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Background Main Result Proof Overview

More Sums Than Difference Sets (MSTD Sets)

Let A ⊆ {0, 1, . . . ,N}.

Definition

The sumset A+ A and difference set A− A of A are

A+ A := {a+ a′ : a, a′ ∈ A},
A− A := {a− a′ : a, a′ ∈ A}.

We would expect a generic set A to satisfy |A− A| ≥ |A+ A|,
since addition commutes while subtraction doesn’t.

Definition

We say A is MSTD if |A+ A| > |A− A|.
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Background Main Result Proof Overview

Existence of MSTD Sets

MSTD sets exist: {0, 2, 3, 4, 7, 11, 12, 14} (Conway, 1960s).

Hegarty, Nathanson, Zhao: Infinite families of MSTD sets.

“Even though there exist sets A that have more sums than
differences, such sets should be rare, and it must be true with the
right way of counting that the vast majority of sets satisfies
|A− A| > |A+ A|.” - Melvyn B. Nathanson, 2006.

Question

What is the “right way of counting”?
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Background Main Result Proof Overview

Uniform Model

First try: Pick A uniformly at random from 2{0,1,...,N}.
(Equivalently, independently include each element w.p. 1

2 .)

Theorem (Martin and O’Bryant, 2006)

For N ≥ 15, there exists a constant c > 0 such that

#{A ⊆ {0, 1, . . . ,N} : A is sum-dominated}
2N+1

> c .

Intuition:

With high probability, A+ A and A− A will hit everything in
the middle of [0, 2N] and [−N,N], respectively.

We can then “rig” the fringes of A+ A and A− A by carefully
selecting the fringes of A.
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Binomial Model

Second try: Keep the same model, but now let the inclusion
probability be p(N) ≍ N−δ for some δ ∈ (0, 1).

“Inclusion probability vanishes, but |A| explodes.”

Conjecture (Martin and O’Bryant, 2006)

When A is drawn from the binomial model, the set A is not MSTD
with high probability.

Theorem (Hegarty and Miller, 2008)

(Fast Decay) If δ > 1
2 ,

|A−A|
|A+A| ∼ 2.

(Critical Decay) If p(N) = cN−1/2, |A−A|
|A+A| ∼ f (c) ↘ 1.

(Slow Decay) If δ < 1
2 ,

|(A+A)c |
|(A−A)c | ∼ 2.
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Generalized Sumsets

Definition

The generalized sumset As,d of A with s sums, d differences is

As,d := {a1 + · · ·+ as − b1 − · · · − bd : a1, . . . , as , b1, . . . , bd ∈ A}.

Let s1 + d1 = s2 + d2 = h, with p(N) ≍ N−δ as before.

Theorem (Hogan and Miller, 2013)

(Fast Decay) If δ > h−1
h ,

|As1,d1
|

|As2,d2
| ∼

s2!d2!
s1!d1!

.

(Critical Decay) If p(N) = cN− h−1
h ,

|As1,d1
|

|As2,d2
| ∼

f (c,s1,d1)
f (c,s2,d2)

.

Proposition (J., Miller, 2023++)

We have that f (c,s1,d1)
f (c,s2,d2)

↘ 1.
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Slow Decay/Dense A Regime

Arguments in Hegarty and Miller proceed in two steps.

1 Estimate E[|A+ A|], E[|A− A|], E[|(A+ A)c |], E[|(A− A)c |].
2 Show that these random variables are strongly concentrated about

their expectations.

Step (1) is easy for the complements when there are two summands:

E[|(A+ A)c |] =
2N∑
k=0

Pr[k /∈ A+ A],

and k /∈ A+ A is the union of the mutually independent events

{0, k} ̸⊆ A, {1, k − 1} ̸⊆ A, . . . , {⌊k/2⌋, ⌈k/2⌉} ̸⊆ A.

Harder to compute exclusion probabilities for three or more summands.
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Main Result

We include each element in {0, 1, . . . ,N} in A independently with
probability p(N) ≍ N−δ, where δ < h−1

h .

Theorem (J., Miller, 2023++)

If s1 + d1 = s2 + d2 = h and δ < h−1
h ,

|Ac
s1,d1

|
|Ac

s2,d2
|
∼

(
s1!d1!

s2!d2!

) 1
h−1

.

Takeaways:

When comparing sizes of complements in the slow decay
regime, there is always a limit in probability.

The limiting ratio of the main terms in the fast decay regime
generalizes differently from the limiting ratio of the
complements in the slow decay regime.
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Main Ingredients in the Proof

The proof follows from three key insights.

1 All of the missing elements lie in the fringes: we hit basically
everything in the middle.

2 The number of ways that we hit a particular sum in the
fringes converges in distribution to a Poisson with rate that
we can calculate.

3 The number of missing elements is strongly concentrated
about its expectation.

Henceforth: Everything will be under the context of Ah,0, which
takes values in [0, hN]. We also assume that we only allow distinct
summands.
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Step 1: The Fringes

We want to formalize “hitting everything in the middle.”

To study the left fringe, think of generating A by a sequence of
Geom(p) random variables (gaps between consecutive terms).

1 The (1/p)
1

h−1

h
th element of A is ∼ (1/p)

h
h−1

h .

