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De�nitions

De�nition

Given a set of integers A, we de�ne the sumset and di�erence set

of A as follows:

A+ A = fa1 + a2 : a1; a2 2 Ag;

A� A = fa1 � a2 : a1; a2 2 Ag:

We want to compare the sizes of these two sets:

� jA+Aj > jA�Aj: A has more sums than di�erences (MSTD).

� jA+ Aj = jA� Aj: A is sum-di�erence balanced.

� jA+Aj < jA�Aj: A has more di�erences than sums (MDTS).
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Sum and di�erence sets in number theory

Problems in additive number theory can be written in terms of

sumsets and di�erence sets:

Goldbach's conjecture says f4; 6; 8; 10; : : :g � P + P.

The twin primes conjecture says that P � P contains 2 in�nitely

many times.

Fermat's last theorem says that (An + An) \ An = ;, where An is

the set of positive nth powers for n � 3.
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Expectation

We expect that most sets of integers are MDTS rather than

MSTD.

Addition is commutative, subtraction is not.

Theorem (Martin-O'Bryant, 2006)

Let P be any arithmetic progression with length n. On average,

the di�erence set of a subset of P has 4 more elements than its

sumset:
1

2n

∑
A�P

jA� Aj � 2n � 7;

1

2n

∑
A�P

jA+ Aj � 2n � 11:
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MSTD sets of integers

Theorem (Martin-O'Bryant, 2006)

For n � 15, the number of MSTD subsets of f0; 1; 2; :::; n � 1g is
at least (2 � 10�7)2n.

MSTD subsets can be constructed by carefully controlling the

�fringes� (elements close to 0 or n � 1).
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Example

Example

Let A = f0; 2; 3; 4; 7; 11; 12; 14g.

A+ A = f0; 1; :::; 28gnf1; 20; 27g; jA+ Aj = 26;

A� A = f�14;�13; :::; 14gnf�13;�6; 6; 13g; jA� Aj = 25:
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Finite Groups

Miller and Vissuet considered the analogous problem with a �nite

group G (not necessarily abelian) in place of Z.

De�nition

Given A � G , we de�ne the sumset and di�erence set of A as

follows:

A+ A = fa1a2 : a1; a2 2 Ag;
A� A = fa1a�12 : a1; a2 2 Ag:

The lack of fringes or commutativity signi�cantly a�ect the

methods and results in these cases.

Theorem (Miller-Vissuet 2014)

Let Gn be a family of �nite groups such that jGnj ! 1. If

An � Gn is chosen uniformly at random, then

P(An + An = An � An = Gn)! 1 as n !1:
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Dihedral groups
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More MSTD than MDTS

De�nition

The dihedral group D2n is the group of symmetries of the regular

n-gon, consisting of n �rotation� elements and n ��ip� elements.

Conjecture (Miller-Visuet, 2014)

For all n � 3, D2n has more MSTD subsets than MDTS subsets.

Intuition comes from splitting A � D2n into R (rotation

elements) and F (�ip elements):

Set Rotations in set Flips in set

A R F

A+ A R + R;F + F R + F ;�R + F

A� A R � R;F + F R + F

R + R and �R + F contribute to A+ A and not A� A.

Only R � R contributes to A� A and not A+ A.
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Partitioning by size

Haviland et al. (2020) made progress toward proving the

conjecture by partitioning the subsets of D2n by size.

Notation: Let Sm denote the set of subsets of D2n of size m.

Lemma (Haviland et al. 2020)

S2 has strictly more MSTD subsets than MDTS subsets.

We further extended this piecemeal approach:

Lemma (A. et al. 2022+)

S3 has strictly more MSTD subsets than MDTS subsets.
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Large subsets

Haviland et al. (2020) also showed that su�ciently large subsets

must be sum-di�erence balanced:

Lemma (Haviland et al. 2020)

Given A � D2n, if jAj > n, then A+ A = A� A = D2n.

It remains to show that Sm does not have more MDTS sets than

MSTD sets for 4 � m � n.
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Composition of A

Our main new idea: further partition Sm by the number of

rotation elements versus �ip elements.

Writing each A � D2n as R [ F (rotations and �ips), we have:

Lemma (A. et al. 2022+)

If jRj > n

2
or jF j > n

2
, then A cannot be MDTS.

Proof. Recall this table:

Set Rotations in set Flips in set

A+ A R + R;F + F R + F ;�R + F

A� A R � R;F + F R + F

We can only have jA� Aj > jA+ Aj if R � R contains rotation

elements that A+ A does not have. But if jRj > n

2
(resp.

jF j > n

2
), then R +R (resp. F + F ) contributes all of the possible

rotations in D2n.
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Counting collisions

33 / 69



Background Dihedral groups Counting collisions Generalizations References

Results

For large n, we extended to certain values in 4 � m � n by

probabilistic methods.

Theorem (A. et al. 2022+)

For any n, more of the subsets in Sm are MSTD than MDTS for

6 � m � c � pn where c is a global constant.

This holds for any n with c = 0:12, but if n is very large, we can

improve c to 0:53.

Even more can be said if we further restrict m:

Theorem (A. et al. 2022+)

For any � > 0, there exist m� and c� such that for all n � 0, if

m� � m � c�
p
n, the proportion of MSTD sets in Sm is at least

1� �.
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MSTD with no overlaps

The proof relies on limiting the number of overlapping sums in

A+ A.

