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1. Enter sumsets

1.1 Sum and difference sets in number theory
Many of the most important problems in number theory concern the sum or difference set of
a given set of integers. For example, Goldbach’s conjecture states that if P is the set of all
primes, P +P includes all even numbers starting from four; the Twin Prime Conjecture states
that two is represented infinitely often in P − P ; and Fermat’s Last Theorem states that if
Sk is the set of k-th powers of positive integers, the intersection of Sk + Sk with Sk is empty
whenever k > 2.

1.2 The problem we investigate
Pick a number 0 < p < 1. A set of nonnegative integers A ⊆ Z≥0 is chosen randomly such
that for every n, the probability of n ∈ A is equal to p:

P (n ∈ A) = p ∀n ∈ Z≥0.

We investigate the sum set A + A,

A + A := {x + y : x, y ∈ A}.

Our main object of study is P (|A + A|c = m), the probability of missing exactly m summands
as a function of m. The figure below provides numerically computed P (|A + A|c = m), as well
as the “cumulative distribution function” P (|A + A|c ≥ m), for three different values of p.
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The most interesting theorems in mathematics are those that are “out there,” in plain sight,
waiting to be “discovered,” not “created.” Our problem boasts a number of interesting pat-
terns. Missing 0, 2, 4, . . . summands appears to be more likely than missing 1, 3, 5, . . . sum-
mands; is there a reason why? The plot of log (P (|A + A|c ≥ m)) against m is practically
linear; why is that, and what is its slope? What is the likelihood of missing zero summads,
that is, of having A+A = Z≥0? We calculate the mean and variance of the number of missing
summands and provide bounds for other relevant quantities.

1.3 Missing sums and annihilation
Imagine the quarter-infinite grid Z2

0. Whenever a number k ∈ Z0 is not in A, a fictional “orbital
canon” fires at the point (k, k) and annihilates the corresponding column and row. For any
integer n, if all of the squares (n, 0), (n − 1, 1), . . . , (0, n) are annihilated, n is missing from
A+A. In the figure below, the canon fires at 0, 2, 3, and one can see that 0, 1, 3, 4 are missing
from A + A.
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In order for a number n to be missing from A + A, n + 1 squares must be annihilated. As n
gets large, the probability P (n /∈ A + A) decays exponentially. So even though A in general
misses infinitely many integers, A + A will on average only miss finitely many.

2. Our methods and results

2.1 Circle diagrams

( a ) 0 1 2 3 4 5 ( b )
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In order for an integer n to be missing from A + A, for every pair (0, n), (1, n − 1), . . . , (n, 0),
at least one of the two numbers in the pair must be missing from A. Figure (a) depicts the
condition for 5 /∈ A+A, and figure (b) depicts the condition for 13, 17 /∈ A+A. Figure (a) splits
into three semicircles, and figure (b) splits into two spirals. In general, a circle diagram for
one or two numbers is a combination of one or more “chains.”

2.2 The likelihood of missing one or two given integers
Using circle diagrams, we were able to compute exact formulas for the probabilities of miss-
ing one or two given summands. These formulas have a piecewise character. The probability
of missing any given integer n is

P (n /∈ A + A) = F
n+1
2

2

1 n odd√
1−p
1+p n even

, (1)

and the probability of missing any two given integers m,n with m > n is

P (m,n /∈ A + A) = ω(m,n, l)κ(m,n, l). (2)

Here, l = ⌊m+1
m−n⌋, s = (m,n, l) mod 2 encodes the parities of m,n, l,

κ(m,n, l) =


1 s = 110 or 111
(1− p)Fl−1/

√
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√
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F2lF2l+2 s = 000 or 001

is a factor close to one, ω(m,n, l) = F
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2
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2

2l+2 is a piece decaying exponentially
with m and n, and (Fl) are a generalization of the Fibonaccis:

F0 = F1 = 1,

Fl+2 = (1− p)Fl+1 + p(1− p)Fl.
(3)

When p = 1/2, Fl is the (l+1)-st Fibonacci number divided by 2l. The Fl’s are strictly between
0 and 1, and they decay exponentially. Qualitatively, Fl is the probability that if a string of ze-
ros and ones of length l is chosen at random with P (1) = p, there will be no two consecutive
ones; this quantity arises because circle diagrams always split into disjoint “chains.”