2 New sums in Ah,0 from adding the kth element of A beat
sums with summands before the ∼ (k/h)th element of A.

We therefore have the asymptotic lower bound

E[|Ac
h,0|] ≳ h · (1/p)

h
h−1

h
−

(1/p)
1

h−1∑
i=1

ih−1 ≳ (1/p)
h

h−1 .
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Step 1: The Middle

We bound exclusion probabilities Pr[k /∈ Ah,0] with Janson.

It turns out that if k ∈ [τN, (h − τ)N], with τ ≍

(
log

[
Np

h
h−1

]) 1
h−1

Np
h

h−1
,

Pr[k /∈ Ah,0] ≤ e−Ckh−1ph .

Expected number of missing elements in [τN, (h − τ)N] is at most∑
k∈[τN,(h−τ)N]

e−kh−1ph ≲ (1/p)
h

h−1

∫ ∞

log

[
Np

h
h−1

] e−Cxh−1
dx

= o
(
(1/p)

h
h−1

)
.

Combined with Last Slide: All of the missing elements lie in
[τN, (h − τ)N]c = [0, τN] ∪ [(h − τ)N, hN], the fringes.
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Step 2: Poisson Convergence

For each possible sum k in the fringes, we invoke the Stein-Chen method
(Arratia, Goldstein, Gordon, 1989) to prove that the number of ways k is
hit converges to a Poisson.

The expected number of missing elements in the left fringe, [0, τN], is

τN∑
k=0

Pr[k /∈ Ah,0]
(1)∼

τN∑
k=0

Pr[Pois(λk) = 0] ∼
τN∑
k=0

e−λk

(2)∼ (1/p)
h

h−1

∫ ∞

0

e−Chx
h−1

dx .

1 The probability that each Poisson random variable is 0 dominates
the bound on the total variation distance from Stein-Chen.

2 The rate λk is the expected number of combinations with h distinct
terms that sum to k. The number of ways to partition k into h
distinct parts, for large k, is ∼ Chk

h−1 (Knessl and Keller, 1990).
So λk ∼ Chp

hkh−1.
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Step 2: Ratio in Expectation

If we have d minus signs: Partitions of k into h distinct “offsets.” A
partition of k into h distinct offsets can be realized in

(
h
d

)
ways.

E
[∣∣Ac

s,d

∣∣] ∼ 2 · (1/p)
h

h−1

∫ ∞

0

e−Ch(hd)x
h−1

dx

=
2 · (1/p)

h
h−1

h−1

√(
h
d

) ∫ ∞

0

e−Chx
h−1

dx .

Altogether, we have that

E
[∣∣∣Ac

s1,d1

∣∣∣]
E
[∣∣∣Ac

s2,d2

∣∣∣] ∼
h−1

√(
h
d2

)
h−1

√(
h
d1

) =

(
s1!d1!

s2!d2!

) 1
h−1

.

Proves the theorem for the expectations.
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Step 3: Reductions from Martingale Machinery

For k ∈ {0, . . . ,N}, define the quantities

∆k(A) = E
[
|Ac

h,0|
∣∣∣ A ∩ [0, k − 1], k ∈ A

]
− E

[
|Ac

h,0|
∣∣∣ A ∩ [0, k − 1], k /∈ A

]
,

C (A) = max
0≤k≤N

∆k(A), V (A) = p
N∑

k=0

(∆k(A))
2
.

From a result of Vu (2002), for any λ,V ,C > 0 such that λ ≤ 4V
C 2 ,

P
(∣∣|Ac

h,0| − E
[
|Ac

h,0|
]∣∣ ≥ √

λV
)
≤ 2e−λ/4 + P(C (A) ≥ C ) + P(V (A) ≥ V ).

It will suffice to show the RHS vanishes if we take

λ ≍ log(1/p), V ≍ ((1/p) log(1/p))1+
h

h−1 , C ≍ (1/p) log(1/p),

since then, λ ≤ 4V
C 2 ,

√
λV = o

(
(1/p)

h
h−1

)
, and e−λ/4 vanishes.
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Step 3: Sketch of Strong Concentration

Fix some k ∈ {0, . . . ,N}.
1 (Middle) Number of elements in [τ̃N, (h − τ̃)N] that adding k to A

will add to Ah,0 is o(1). (Adapt argument from Step 1, with a larger

threshold τ̃ ≍ (logN)
1

h−1

Np
h

h−1
separating the fringe from the middle.)

2 (Fringes) Number of elements in [τ̃N, (h − τ̃)N]c that adding k to
A will add to Ah,0 is ≲ (1/p) log(1/p). (Adding k to A cannot add
more new sums to Ah,0 than
≍ (number of fringe elements of A)h−1; Chernoff yields size of

fringes to be ≍ [(1/p) log(1/p)]
1

h−1 .)

A union bound with vanishing sum of error probabilities gives

P(C (A) ≥ C ) = P
(

max
0≤k≤N

∆k(A) ≥ κ1(1/p) log(1/p)

)
N→∞−−−−→ 0.

Furthermore, V (A) ≲ pτ̃N [(1/p) log(1/p)]2 ≍ ((1/p) log(1/p))1+
h

h−1 , so

P(V (A) ≥ V ) = P(V (A) ≥ κ2 ((1/p) log(1/p))
1+ h

h−1 )
N→∞−−−−→ 0.
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Thank You for Listening!
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