣A + A − A − A∣.

Generate random subsets of [1,40], include each number
with probability 1/4, and check if the generated set has the
desired property.

Two million trials yield

{6,7,9,10,13,32,35,36,38,39,40},

which has ∣A+A+A+A∣= 136 and ∣A+A−A−A∣ = 135.
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Constructing Infinite Families ∣A + A + A + A∣ > ∣A + A − A − A∣

To use one set to create a large infinite family of sets we
modified Miller, Orosz, and Scheinerman’s construction. The
set must satisfy two properties:

The set is a subset of [1,2n] containing 1 and 2n.

The set must be a P4
n set.

Some work yields

A = {1,2,4,5,8,27,30,31,33,34,35,50,

51,53,54,57,76,79,80,82,83,84} ⊂ [1,2n]

with these desired properties.
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Constructing Infinite Families, Continued

Our new set allows us to prove the following result:

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1,n] with ∣2A + 2A∣ > ∣2A − 2A∣ is
at least C/n4/3.

Proof: Modify method of Miller-Orosz-Scheinerman.

Better Proof: Use results on length of consecutive heads in coin
tosses and replace 4/3 with 2/3.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1,n] with ∣2A + 2A∣ > ∣2A − 2A∣ is
at least C/nr , where r = 1

6 log2(256/255) < .001.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1,n] with ∣2A + 2A∣ > ∣2A − 2A∣ is
at least C/nr , where r = 1

6 log2(256/255) < .001.

Proof: A = L ∪ R, consider A′ = L ∪ O1 ∪ M ∪ O2 ∪ R′.

O’s show up in sums/differences at least in pairs, unless
with L + L + L, R′ + R′ + R′ or L + L − R′.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1,n] with ∣2A + 2A∣ > ∣2A − 2A∣ is
at least C/nr , where r = 1

6 log2(256/255) < .001.

Proof: A = L ∪ R, consider A′ = L ∪ O1 ∪ M ∪ O2 ∪ R′.

O’s show up in sums/differences at least in pairs, unless
with L + L + L, R′ + R′ + R′ or L + L − R′.
Each of L + L + L, R′ + R′ + R′ and L + L − R′ contain a
run of 16 elements in a row.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1,n] with ∣2A + 2A∣ > ∣2A − 2A∣ is
at least C/nr , where r = 1

6 log2(256/255) < .001.

Proof: A = L ∪ R, consider A′ = L ∪ O1 ∪ M ∪ O2 ∪ R′.

O’s show up in sums/differences at least in pairs, unless
with L + L + L, R′ + R′ + R′ or L + L − R′.
Each of L + L + L, R′ + R′ + R′ and L + L − R′ contain a
run of 16 elements in a row.
Can relax the MOS structure (each O was k consecutive
elements); if each O has no run of 16 missing elements
and 2O full for both O’s, get all sums/differences.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1,n] with ∣2A + 2A∣ > ∣2A − 2A∣ is
at least C/nr , where r = 1

6 log2(256/255) < .001.

Proof: A = L ∪ R, consider A′ = L ∪ O1 ∪ M ∪ O2 ∪ R′.

O’s show up in sums/differences at least in pairs, unless
with L + L + L, R′ + R′ + R′ or L + L − R′.
Each of L + L + L, R′ + R′ + R′ and L + L − R′ contain a
run of 16 elements in a row.
Can relax the MOS structure (each O was k consecutive
elements); if each O has no run of 16 missing elements
and 2O full for both O’s, get all sums/differences.
Replace the 1/22k from the Os in MOS with a better
exponent.
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Selecting the Difference Between Sumset and Difference Set

We can construct a set Sx such that the difference between the
sumset and the difference set of Sx is x for any integer x .

Theorem (MPR)

Given x ∈ ℤ there exists Sx ⊂ [0,157∣x ∣] with
∣2Sx + 2Sx ∣ − ∣2Sx − 2Sx ∣ = x. For large x, there exists
Sx ⊂ [0,35∣x ∣].

Proof: Start with S1 with x = 1. Shift and amalgamate gives S5,
and repeat with shifts of S1 and get Sx for x ≡ 1 mod 4.

Cull the Sx ’s to move backwards to get missing x mod 4.
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Open Problems
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When is a Set Sum-Dominated?

Initial observations: sets including 0 and primes up to p for
small primes p are difference-dominated.

But also, typically ∣A +A∣ − ∣A −A∣ = ∣2A+ 2A∣ − ∣2A − 2A∣
= ∣4A + 4A∣ − ∣4A − 4A∣ = ∣8A + 8A∣ − ∣8A − 8A∣ =
∣16A + 16A∣ − ∣16A − 16A∣, and continued to hold in higher
sums including ∣1024A + 1024A∣.
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When is a Set Sum-Dominated?

Initial observations: sets including 0 and primes up to p for
small primes p are difference-dominated.

But also, typically ∣A +A∣ − ∣A −A∣ = ∣2A+ 2A∣ − ∣2A − 2A∣
= ∣4A + 4A∣ − ∣4A − 4A∣ = ∣8A + 8A∣ − ∣8A − 8A∣ =
∣16A + 16A∣ − ∣16A − 16A∣, and continued to hold in higher
sums including ∣1024A + 1024A∣.

True for all checked sets containing 0 and {primes +1}
and even random (normalized sets) tested.
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When is a Set Sum-Dominated?

Initial observations: sets including 0 and primes up to p for
small primes p are difference-dominated.

But also, typically ∣A +A∣ − ∣A −A∣ = ∣2A+ 2A∣ − ∣2A − 2A∣
= ∣4A + 4A∣ − ∣4A − 4A∣ = ∣8A + 8A∣ − ∣8A − 8A∣ =
∣16A + 16A∣ − ∣16A − 16A∣, and continued to hold in higher
sums including ∣1024A + 1024A∣.

True for all checked sets containing 0 and {primes +1}
and even random (normalized sets) tested.

Only occasional exception: ∣A + A∣ − ∣A − A∣ sometimes
different. All other differences are equal.
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When is a Set Sum-Dominated?
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Questions Raised

Does this property hold for all sets with probability 1?

Originally, this looked to be something unique to the sets of
primes, but that was not the case. Are sets including
primes interesting or unique in any other way?
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