Recall this table again:

Set Rotations in set Flips in set

A+ A R + R;F + F R + F ;�R + F

A� A R � R;F + F R + F

Let jAj = m, jF j = k , and jRj = m � k . Assuming no overlaps,

and not counting F + F :

Type A+A A-A

Rotations
(
m�k
2

)
+ (m � k) 2

(
m�k
2

)
Flips 2(m � k)k (m � k)k

This implies that, with no overlaps, A is MSTD if(
m � k

2

)
+ (m � k) + 2(m � k)k > 2

(
m � k

2

)
+ (m � k)k :
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Collisions

De�nition

Let A 2 Sm, and let i = (a; b; c ; d) 2 A4. We call the event that

ab = cd (or equivalently, d = c�1ab) a collision.

For our purposes, we will disregard three types of collisions:

(a; b; a; b);

(a; b; b; a) : a; b 2 R;

(a; b; c ; d) : a; b; c ; d 2 F :

These redundant collisions have already been accounted for in the

previous analysis.
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MSTD, counting overlaps

Let jAj = m, jF j = k , and jRj = m � k . Let XA denote the

number of nonredundant collisions in A. Then, A is MSTD if(
m � k

2

)
+ (m� k) + 2(m� k)k�XA > 2

(
m � k

2

)
+ (m� k)k ;

or, solving for k ,

2m �
√
m2 � 6XA

3
� k � 2m +

√
m2 � 6XA

3

Takeaway: If XA is at most a small constant times m2, then for

most values of k , A is MSTD.
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Expected value of XA

When A is chosen randomly from Sm, XA is a random variable.

Lemma (A. et al. 2022+)

Suppose A is chosen from Sm uniformly at random. Then,

E[XA] � 0:42
m4

n
:

By Markov's inequality, the probability that XA exceeds c times

its expectation is at most 1=c .

When m � 0:12
p
n, this bound su�ces to show that most

subsets in Sm are MSTD. And, if we further restrict m, we can

prove that a very high proportion of subsets in Sm are MSTD!
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Where are the non-balanced sets?

We showed that when 6 < m < c
p
n, there are more MSTD

subsets of D2n of size m than MDTS subsets.

But most subsets of D2n have size around n, not
p
n. We are

focusing on a very small collection of subsets of D2n!

However, recall that almost all subsets of D2n are balanced.

Computer-assisted methods suggest that a phase transition

occurs around m = O(
p
n) where Sm goes from having mostly

MSTD subsets to having mostly balanced subsets.

51 / 69



Background Dihedral groups Counting collisions Generalizations References

Where are the non-balanced sets?

We showed that when 6 < m < c
p
n, there are more MSTD

subsets of D2n of size m than MDTS subsets.

But most subsets of D2n have size around n, not
p
n. We are

focusing on a very small collection of subsets of D2n!

However, recall that almost all subsets of D2n are balanced.

Computer-assisted methods suggest that a phase transition

occurs around m = O(
p
n) where Sm goes from having mostly

MSTD subsets to having mostly balanced subsets.

52 / 69



Background Dihedral groups Counting collisions Generalizations References

Where are the non-balanced sets?

We showed that when 6 < m < c
p
n, there are more MSTD

subsets of D2n of size m than MDTS subsets.

But most subsets of D2n have size around n, not
p
n. We are

focusing on a very small collection of subsets of D2n!

However, recall that almost all subsets of D2n are balanced.

Computer-assisted methods suggest that a phase transition

occurs around m = O(
p
n) where Sm goes from having mostly

MSTD subsets to having mostly balanced subsets.

53 / 69



Background Dihedral groups Counting collisions Generalizations References

Generalizations
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Generalized dihedral groups

Recall that for an abelian group G , the generalized dihedral group

of G is

Dih(G ) = Z=2n G

with the non-identity element of Z=2 acting on G by inversion.

Conjecture (GenDihMMSTDTMDTS)

Dih(G ) has more MSTD subsets than MDTS subsets for all �nite

abelian groups G that contain an element of order at least 3.

Our main theorems and methods for D2n translate directly to

Dih(G ), as long as G doesn't have too many elements of order 2.
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In�nite dihedral groups

We can also take G = Zr if we restrict the Zr -components in

Dih(Zr ) to [0; n � 1]r :

Theorem (A. et al. 2022+)

For all n � 0, more of the sets A � Z=2n [0; n � 1]r � Dih(Zr )
of size m are MSTD than MDTS for 6 � m � c � pn where c is a

global constant.

Theorem (A. et al. 2022+)

For any � > 0, there exist m� and c� such that for all n � 0, if

m� � m � c�
p
n, a proportion of at least 1� � of the subsets are

MSTD among A � Z=2n [0; n � 1]r � Dih(Zr ) of size m.

Proof idea: Construct a bijection Z=2n [0; n � 1]r ! D2nr that

preserves collisions.
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Future work

We would like to extend the bounds on m to show that for all n,

D2n has more MSTD sets than MDTS sets:

� c
p
n < m � n.

� Carefully count collisions.

� Analyze missed elements for m close to n.

� Construct injections from MDTS sets to MSTD sets in Sm.

Any results we prove for D2n will hopefully translate to

generalized dihedral groups.
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Expected size

Calculate expected sizes of jA+ Aj and jA� Aj.

Theorem (A. et al. 2022+)

For prime n and a random set A � D2n with jAj = m, we have

that

E(jA� Aj) = 2n � n

(
n

m

)(
2n
m

)2m � n2(n � 1)

m�1∑
k=1

(
n+k�m�1
m�k�1

)(
n�k�1
k�1

)(
2n
m

)
k(m � k)

� (n � 1)(2n)
(
n�m�1
m�1

)
(m)

(
2n
m

) :

Would also require understanding of variance.
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Expected size for di�erence sets
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Figure: E(jA� Aj) versus m for n = 10007.
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