2.3 Mean and variance
Let Y = |(A + A)c| be the random variable for the number of nonnegative integers missing
from A + A. Summing equation 1 yields

E (Y ) =
2

p2
− 1

p
− 1. (4)

From equation 2, we compute the second moment to be

E
(
Y 2

)
= −

(
2

p2
− 1

p
− 1

)
+ 2

∞∑
l=1

F2l + (1− p)Fl−1 + (1− p)FlF2l + (1− p)2Fl−1Fl
(1− F2l)(1− F2l+2)

. (5)

The sum, though hard to analyze, converges very quickly, since exponentially its terms de-
cay. Once the first two moments are known, the variance is calculated as E

(
Y 2

)
− E (Y )2.

For p = 1/2, the expectation value of Y is 5, and the variance is 17.9829.

2.4 Establishing the decay rate of Y
Using equation 1 and observing that P (U ∩ V ) ≤ P (V ) for any events U and V , one can
obtain a crude but surprisingly nice upper bound on the k-th moment of Y :

E
(
Y k

)
=
∑

P (n1, . . . , nk /∈ A + A) ≤

≤
∑
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(
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α√
2π

)
k!

αk
.

(6)

(Here, α := log 1√
1−p2

.) Applying Chernoff’s inequality, we obtain an exponential upper bound

on the probability of missing more than m summands in A + A:

P (Y ≥ m) ≤
(
1 +

α√
2π

)
me−αm+1 = O

(
me

−(log 1√
1−p2

)m
)
. (7)

(This bound is valid whenever m > 1/α. For p = 1/2, α = 0.1438 and 1/α = 6.9521.) One can-
not bound P (Y ≥ m) tighter than exponential. If 0, . . . ,m/2 are missing from A, then 0, . . . ,m
are missing from A + A. Therefore, for even m,

P (Y ≥ m) ≥ P (0, . . . ,m /∈ A + A) ≥ P (0, . . . ,m/2 /∈ A) = (1−p)m/2 = Ω

(
e
−(log 1√

1−p
)m

)
. (8)

Equations 7 and 8 together establish an approximate decay rate for P (Y ≥ m). Bounded
above and below by two exponential functions, P (Y ≥ m) must itself be “approximately ex-
ponential.”

3. Future work

3.1 Tightening the upper bound
Monte Carlo simulations allow us to compute P (Y ≥ m) as a function of m. Plotting
log (P (Y ≥ m)) against m yields an approximately linear graph whose slope we call the de-
cay rate. For p = 1/2, the decay rate was estimated to be around −0.3. This is very close
to the theoretical lower bound log

√
1− p = −0.3466 and quite far from the upper bound

log
√

1− p2 = −0.1438. Therefore, tightening equation 7 is an important direction of future
work. One immediate improvement can be obtained by using equation 2 instead of 1.

3.2 Calculating the even-odd disparity
The difference in probabilities of missing an even/odd numbers of summands can be quanti-
fied using Euler’s identity:

P (Y even)− P (Y odd) = E
(
(−1)Y

)
= E

(
eiπY

)
= E (cos πY ) .

Since the moment generating function M(t) = E
(
etY

)
is analytic, the tools of complex analy-

sis, including Cauchy’s integral formula and series approximations, could potentially be used
to evaluate P (Y even)− P (Y odd).

3.3 Towards a closed-form expression for variance
The difficulty of getting a closed-form expression for the variance of the number of missing
summands in A + A boils down to understanding the function

H(x) =

∞∑
n=1

xn

(1− F2n)(1− F2n+2)
.

It is not entirely unimaginable that this sum has a closed-form expression.

3.4 The k-th additive power of A
Define A+k to be the k-fold sum of A with itself, A+A+ · · ·+A with k summands. What is the
probability distribution for the number of missing summands in A+k? We have investigated
this for k = 2. Another possible object of study is A+∞ = {0} ∪ A ∪ A+2 ∪ . . . , the set of all
numbers expressible as an arbitrary sum of elements of A.
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